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Abstract

Background: Hepatitis B Virus (HBV) contributes to liver carcinogenesis via various epigenetic mechanisms. The
newly defined epigenetics, epitranscriptomics regulation, has been reported to involve in multiple cancers including
Hepatocellular Carcinoma (HCC). Our previous study found that HBx, HBV encodes X protein, mediated H3K4me3
modification in WDR5-dependent manner to involve in HBV infection and contribute to oncogene expression. AlkB
Homolog 5 (ALKBH5), one of epitranscriptomics enzymes, has been identified to be associated with various cancers.
However, whether and how ALKBHS5 is dysregulated in HBV-related HCC remains unclear yet. This study aims to
investigate ALKBH5 function, clinical significance and mechanism in HBV related HCC (HBV-HCC) patients derived
from Chinese people.

Methods: The expression pattern of ALKBH5 was evaluated by RT-qPCR, Western blot, data mining and
immunohistochemistry in total of 373 HBV-HCC tissues and four HCC cell lines. Cell Counting Kit 8 (CCK8) assay,
Transwell and nude mouse model were performed to assess ALKBH5 function by both small interference RNAs and
lentiviral particles. The regulation mechanism of ALKBH5 was determined in HBx and WDR5 knockdown cells by
CHIP-gPCR. The role of ALKBHS5 in HBx mRNA N6-methyladenosine (m°A) modification was further evaluated by
MeRIP-gPCR and Actinomycin D inhibitor experiment in HBV-driven cells and HBx overexpression cells.

Result: ALKBH5 increased in tumor tissues and predicts a poor prognosis of HBV-HCC. Mechanically, the highly
expressed ALKBHS5 is induced by HBx-mediated H3K4me3 modification of ALKBH5 gene promoter in a WDR5-
dependent manner after HBV infection. The increased ALKBHS5 protein catalyzes the m°A demethylation of HBx
mRNA, thus stabilizing and favoring a higher HBx expression level. Furthermore, there are positive correlations
between HBx and ALKBHS5 in HBV-HCC tissues, and depletion of ALKBHS5 significantly inhibits HBV-driven tumor
cells" growth and migration in vitro and in vivo.

Conclusions: HBx-ALKBH5 may form a positive-feedback loop to involve in the HBV-induced liver carcinogenesis,
and targeting the loop at ALKBH5 may provide a potential way for HBV-HCC treatment.
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Background

Cancer is the epigenetic disease with hallmarks of ir-
regular DNA methylation, disrupted chromatin state and
dysregulated non-coding RNA [1, 2]. HBV infection is
the primary reason in East-Asian [3] and it promotes
tumorigenesis by inducing various epigenetics hallmarks
[4, 5]. The common mechanism is that HBV dysregu-
lates or hijacks host epigenetic enzymes such as DNA
methylase, histone methylase or acetylase, to induce ab-
errant epigenetic instability of host cells [6, 7]. Our pre-
vious study found that the X protein of HBV (HBx)
mediated a higher level of epigenetic H3K4me3 modifi-
cation of both host and virus chromatin via up-
regulation of WD-40 Repeat Protein 5 (WDR5), the core
subunit of histone modification enzyme, thus promoting
HBV infection and contributing to hepatocellular car-
cinogenesis [6]. However, it’s still unclear and incompre-
hensive how the epigenetic dysregulation occurs during
HBV infection, which hinders the completely overcome
of HBV-induced pathology of liver.

A new layer of epigenetic regulation, epitranscriptomics,
has been added by recent studies [8], which means chem-
ical modifications on cellular RNA instead of on DNA or
histone compared to the ‘epigenetics’ term. Epitranscrip-
tomics contain more than 140 RNA modifications, and
m®A modification is the most prevalent of eukaryotic cells
and plays critical roles in many biological and pathological
contexts [9]. The m°A muodification is mainly deposited at
the RR(m®A) CH motif of mRNA and recognized by its
catalytic enzymes, thus regulating mRNA stability, trans-
portation, translation and turnover [10, 11]. Our previous
study found that both HBx and WDR5 bind to the pro-
moter of AIkB Homolog 5 (ALKBH5) with the H3K4me3
modification [6]. ALKBHS5, the demethylase enzyme, has
been reported to be highly expressed in various cancers
including Hepatocellular Carcinoma (HCC), suggesting its
common role in tumor genesis and progression [12, 13].
In addition, HBV has been reported to hijacks the epitran-
scriptomics enzymes to induce either increased or de-
creased m®A modification of cognate mRNA including
itself encoding mRNA [14, 15]. However, whether and
how ALKBHS5 is involved in HBV related HCC (HBV-
HCC) patients derived from Chinese people remains to be
elucidated yet.

In the present study, we demonstrated that ALKBH5
is highly expressed and correlated to a poor prognosis in
HBV-HCC patients. Furthermore, we observed HBV up-
regulates ALKBH5 via the HBx-WDR5-H3K4me3 axis,
and ALKBH5 forms a positive feedback loop with HBx
to lead to hepatocellular carcinoma progression. The re-
sults suggest HBV may hijacks the epitranscriptomics
enzyme ALKBH5 to induce HCC through the HBx-
ALKBH5 positive feedback, which might represent a
novel therapeutic target of HBV-HCC.
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Methods

Patients and HCC specimens

This study was approved by the Ethical Committee of
the First Affiliated Hospital of Kunming Medical Uni-
versity (Clinical Ethic Issue No: kmmu2019483) fol-
lowing guidelines of the Declaration of Helsinki. All
the participants signed written informed consents,
and they gave consent to have their data published.
Twenty pairs of fresh HBV-HCC tissues with matched
peri-tumor tissues from Chinese patients who were
diagnosed as HBV-related primary HCC and normal
liver tissues from patients with repair treatment of
traumatic hepatic rupture were collected from the
First Affiliated Hospital of Kunming Medical Univer-
sity to test the ALKBH5 mRNA and protein expres-
sion level. Seventy-nine pairs of Chinese HBV-HCC
tissues and paried peritumor tissues from commercial
tissue microarrays supplied by Shanghai Superbiotech
(LD-LVC1805, Shanghai, China) were processed into
immunohistochemical (IHC) staining together with in-
tegrated follow-up and clinical information data.

Cell culture and animal studies

The human HCC cell lines L02, HepG2, MHCC97H,
HepG2.2.15 were from ATCC (Manassas, USA). The
primary human hepatocytes (PHH) were purchased from
the iCELL company (Shanghai, China) and the HepG2-
NTCP cells were previously constructed by our institute.
The stable ALKBH5-knockdown (KD) cell lines of
HepG2.2.15 were generated by lentivirus infection with
puromycin selection according to the manufacturer’s
protocol (Santa Cruz). Male athymic BALB/c nude mice
(4 weeks old) were used for tumor formation assay. The
animal experiments were approved according to the
guidelines of the Animal Care and Use Committee of
the First Affiliated Hospital of Kunming Medical Univer-
sity (IACUC Issue No: kmmu2019370), and the study
was carried out in compliance with the ARRIVE guide-
lines. HepG2.2.15 cells with ALKBH5-KD or control
were prepared in PBS and injected subcutaneously with
1 x 107 cells of the nude mice. After 3 weeks, tumors
were excised to measure weight.

HBYV infection and plasmid transfection

HBV infection assay was performed according to previ-
ous reports [16]. Briefly, plasmid of wildtype HBV
1.1mer (carrying a greater-than-unit-length HBV gen-
ome) or mutation of HBV 1.1mer with HBx abrogation
(the same plasmid with a stop codon for amino acid 7 of
HBx) were transiently transfected into HepG2 cells and
the supernatants were collected by polyethylene glycol
(PEG) 8000 and centrifugated to enrich the viral parti-
cles. For the following HBV infection of HepG2-NTCP
or PHH cells, media were supplemented with final 4%
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PEG-8000 plus HBV particles and added to the cells
with 50-80% confluency, 3 days after HBV infection,
cells were collected to conduct related experiments. Si-
lencing RNA oligos for knockdown of HBx or WDR5
were synthesized according to our published literature
[6]. The wild-type HBx 3'UTR and the mutated HBx
3'UTR (A1907C mutation, diminishing the site of m°A
modification), namely HBx 3'UTR WT and HBx 3'UTR
MT, respectively, overexpressing plasmids were con-
structed based on endonuclease digestion and T4 DNA
ligation. The primers used in these procedures are listed
in Table 1. RNA oligos or plasmids were transfected into
cells using Lipofectamine 3000 reagent (Thermo Fisher
Scientific, USA) and cells were collected after 48 h to be
used in the related experiments.

RT-gPCR, Western blot and IHC

RT-qPCR, Western blot and IHC were performed ac-
cording to the previous reports [6, 17]. Antibodies: anti-
ALKBH5 and anti-HBx antibodies (Abcam, USA) and
anti-B-actin antibody (Cell Signaling Technology, USA).
Primers sequences used for RT-qPCR were included in
Table 1.

ChIP-gPCR

The ChIP assay was performed as previously described
[18]. In brief, final 1% concentration formaldehyde fixed
chromatin from 10 million HepG2.2.15 cells with differ-
ent treatment and were sonicated to about 500 bp frag-
ments, antibody-bound protein A/G  Dynabeads
(Invitrogen) were incubated with sonicated chromatin at
4°C overnight. After 4 rounds of washing, the precipi-
tated protein-DNA complex was reverse-crosslinked at
65 °C overnight. DNA were purified by Phenol chloro-
form. The ChIP-qPCR primers used in this study are
presented in Table 1. Antibodies used in ChIP were
H3K4me3 (ab8580, Abcam).

Cell proliferation and Transwell assay

Cell proliferation was assessed by cell counting kit 8
(CCKS8) assay (Beyotime, China). In brief, cells were
seeded onto 96-well plates. CCK8 solution (10 pL/well)
was added to the cells after incubating for the indicated
time points, and the reaction product was quantified ac-
cording to the manufacturer’s instructions. Transwell as-
says were performed using 24-well Transwell plates (8-
um pore size; Millipore, Burlington, MA, USA). 1 x 10°
cells were seeded in serum-free medium in the upper
chamber, whereas medium supplemented with 20% fetal
bovine serum was applied to the lower chamber as a
chemoattractant. After 48 h of incubation, the migrated
cells at the bottom surface of the filter were fixed,
stained, and counted.
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Table 1 Primers used in this study

Application and
amp icon

Oligos for RT-qPCR

Sequence (5'— 3)

GAPDH-gpcr-F AACGGATTTGGTCGTATTGGGC
GAPDH-gpcr-R TTCGCTCCTGGAAGATGGTGAT
HBx-qpcr-F CCGTCTGTGCCTTCTCATCTGC
HBx-gpcr-R ACCAATTTATGCCTACAGCCTCC
ALKBHS5-qpcr-F GGCCTCAGGACATCAAGGAGC
ALKBH5-gpcr-R ACAGGGACCCTGCTCTGAAAC

siRNA for knockdown
SiIWDR5?" CACCUGUGAAGCCAAACUU

siHBX? (duplex  GCAUACUUCAAAGACUGUUUG

mixture) GGUUAAAGGUCUUUGUACUAG
GGCAUAAAUUGGUCUGUUCAC
GUUUUUCCCCUCUGCCUAA

Oligos for RT-qPCR
ALKBH5-TSS-F1
ALKBHS5-TSS-R1

AAATATTCGGACGATGCCGTGACGCGG
TTTATACGGGCATGCGCGTGCGTGCA
ALKBH5-TSS-F2  TATAGGACCCTAGAGCAGCGTCGT
ALKBH5-TSS-R2  AAATATGTGTCCGGGGCCAAGCG
Oligos for MeRIP-qPCR
HBx-3'UTR-F CCGTCATCTCTTGTTCATGTCC
HBx-3'UTR -R CGGCCGCTCCAAATTCTTTATAAGGG

Oligos for plasmids construction

EcoRI-HBx-F GGTGAATTCATGGCTGCTAGGCTGTGCTGC
Notl-HBx 3UTR CTTAGCGGCCGCTCCAAATTCTTTATAAGGGTCG
WT-R

Notl-HBx 3UTR TTAGCGGCCGCTCCAAATTCTTTATAAGGGTCGATG
A1907C-R2 GCCATGCCCCAAAGCCACCC

1, the siWDR5 RNA oligo are synthesized according to this paper: X-Linked
Mental Retardation Gene Product CUL4B Targets Ubiquitylation of H3K4
Methyltransferase Core Component WDR5 and Regulates Neuronal Gene
Expression. Mol Cell. 2011 Aug 5; 43 (3): 381-391

b, the siHBx RNA oligo are synthesized according to this paper: Therapeutic
recovery of hepatitis B virus (HBV)-induced hepatocyte-intrinsic inmune defect
reverses systemic adaptive immune tolerance. Hepatology. 2013 Jul;58 (1):73-85

MeRIP-seq and MeRIP -gPCR

The MeRIP assay was conducted following the manufac-
turer’s procedure (Merck Millipore). In brief, total RNA
were purified by TRIzol reagent (Japan, TAKARA) and
mRNA were enriched and fragmented by the commer-
cial kit (Invitrogen). m®A antibody conjugated proteinA/
G Dynabeads were incubated with mRNA at 4 °C for 4 h.
After washing, the precipitated mRNA was submitted to
library construction or RT-qPCR assay. MeRIP-qPCR
primers used in this study are presented in Table 1.

Bioinformatics analysis

RNA-seq and Mass spectrum (MS) data of 159 liver
samples (paired tumor and peri-tumor) from Fudan
Chinese HBV-HCC data was downloaded through the
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URL: https://www.biosino.org/node/project/detail/
OEP000321. RNA-seq data of 115 HBV-HCC samples
from The Cancer Genome Atlas (TCGA) were down-
loaded from the URL: https://cbioportal-datahub.s3.
amazonaws.com/lihc_tcga.tar.gz and the HBV infection
and genotype information was based on ViralMine ana-
lysis [19]. MeRIP-seq and input RNA were sequenced
and mapped to human genome using HISAT2 (http://
daehwankimlab.github.io/hisat2). The m°A peaks were
called by exomePeak (https://bioconductor.org/
packages/exomePeak).

Statistical analysis

All statistical analysis was performed using GraphPad
Prism 8 software (GraphPad Software, La Jolla, CA,
USA). Unpaired or paired two-tailed Student’s t-test
were applied to assess comparison between two groups;
Welch’s ANOVA test was used for comparison among
groups; Kaplan-Meier survival curves and log-rank tests
were used to estimate survival and differences between
groups; The Pearson’s chi-square test was used for cor-
relation analysis with calculation of correlation coeffi-
cients (r); The statistical significance was indicated by *,
P<0.05 **, P<0.01; **, P<0.001; **** P<0.0001 and
not significant (NS) when P > 0.05.

Result
ALKBHS5 is highly expressed in HBV-HCC and predicts
poor prognosis
Several studies reported the increased ALKBH5 in HCC
based on TCGA dataset [20, 21] while other reports in-
dicated decreased ALKBH5 in HCC [22, 23], suggesting
ALKBH5 might function differently in different HCC
background (such as HBV versus non-HBV related
HCC). To define ALKBH5 expression pattern in HBV-
HCC, we collected 20 pairs of tumor and peri-tumor tis-
sues with HBV infection history from Chinese patients.
ALKBH5 mRNA and protein levels were significantly in-
creased in HCC tissues compared to peri-tumor (Fig. 1A
and B). IHC assay further confirmed that ALKBH5 was
mainly stained in the nuclei of tumor cells and there was
the highest expression of ALKBH5 in tumor cells com-
pared with moderate expression in the peritumor tissues
and the negative staining in normal liver tissues (Fig.
1C). We further use a tissue microarray including an-
other 79 pairs of tumor and peri-tumor from Chinese
HBV-HCC patients to assert the ALKBH5 expression
pattern. The IHC score of ALKBH5 was predominantly
higher in tumors than their paired peri-tumors from the
79 Chinese HBV-HCC patients (Fig. 1D). And the higher
IHC score of ALKBH5 in HBV-HCC tissue microarray
predicted a poor prognosis (Fig. 1E).

To expand the sample size and dissect ALKBH5 role
in HBV-HCC patients, we data mined a recently
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comprehensive Fudan university’s study of HBV-HCC
including 159 Chinese patients’ transcriptome and prote-
ome [24]. The ALKBH5 mRNA and protein level in tu-
mors and peri-tumors from each of 159 Chinese patients
were extracted to assess ALKBH5 expression pattern.
The average mRNA and protein level of ALKBH5 were
significantly higher in tumors than in peri-tumors of the
159 Chinese patients (Fig. 2A). 115/159 of Fudan HBV-
HCC samples displayed a higher ALKBH5 mRNA level,
96/159 for higher ALKBH5 protein level, in tumor com-
pared to paired peri-tumor tissues and there were sig-
nificant differences by paired ¢ test (Fig. 2B).
Considering that Fudan HBV-HCC samples come all
from Chinese patients and HBV genotype B and C are
more popular in China than other genotypes [25], we
further data mined TCGA HBV-HCC datasets to ex-
plore whether the expression level of ALKBH5 in the
HBV background is related to different ethnicity or dif-
ferent HBV genotypes. We found that the ALKBH5 level
was higher in Asian groups than White and Black
groups (Fig. 2C); However, there’s no significant differ-
ence of the ALKBH5 expression level among HBV geno-
types B, C, and other phenotypes (Fig. 2D). These
TCGA HBV-HCC results suggest that the ALKBH5 ex-
pression might be correlated to ethnicity but not the
HBYV phenotype.

Survival analysis of both Fudan and TCGA HBV-HCC
datasets indicated that patients with higher mRNA and
protein levels of ALKBH5 had markedly less total sur-
vival rate than patients with lower ALKBH5 expression
(Fig. 2E and F). Furthermore, significant positive associa-
tions of ALKBH5 expression were identified with gen-
der, tumor size, AFP level, TNM stage and HCC
proliferation subtype, whereas there was no significant
association with age, liver cirrhosis, tumor encapsulation
and tumor number (Table 2). Taken together, ALKBH5
was highly expressed in most HBV-HCC tissues and
could predict poor prognosis for HBV-HCC patients.

HBV up-regulates ALKBH5 via the HBx-WDR5-H3K4me3
axis

As HBV could dysregulate host genes, we next explored
whether HBV causes the increased ALKBH5 expression.
Firstly, we checked ALKBH5 protein level in L02,
HepG2, HepG2.2.15 and MHCC97H cell lines as the lat-
ter two cell lines contain HBV genome and produce
HBYV virus compared to the first two. Western blot indi-
cated a higher ALKBH5 expression in HBV-infected cell
lines (Fig. 3A) which implied the regulation relationship
between HBV and ALKBH5. To directly assess the ef-
fects of HBV on ALKBHS5 expression, we conducted
in vitro HBV infection assay on PHH cells and HepG2-
NTCP cells. Wild type HBV virion (HBV WT) could in-
crease the ALKBH5 protein level while a mutation of
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Table 2 Relationship between clinicopathologic characteristics
and ALKBH5 mRNA and protein level in 159 cases of HBV-HCC
cohort

ALKBH5 mRNA
High Low P value

Characteristics ALKBHS5 protein

High Low P value

Gender

male 59 69 0.0657 58 70 0.025
female 20 1 21 10

Age

>=54 38 46 02352 39 45 0.3847
<54 41 34 40 35

Cirrhosis

yes 55 57 08218 56 56 0.9026
no 24 23 23 24

Tumor number

>1 22 20 06838 21 21 0.9621
1 57 60 58 59

Tumor size (cm)

>=55CM 48 35 0.0318 46 37 0.1306
<55CM 31 45 33 43

Tumor thrombus

yes 22 15 01746 19 18 0817
no 57 65 60 62

Tumour enapsulation

yes 54 57 06909 57 54 05229
no 25 23 22 26

AFP

> 1000 29 21 0.1556 33 17 0.0053
<1000 50 59 46 63

BCLC stage

A 30 38 02134 30 38 04787
B 25 27 28 24

C 24 15 21 18

TNM stage

[+ 46 59 0.0388 50 55 04674
n=+1v 33 21 29 25
Proteomic subtype

1(S-Mb) 22 33 01832 17 38 0.0027
2(S-Me) 30 27 34 23

3(S-Pf) 27 20 28 19

mRNA subtype

1(S-Mb) 17 42 0.0003 20 39 0.0084
2(S-Me) 33 21 33 21

3(S-Pf) 29 17 26 20

ALKBH5 expression from the dataset (Cell. 2019 Nov 14;179 (5):1240) was
divided into low and high expression groups based on the medium of mRNA
TPM score or protein abundance score, respectively. AFP, Alpha Fetoprotein
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HBx-depletion HBV virion (HBV MT) could not (Fig.
3B and C). HBx is not only vital to boost HBV transcrip-
tion and replication, but also play critical roles in liver
carcinogenesis by directly dysregulating host oncogenes
and tumor suppressing genes. We further observed there
were positive correlations between HBx and ALKBH5 in
the HBV-HCC tissue (Fig. 3D), and we thus check
whether overexpression of HBx promotes ALKBH5 ex-
pression. Indeed, HBx up-regulates both mRNA and
protein level of ALKBH5 in HepG2 cells after HBx-
overexpression plasmids transfection (Fig. 3E and F).

Our previous study indicated that HBx hijacks WDR5
to promote target oncogenes’ promoter H3K4me3 modi-
fication [6], which suggests that the increased ALKBH5
expression in HBV-HCC might be mediated through the
HBx-WDR5-H3K4me3 axis. After re-analyzing the HBx,
WDR5 and H3K4me3 ChIP-seq data in our previous
study, we found that HBx and WDR5 binds to the pro-
moter of ALKBH5 gene with the H3K4me3 modification
as shown in the UCSC genome browser (Fig. 4A). Fur-
thermore, knocking down either HBx or WDR5 by small
interfering RNA transfection decreased H3K4me3 modi-
fication level of ALKBHS5 gene’s promoter as evidenced
by ChIP-qPCR (Fig. 4B). We further data mined 159
Fudan HBV-HCC cohort to analyze the correlation be-
tween WDR5 and ALKBHS5 expression, we found that
WDR5 was indeed increased in the HBV-HCC at both
mRNA and protein level (Fig. 4C) and the increased
WDR5 level predicted a poor prognosis in accordance
with previous reports [6] (Fig. 4D, Left panel). Moreover,
the expression of WDR5 were positively related to the
expression of ALKBH5 in the 159 Fudan HBV-HCC co-
hort (Fig. 4D, Right panel). The relationship between
WDR5 and ALKBH5 was further defined by knockdown
of ALKBH5 in HepG2.2.15 cells, and we observed that
the down-regulated expression of WDR5 after ALKBH5
knockdown (Fig. 4E). These results support the notion
that HBV up-regulates ALKBH5 via the HBx-WDR5-
H3K4me3 axis.

ALKBH5 promotes the growth and migration of
hepatoma cells

As ALKBHS5 is highly expressed in HBV-HCC, we won-
dered the tumorigenic function of ALKBH5 in HBV-
induced carcinogenesis. Silencing ALKBH5 inhibited
proliferation rates of both HepG2 and HepG2.2.15 cells
(Fig. 5A and B). Correspondingly, transwell assay
showed that ALKBH5 supported tumor’s migration abil-
ity of both HepG2 and HepG2.2.15 cells (Fig. 5C). These
silencing results indicated that ALKBH5 functions as the
oncogene in HBV-independent manner. The role of
ALKBH5 in HCC was further addressed in a nude
mouse model. When HepG2.2.15 cells with stable
ALKBH5 knockdown were transferred to the
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subcutaneous of nude mice, the sizes of xenografted tu-
mors and the weights decreased than the control group
(Fig. 5D and E). These results illustrated the tumor-
promoting activity of HBV might be mediated, at least
partially, by the ALKBH5 in HBV-HCC cells.

ALKBH5 favors HBx mRNA stability by regulating its m°A
modification

A recently published study reported that HBV en-
codes RNA including pre-genomic RNA with m°A
modification at the 3'UTR and 5° UTR, and the m°A
modification of 3'UTR affects the HBV RNA stability
in HBV expressing HepG2 cells [15]. Therefore, the
increased ALKBH5 in HepG2.2.15 cells of the present
study probably involve in epitranscriptomics regula-
tion of HBV RNA. We thus use MeRIP-seq for
HepG2.2.15 to detect whether there are m°A modifi-
cation on HBV RNA in our study. We finally de-
tected one major m°A peak on HBV RNA, similar
with the previous report [15] (Fig. 6A). As HBx is the
determinant of both HBV replication and HBV-
induced carcinogenesis, we focused on the m°A modi-
fication on HBx 3’UTR. Firstly, we constructed both
wildtype and A1907C mutation of HBx 3'UTR overex-
pression plasmids, and transfected the plasmids into
HepG2 cells. MeRIP-qPCR validated that there was
m°A  modification on HBx 3UTR WT mRNA

compared to the positive control (Fig. 6B). Further-
more, the m°A modification level was dramatically
decreased at the HBx 3'UTR MT mRNA than the
WT (Fig. 6C). We also noticed that HBx 3'UTR MT
mRNA processed more stability than the WT by
RNA decay assay (Fig. 6D), which indicates that m°A
modification on HBx 3'UTR promotes its mRNA
decay. To further directly determine whether the
ALKBHS5 affect the m®A modification of HBx mRNA,
we knocked down ALKBH5 in the HepG2-HBx
JUTR WT cells, and the MeRIP-qPCR assay indi-
cated that ALKBH5 silencing induced a higher m°®A
modification of HBx mRNA (Fig. 6E), in accordance
with the decreased protein level of HBx (Fig. 6F),
which suggests that ALKBH5 could regulate HBx ex-
pression level by modifying m®A level of HBx mRNA.
In addition, we also conducted western blot assay for
WDR5 and H3K4me3 with or without knockdown of
ALKBHS5 gene (Fig. 6F), and we found that silencing
of ALKBH5 decreased not only HBx protein but also
WDR5 and H3K4me3 level, which indicated that
ALKBH5 might participate in the epigenetic regula-
tion of HBx-WDR5-H3K4me3 axis [6].

Therefore, we verified that HBx up-regulates ALKBH5
by the histone modification of H3K4me3 while ALKBH5
increases HBx via the mRNA modification of m°A,
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which may form a positive loop between HBx and
ALKBH5 (Fig. 6G).

Discussion

HBV exerts its tumor-promoting function by inducing ab-
normal epigenetics regulation of host cells, however,
whether the newly defined epitranscriptomics regulation
involves in HBV-induced epigenetics instability is limited
studied. In the present study, we found ALKBH5, one of
m°A epitranscriptomics enzyme, was highly increased in
HBV-HCC tissues with prognosis prediction value, and
targeting ALKBHS5 inhibits tumor cells’ growth and migra-
tion. Furthermore, HBV up-regulates ALKBHS5 expression
through HBx-WDR5-H3K4me3 axis, and ALKBH5 pro-
motes HBx mRNA stability by decreasing m°A modifica-
tion, thus forming a positive feedback loop.

Kim et al. have reported that HBV increases the m°A
writers METTL3/14 expression and thus decreases
PTEN expression by regulating m°A modification of
cognate RNAs [14]. However, further study is needed to
clarify more epitranscriptomics regulation of HBV on
host cell including whether and how HBV affects other
m°A enzymes expression. In present study, we find
ALKBHS5 is increased by HBV infection, providing new

hints that epitranscriptomics regulation is involved in
HBV-induced HCC by altering the expression of m°A
enzyme ALKBH5. Nevertheless, further studies are
needed to profile the down-stream target genes with ab-
normal m®A modification by the HBx-ALKBHS5 loop,
which would provide more potential targets for HBV-
related HCC treatment.

ALKBHS5 has been reported to be dysregulated with ei-
ther tumor-promoting or tumor-inhibiting roles in vari-
ous cancer types, including pancreatic cancer, lung
cancer, breast cancer and HCC [26]. The diverse roles
played by ALKBH5 might be dependent on the tumor
context. Regarding to HCC, previous studies reported
that ALKBH5 is decreased and thus suppresses malig-
nancy in HCC [22]. However, in our present study, in-
cluding total 99 cases of clinical samples and combining
with further data by mining the database from two co-
horts of 159 Fudan Chinese HBV-HCC and 115 TCGA
HBV-HCC patients [24, 27], we confirmed that ALKBH5
is up-regulated in most HBV-HCC tissues and predicts a
poor prognosis. Functionally, the proliferation and mi-
gration arrays in vitro and in vivo suggest the tumor
promoting role of the highly expressed ALKBH5 in
HCC. Thus, the present data provide a further
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understanding of ALKBHS5 expression pattern and bio-
logical function in HCC.

As for the controversies of ALKBH5 expression in
HCC tissues in the published literature, we think it may
be due to the heterogeneous HCC background. The
published reports do not describe whether those HCC
tissues are HBV-related or not. In the present study, we
only included the HBV-related HCC tissues to evaluate
the role of ALKBH5, which might be a possible reason
for the controversy of ALKBH5 expression in HCC tis-
sues between our study and the published works. On the
other hand, there are diverse molecular subtypes of
HBV-HCC, which might determine the different expres-
sion pattern for certain genes [24, 27]. In addition, the
effects of ALKBH5 on carcinogenesis might relate to the
stage of tumor and the different downstream molecules
as shown by other epitranscriptomics enzyme such as
FTO [28, 29].

In conclusion, our study reports the highly expressed
ALKBH5 induced by HBV plays a critical role in HCC
malignancy by forming a positive feedback loop between
HBx and ALKBHS5, which could be a potential prognos-
tic indicator and a potential novel therapeutic target for
HBV-HCC.
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