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Abstract

Background: Considerable evidence has indicated an association between the immune microenvironment and
clinical outcome in ccRCC. The purpose of this study is to extensively figure out the influence of immune-related
genes of tumors on the prognosis of patients with ccRCC.

Methods: Files containing 2498 immune-related genes were obtained from the Immunology Database and Analysis
Portal (ImmPort), and the transcriptome data and clinical information relevant to patients with ccRCC were
identified and downloaded from the TCGA data-base. Univariate and multivariate Cox regression analyses were
used to screen out prognostic immune genes. The immune risk score model was established in light of the
regression coefficient between survival and hub immune-related genes. We eventually set up a nomogram for the
prediction of the overall survival for ccRCC. Kaplan-Meier (K-M) and ROC curve was used in evaluating the value of
the predictive risk model. A P value of < 0.05 indicated statistically significant differences throughout data analysis.

Results: Via differential analysis, we found that 556 immune-related genes were expressed differentially between
tumor and normal tissues (p < 0. 05). The analysis of univariate Cox regression exhibited that there was a statistical
correlation between 43 immune genes and survival risk in patients with ccRCC (p < 0.05). Through Lasso-Cox
regression analysis, we established an immune genetic risk scoring model based on 18 immune-related genes. The
high-risk group showed a bad prognosis in K-M analysis. (p < 0.001). ROC curve showed that it was reliable of the
immune risk score model to predict survival risk (5 year over survival, AUC = 0.802). The model indicated satisfactory
AUC and survival correlation in the validation data set (5 year OS, Area Under Curve = 0.705, p < 0.05). From
Multivariate regression analysis, the immune-risk score model plays an isolated role in the prediction of the
prognosis of ccRCC. Under multivariate-Cox regression analysis, we set up a nomogram for comprehensive
prediction of ccRCC patients’ survival rate. At last, it was identified that 18 immune-related genes and risk scores
were not only tremendously related to clinical prognosis but also contained in a variety of carcinogenic pathways.
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Conclusion: In general, tumor immune-related genes play essential roles in ccRCC development and progression.
Our research established an unequal 18-immune gene risk index to predict the prognosis of ccRCC visually. This
index was found to be an independent predictive factor for ccRCC.
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Background
Renal cell carcinoma (RCC) is among one of the most
prevalent malignancies affecting humanity worldwide. Its
incidence rate has increased during the past 10 years,
consisting of 2–3% of the whole newly diagnosed carcin-
oma cases [1]. In histology, clear cell RCC (ccRCC) is
the predominant RCC subtype, responsible for nearly
75% of total renal carcinoma cases [2]. As considerable
progress has been achieved in screening, diagnosing, and
treating a variety of types of tumors through surgery and
drug therapy [3–5], the clinical prognosis of ccRCC
remains unsatisfactory [2, 6]. Thus, identifying several
prognostic factors and targets is crucial to making the
therapy and clinical outcomes of ccRCC patients better.
Immune evasion has recently attracted great interest

as one of the fundamental characteristics of carcinoma
[7]. Immunotherapies, including immune checkpoint
blockade, have produced astonishing results in the man-
agement of malignancies. Accumulating evidence shows
immune-related components, including immune genes,
antigens, and immune cells, contribute greatly to the
occurrence and malignant progression of cancer and are
valuable markers for cancer diagnosis and prognosis [8].
Additionally, immune genes in tumor TME have great
potential as prognostic biomarkers [9]. However, IRG
predictive models still need extensive study when it
comes to ccRCC biology.
This study aims to reveal the distribution and pedigree

of immune-related genes in patients with ccRCC and
explore the influence of immune-related genes on the
prognosis of ccRCC cases. In addition, we established an
immune genetic risk score model and set the nomogram,
which was used for predicting the prognosis of ccRCC.

Methods
Data acquisition
First, through the ImmPort data-base, we gained the
table of 2498 immune genes, then downloaded the
transcriptome records. A total of 72 paracancerous
tissues and 507 cancerous tissues were included in
ccRCC cases from the TCGA data-base. Furthermore,
the clinicopathological data of 507 ccRCC patients
were gained as well, which include age, sex, patho-
logical grading, tumor staging and TNM staging, vital
status, and survival time (Table 1). At last, the correc-
tion of transcriptome records depends on the
“LIMMA” software package in R software.

Function analysis of related genes
For exploring the principal biological processes of the se-
lected hub genes, we conducted the Kyoto Encyclopedia of
Genes and Genomes (KEGG) and gene ontology (GO)
analysis. The enriched KEGG and GO terms were identi-
fied by DAVID (https://david.ncifcrf.gov/).

Table 1 Clinical characteristics of included patients in the study

Variables Total
(n = 507)

Training cohort
(n = 252)

Validation cohort
(n = 255)

Age (year)

< 40 17 9 8

40–59 225 110 115

60–79 253 130 123

80+ 22 13 9

Gender

FEMALE 179 89 90

MALE 338 173 165

Grade

G1 13 6 7

G2 223 125 98

G3 203 91 112

G4 73 37 36

GX 5 3 2

Stage

I 257 136 121

II 55 25 30

III 123 63 60

IV 82 38 44

T stage

T1 263 137 126

T2 67 31 36

T3 176 87 89

T4 11 7 4

N stage

N0 236 124 112

N1 15 6 9

NX 266 132 134

M stage

M0 414 217 197

M1 77 35 42

MX 26 10 16
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Fig. 2 Gene Ontology (A) and Kyoto Encyclopedia of Genes and Genomes

Fig. 1 Differential gene expression profiles. A The volcano plot showed 540 differential expressions of genes in ccRCC and normal tissues based
on TCGA data-base. B Heat map of the differentially expressed genes (topmost 10 upregulated and downregulated genes). The colors from green
to red in the heat map represent a low-to-high level of expression. Red and green dots mean up-and down-regulated genes, respectively, and
the black ones represent genes that are not differentially expressed. All the data and pictures were analyzed and then generated by R statistical
language version 3.6.1 (https://www.R-project.org)
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Survival analysis of hub genes and comparison of their
expression levels
RCC cases’ clinical records from the TCGA data-
base include survival time, vital status, and TNM
staging (remove missing information cases). The
survival analysis of the hub genes was carried out by
the survival R software package. A log-rank test was
used to detect the difference in overall survival. Sur-
vival curves were demonstrated by using the Kaplan-
Meier method. P < 0.05 was considered statistically
significant.

Gene functional-enrichment analysis
For studying the biological characteristics of renal
carcinoma, we performed gene enrichment analysis
(GSEA, version 3.0, the broad institute of MIT and
Harvard, http://software.broadinstitute.org/gsea/
downloads.jsp) between the cancerous tissues and
paracancerous tissues. The number of permutations
is 1000; collapse dataset to gene symbols is “false”,
and permutation type is “phenotype”. Additional op-
tions selected included weighted enrichment statis-
tics, and Signal2Noise metric was applied to ranking

Table 2 Multivariate cox regression analysis to establish
immune genes risk score model
Gene Coef

ICAM1 0.0058648074324021

IFNG 0.0336285898183753

CXCL5 0.00449394306613633

XCL1 0.178774321649646

TGFB1 0.0114011479579204

PDGFRA 0.0346969626392538

GNAI1 0.00617576278056856

TNFSF11 0.321235808441014

HMOX1 −0.00150622701372233

CCL22 −0.456892844189334

IL4 3.92829889144972

CRP 0.00127583274886622

EDN1 −0.00254186826990028

AVP 1.2503911973052

CSF2 0.873478979686199

GAL 0.0818075259757682

GNRH1 0.1244306056583

PPY 0.275246400052544

Fig. 3 A–B The construction of the risk score model using the LASSO Cox regression model and 18 prognostic immune-related genes. C
Distribution of immune-related risk scores and survival status in the training group. D Heatmap of model immune genes between the high-risk
and low-risk sets (separated by median value) in the training group

Li et al. BMC Cancer          (2021) 21:746 Page 4 of 11

http://software.broadinstitute.org/gsea/downloads.jsp
http://software.broadinstitute.org/gsea/downloads.jsp


genes. The experimental group was composed of a
high-expression set, and the control group was com-
posed of a low-expression set. Gene set databases
c2.cp.kegg.v7.0.symbols.gmt was applied to enrich-
ment analysis. Cut-off criteria included gene set size
> 500 and < 15, while nominal P value of < 0.05 and an
FDR of < 0.25 were considered significant.

Statistical analysis
The analysis was carried out entirely through R stat-
istical language version 3.6.1 (https://www.R-project.
org). All of the tests had two sides, and a level of
P < 0.05 was accepted as statistically significant. The
continuous variables following normal distribution
were compared by independent t-test, while those in
skewness were compared by Mann-Whitney U test.
In the light of the Pearson correlation coefficient,
correlation matrices were schemed using R-software.
We study the connection between OS and immune
cell infiltration on the basis of the Kaplan-Meier
curve, assessed with a log-rank test. The relevance
between OS and immune cell infiltration was visualized by
the K-M curve and further evaluated by log-rank test.

Table 3 LASSO cox regression analysis to establish immune
genes risk score model
Gene Coef

ICAM1 0.0058648074324021

IFNG 0.0336285898183753

CXCL5 0.00449394306613633

XCL1 0.178774321649646

TGFB1 0.0114011479579204

PDGFRA 0.0346969626392538

GNAI1 0.00617576278056856

TNFSF11 0.321235808441014

HMOX1 −0.00150622701372233

CCL22 −0.456892844189334

IL4 3.92829889144972

CRP 0.00127583274886622

EDN1 −0.00254186826990028

AVP 1.2503911973052

CSF2 0.873478979686199

GAL 0.0818075259757682

GNRH1 0.1244306056583

PPY 0.275246400052544

Fig. 4 A K-M curve for analyzing high-and low-risk cases in the training group. B K-M curve for analyzing high- and low-risk cases in the test group. C
K-M curve for analyzing of high- and low-risk cases in the whole TCGA group. D ROC curve, depending on time, for analyzing the training group. E
ROC curve, depending on time, for analyzing the testing group. F ROC curve, depending on time, for analyzing the whole TCGA group

Li et al. BMC Cancer          (2021) 21:746 Page 5 of 11

https://www.r-project.org
https://www.r-project.org


Sensitivity and specificity in the predictive model of recur-
rence were analyzed by time-dependent ROC curves. The
univariate regression model was applied in analyzing the
influence of single-variable on survival. The LASSO-Cox
regression models were used to identify the independent
factors for survival. According to the Cox analysis, we
used regression coefficients to build a nomogram.

Results
Differentially expressed genes of ccRCC
Files containing 2498 immune-related genes were
obtained from the ImmPort data-base. For analyzing
differential expression, transcriptome records of 72 para
cancer and 507 tumor tissues were obtained from the
TCGA data-base. By differential expression analysis be-
tween cancer tissues and normal tissues, 556 differen-
tially expressed immune genes were recognized, among
which 402 immune genes were upregulated and the
remaining 154 immune genes were downregulated
(P < 0.05, Fig. 1A). Heat map of the topmost ten up-

and down-regulated differentially expressed genes are
displayed in Fig. 1B.

Functional annotation of differentially expressed genes in
renal carcinoma
We learned about the biological properties of 556 DEIG
S by KEGG and GO analysis. David’s results showed that
the topmost 3 enrichment GO items of the upregulated
genes were cAMP-mediated signals, humoral immune
response and negative regulation of ERBB signaling
pathway, while the topmost 3 enrichment GO compo-
nents of down-regulated genes are lymphocyte activa-
tion, humoral immune response, and regulation of
leukocyte mediated immunity (Fig. 2A). Through path-
way enrichment analysis, it was found that the top 3 bio-
logical pathways enriched with upregulated genes were
the JAK − STAT signaling pathway, PI3K −Akt signaling
pathway and Rap1 signaling pathway. In comparison, the
top 3 biological pathways enriched with down-regulated
genes were the cytokine-cytokine receptor interaction,

Fig. 5 Cox proportional risk model for overall survival of related elements in ccRCC patients. A-B Univariate- and multivariate-Cox regressions
analyses for 7 clinical prognostic factors influencing OS, respectively. C Nomogram for forecasting 3-year and 5-year prognosis of ccRCC. D–E
Plots present the calibration curves used to compare the predicted and actual 3-and 5-year OS
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Th1 and Th2 cell differentiation, and JAK-STAT signal-
ing pathway (Fig. 2B).

Construction of the immune-related prognostic model
We established a PPI network that was based on the dif-
ferentially expressed genes and recognized 496 genes
with over 50 para cancer nodes (Figure S1). To reveal re-
lationships of these 496 DEIGs with the prognoses of pa-
tients with ccRCC, we identified 43 prognostic DEIGs
through single variable Cox regression analysis (Table 2).
KIRC data, downloaded from TCGA, were separated
into 2 groups at random (training group: validation
group, 1:1). After that, a lasso regression study was per-
formed for the purpose of increasing robustness and
selecting isolated indexes for survival in all according to
the training group. At last, 18 DEIGs were obtained for
the establishment of a prognostic indicator (Fig. 3A, B,
Table 3). In the light of the risk index established, we
divide patients into high-risk groups or low-risk ones
(Fig. 3C). The differential expression of the model genes
between high-and low-risk sufferers in the training set of

ccRCC is shown in this heatmap (Fig. 3D). The Kaplan-
Meier analysis indicated shorter overall survival among
those high-risk sufferers in the validation and training
set (p < 0.05, Fig. 4A, B, C). The ROC curve indicated
better sensitivity and specificity in the risk model when
used to predict survival risk (the AUC values of 5-year
overall survival in the validation group and training val-
idation group are 0.705 and 0.802, separately, Fig. 4D,
E, F). In light of multivariate and univariate Cox regres-
sion analysis of age, sex, tumor staging, pathological
grade, TNM stage and risk score, we determined if the
immune risk score model was isolated of age, sex,
tumor stage and other clinicopathological parameters.
Among the single variable Cox models, age, patho-
logical grading, tumor staging, T, M stage and high-risk
scores are related to low survival rates (Fig. 5A). Of the
multivariate Cox model, age, pathological grade and
risk score were the only isolated predictors (Fig. 5B).
For forecasting the prognosis of patients with ccRCC at
3 and 5 years after operations, we established another
nomogram (Fig. 5C, D, E) based on the variables related

Fig. 6 Correlation analysis of 18 immune genes with pathological grade, tumor stage and TNM in ccRCC patients. A Correlation between 18
immune genes and pathological grade of ccRCC patients. B Correlation between 18 immune genes and tumor staging of ccRCC patients. C-E
Correlation of 18 immune genes with tumor, node, and metastasis classification in ccRCC patients
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to the overall survival rate ((OS)), namely age, sex,
tumor staging pathological grade, TNM staging and
risk score (Fig. 5C, D, E).

Correlation between 18 immune genes together with a
risk score of immune gene and clinical prognosis
The scale of every gene model was determined at differ-
ent pathological stagings. EDN1, GNAL1, and ICAM1
were remarkably correlated with the progression of
ccRCC (Fig. 6). IFNG’s and XCL’s expressions were con-
nected to the infiltration of CD4+, CD8+, and myeloid
dendritic cells (Figure S2). The immune gene risk score
was closely related to the grade, pathological stage, and
clinical TNM stage (Fig. 7).

Gene set enrichment analysis results with hallmark genes
of risk scores
To investigate the biological connection of risk scores in
ccRCC development, we carried out a GSEA on the risk
scores from a TCGA renal carcinoma group. It showed
that high-risk scores are connected to IL6 JAK STAT3
SIGNALING, EPITHELIAL MESENCHYMAL TRANSI
TION, and WNT BETA CATENIN SIGNALING
(Fig. 8).

Discussion
ccRCC is a heterogeneous disease with different ethnic
characteristics resulting from renal epithelial cells [10]
and accounts for most RCC-related deaths [11].
Although radical nephrectomy has been proven to be an
effective treatment for local renal cancer. Many patients
may experience development and metastasis after
surgical resection. Given that targeted treatment for
advanced and metastatic ccRCC has been fully
developed, response to treatment is diverse [12].
Identification of molecular mechanisms and relevant
prognostic factors may be critical to the treatment of
ccRCC [13]. The prognosis of the tumor is closely
connected with TME, particularly when considering
the tumor immune microenvironment [14, 15].
Different types of cancers have diverse immune gene
subpopulations. Therefore, investigating the immune
gene subsets is vital for evaluating the risk and prog-
nosis of ccRCC.
In the research, a large amount of specimen data was

conducted to assess the immune genes of ccRCC in
comprehensiveness and detail. We analyzed the expres-
sion of 2498 immune genes that were gained from the
ImmPort database in ccRCC and normal tissues. Fur-
thermore, we recognized and set up a risk score model

Fig. 7 Correlation analysis of immune-related gene risk score and clinicopathological elements. A Age. B Pathological Grade. C Tumor
Stage. D T. E N. F M
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for ccRCC via a single variable and LASSO-Cox regres-
sion analyses. The model was composed of 18 DEIGs
(AVP, CCL22, CRP, CSF2, CXCL5, EDN1, GAL, GNAI1,
GNRH1, HMOX1, ICAM1, IFNG, IL4, PDGFRA, PPY,
TGFB1, TNFSF11 and XCL1). The K-M analysis showed
that high-risk scores not only were associated with lower
overall survival but also predicted advanced stage and
higher pathological grade.
Several genes in the model have been studied in renal

cell carcinoma. Arginine vasopressin (AVP) and its type
2 receptor (V2R) play an important role in regulating
salt and water homeostasis. Activation of V2R can
stimulate the proliferation of renal cell carcinoma (RCC)
cell line in vitro [16]. It has been shown that the increase
of CXCL5 cytokines is associated with sunitinib resist-
ance in renal cell carcinoma [17]. CCL22, CRP, ICAM1,

IFNG, PDGFRA, TGFB1 and TNFSF11 have been con-
firmed to be involved in the malignant progression and
metastasis of renal cell carcinoma through different bio-
logical mechanisms [18–24]. EDN1 may serve as a
promising prognostic and diagnostic biomarker for
ccRCC [25]. In addition, CXCL5, IL4 may be involved in
the regulation of the immune microenvironment in renal
cell carcinoma [26].
ccRCC immune models are typically established by

screening immune-related lncRNAs. A new prognostic
gene marker based on immune lncRNA in patients with
KIRC patients was found [27]. Zhao et al. integrated
multiple levels of data to construct immune,
inflammatory, or KIRC-oriented neighbor networks and
KIRC-related gene directed networks. Their analysis
showed that genes related to immune and inflammation

Fig. 8 GSEA of the risk scores of immune genes
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have unique topological characteristics and related KIRC
expression patterns in the networks. Furthermore, they
identified five core clusters for constructing specific prog-
nostic biomarkers for KIRC [28]. Another study evaluated
the prognostic value of individual gene expression by
using TCGA data and ccRCC patient data [29]. In the
study, a predictive nomogram was generated. Independent
prognostic factors were identified not only for examining
the functional involvement of individual genes in vitro
and in vivo RCC models but also for the assessment of
OS and progression-free survival of patients with
ccRCC in the first, fifth, and eighth year [29]. Our study
shed light on the role of immune-related genes in
tumorigenesis and malignant development of ccRCC.
Based on immune genes, we established a novel risk-
score model consisting of immune genes and verified it
to predict ccRCC prognosis. Our risk model showed
excellent predictive performance in terms of prediction
and may thus make contribution to developing novel
prognostic indexes of ccRCC. Furthermore, we analyzed
the expression profiles of the model genes in the patho-
logical grade and stage of RCC. The model-associated
immune genes strongly showed an association with
immuno-infiltrating cells, which may be used for target-
ing clinical immunotherapy.
However, our research still has limitations. First, our

study only included the expression profiles of a part of
the Western population. Extensive sample sequencing
data from other countries and races are needed to en-
hance our conclusions. Second, our results were based
on the RNA sequencing results of entire tumor tissue,
and the diversity of different cell compositions in the
TME was not considered. Third, we only focused on
transcriptional expression profile data. Gene methylation
level, mutation level, and other equally essential data in
tumor progression were not considered. These data are
pivotal to exploring tumor progression.

Conclusion
The research provides a basis for the application of
immune genes in the prognosis of ccRCC. It is
credible for the immune gene risk score model to
forecast the prognosis of ccRCC, which serves as an
independent prognostic element for ccRCC patients.
Our results may be helpful to in personalized treat-
ment for patients with ccRCC and in exploring novel
biomarkers for the targeted therapy of ccRCC.
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