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Abstract

Background: Because birth size appears to be positively associated with breast cancer risk, we have studied
whether this risk may differ according to molecular breast cancer subtypes.

Methods: A cohort of 22,931 women born 1920–1966 were followed up for breast cancer occurrence from 1961 to
2012, and 870 were diagnosed during follow-up. Archival diagnostic material from 537 patients was available to
determine molecular breast cancer subtype, specified as Luminal A, Luminal B (human epidermal growth factor
receptor 2 (HER2)-), Luminal B (HER2+), HER2 type, and Triple negative (TN) breast cancer. Information on the
women’s birth weight, birth length and head circumference at birth was used to estimate hazard ratios (HR) with
95% confidence intervals (CI) for each molecular subtype, applying Cox regression, and stratified by maternal
height.

Results: Birth length (per 2 cm increments) was positively associated with Luminal A (HR = 1.2, 95% CI, 1.0–1.3),
Luminal B (HER2+) (HR = 1.3, 95% CI, 1.0–1.7), and TN breast cancer (HR = 1.4, 95% CI, 1.0–1.9). No clear association
was found for birth weight and head circumference. The positive associations of birth length were restricted to
women whose mothers were relatively tall (above population median).

Conclusion: We found a positive association of birth length with risk of Luminal A, Luminal B (HER2+) and TN
breast cancer that appears to be restricted to women whose mothers were relatively tall. This may support the
hypothesis that breast cancer risk is influenced by determinants of longitudinal growth and that this finding
deserves further scrutiny.
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Background
It has been demonstrated that breast cancer can be clas-
sified into different molecular subtypes using gene ex-
pression analysis [1]. However, molecular subtyping can
also be achieved using surrogate markers for gene

expression analysis [2–4]. Thus, using immumohisto-
chemistry for detection of protein expression and in situ
hybridisation for assessment of gene copy number, tu-
mours can be classified into different subtypes. The dif-
ferences between subtypes underline the heterogeneous
nature of breast cancer, including different pathogeneses
[5] and clinical course [1, 2].
Therefore, it is plausible that underlying risk factors

may also differ between subtypes [6–9], indicating a
need for subtype specific revision of breast cancer
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epidemiology, including possible consequences for pre-
vention strategies. Recent results suggest that the re-
duced risk associated with early age at first birth, high
parity and overweight before menopause, may also vary
according to subtype [6–9],
Until recently, factors associated with birth size, i.e.

birth weight, birth length and head circumference, have
not been comprehensively studied in relation to risk of
molecular subtypes of breast cancer. However, the asso-
ciation of birth size has been assessed in relation to hor-
mone receptor status of the tumours; thus, there is some
evidence for a positive association of birth weight with
risk for ER positive breast cancer, but not for ER nega-
tive tumours [10].
The hypothesis that breast cancer may originate in

utero is based on the fact that the mammary gland,
which is not fully developed at birth, is exposed to high
levels of intrauterine mammotropic hormones [11, 12].
This may increase the mammary gland-specific stem cell
pool and eventually, the likelihood for cancer initiation
later in life [13]. This hypothesis is supported by differ-
ent lines of research [14–20] that combined may suggest
a coherent sequence of plausible events. Thus, cord
blood hormones could partly determine the size of the
mammary stem cell pool and simultaneously influence
fetal growth. Therefore, birth size may be positively as-
sociated with breast cancer risk later in life [17].
In this follow-up study, we used perinatal data from a

cohort of Norwegian women born at one particular hos-
pital between 1920 and 1966. During follow-up from
1961 to 2012, we studied women who were diagnosed
with breast cancer at St. Olavs Hospital in Trondheim,
Norway, and used surrogate markers applied to tissue
microarrays of archival tumour tissue to determine the
following molecular subtypes: Luminal A, Luminal B
(HER2-), Luminal B (HER2+), and the non-luminal sub-
types, the HER2 type and TN breast cancer. Our aim
was to assess whether indicators of birth size are differ-
entially associated with the risk for luminal and non-
luminal subtypes.

Methods
A unique ID number was assigned to all Norwegian resi-
dents who were alive in 1960, and is assigned to all new
residents from 1961 onwards. Each resident’s record is
continuously updated on vital status and residential and
childbearing history through the National Registry. By
combining the mother’s name and the daughter’s unique
11-digit number, we could identify women who were
born at St. Olavs hospital, Trondheim University Hos-
pital, between 1920 and 1966. After excluding 524 twins,
111 triplets, 32 women with missing information on
plurality, and 12 women whose identity could not be de-
termined with certainty, 22,931 women born between

1920 and 1966 were eligible for breast cancer follow-up
until the end of 2012.
The reporting of cancer to the Cancer Registry of

Norway is mandatory, and breast cancer is registered ac-
cording to the international classification of diseases
(ICD-7, code 170). For women born before 1941, breast
cancer follow-up started on January 1st, 1961, and for
women born after 1940, follow-up started at their 20th
birthday. Follow-up ended when a cancer (at any site)
was diagnosed, at emigration or at death (from any
cause), or on December 31st, 2012, whichever occurred
first. During follow-up, a total of 870 women were diag-
nosed with incident breast cancer. Among them, 598
were diagnosed at St Olav’s Hospital; archival diagnostic
tissue was available for all these 598 patients, and mo-
lecular subtyping proved to be successful for 537 of
these cases.
From the birth record of each of the 22,931 women,

we extracted information on birth weight (g), birth
length (cm), head circumference (cm), gestational age
(in weeks or months), and birth order. We also extracted
maternal information, including maternal age at child-
bearing, height, marital status, and socioeconomic status
(occupation). (Baseline characteristics of the cohort
members according to birth size are shown in Table 1).
From the National Registry, we collected information

on childbearing history in adulthood for cohort mem-
bers who were born in 1930 or later, and who were still
residents in Trondheim. Thus, information on age at
first birth and parity, both of which are associated with
breast cancer risk, were included as co-variables for a
subset (78%) of the population.

Molecular subtypes of breast cancer using archived
diagnostic tissue
Prior to molecular subtyping, each case was re-
examined by two independent pathologists and classi-
fied into histological type and grade according to
current guidelines. Sections from representative paraf-
fin tumour blocks were stained with hematoxylin–
erythrosine–saffron (HES), and classified into histo-
pathologic type and grade. Tumour size was corre-
lated to information in the pathology report. Tissue
microarrays (TMA) were constructed as previously
described and referenced in detail by Engstrøm et al.
(4) and Valla et al. (3).
Briefly, immuno-staining was performed for ER, PR,

HER2, the proliferation marker Ki67, and Basal markers
and EGFR. Negative controls were included in all stain-
ing runs. ER and PR were positive when ≥1% of tumor
nuclei showed positive staining and Ki67 was counted in
500 tumor cells (hotspots), and considered high when
≥15% of nuclei were positive, both irrespective of stain-
ing intensity. Membranous staining for HER2 was scored
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from 0 to + 3, and HER2 amplification was defined as a
gene to chromosome ratio ≥ 2.
For CK5 and EGFR, a staining index was calculated by

multiplying the proportion of positive staining cells [1
(< 10%); 2 (10–50%); 3 (> 50%)] by staining pattern/in-
tensity. Staining intensity for CK5 was defined as 0 (no
staining); 1 (weak); 2 (moderate), and 3 (strong). For
EGFR, membranous staining was 0 (no staining); 1
(faint, incomplete staining); 2 (moderate intensity, cir-
cumferential staining); 3 (strong intensity, circumferen-
tial staining), according to Dako PharmDX Kit
guidelines. A staining index of 0–1 was classified as
negative, and 2–9 as positive.
Breast cancers were then reclassified into molecular

subtypes by immunohistochemistry and fluorescence in
situ hybridization, using the surrogate markers for
oestrogen receptor (ER), progesterone receptor (PR), and
the proliferation markers Ki67 and HER2. In addition,
Cytokeratin 5 and Epidermal growth factor receptor 1
were used to differentiate between the Basal phenotype

and the Five negative phenotype, however, we combined
these subtypes into one, notified as TN.
ER was positive when ≥1% of tumour cells showed

positive nuclear staining, and ≥ 10% for PR to be positive
[21]. The molecular subtypes were defined as follows:
Luminal A as (ER and/or PR+, HER2-, Ki67 < 15%); Lu-
minal B (HER2-) as (ER and/or PR+, HER2-, Ki67 ≥
15%); Luminal B (HER2+) as (ER and/or PR+, HER2+);
HER2 type as (ER and PR-, HER2+);and TN as (ER, PR
and HER2-).

Statistical methods
We categorized the continuous or discrete birth size var-
iables (birth weight, birth length, head circumference at
birth) into approximately equally sized categories. We
also examined the measures as quantitative increments
of approximately one standard deviation (SD), i.e., 0.5 kg
for birth weight, 2 cm for birth length, and 1.5 cm for
head circumference.
We used Cox proportional hazards regression to study

the association of the birth size indicators with risk of
breast cancer subtypes, and precision of hazard ratios
was estimated using 95% confidence intervals (CI).
Breast cancer cases that could not be subtyped were
censored at the date of diagnosis. To examine if the as-
sociations between birth size and breast cancer risk dif-
fered by breast cancer subtype, we used the data
augmentation method described by Lunn and McNeil
[22]. A small p value for heterogeneity from this test
would indicate that the associations of birth size with
breast cancer risk differs between tumour subtypes. De-
parture from the proportional hazards assumption was
evaluated by Schönfelds residuals and by inspection of
the log-log plots, and there were no clear violations to
the assumption of proportionality. Attained age was used
as the time scale in all analyses. In the multivariable ana-
lysis, we adjusted for gestational age, birth year in 5-year
categories, and maternal birth order, age at birth, and
socioeconomic status. In a subset of women (73%), we
considered whether adjustment for maternal height and
the adult risk factors age at first birth and parity influ-
enced the findings.
In a separate analysis, we assessed whether the associ-

ation of birth size with risk of luminal and non-luminal
subtypes differed by maternal height. In that analysis,
maternal height was dichotomized at the population me-
dian (163 cm). We used the likelihood-ratio (LR) test to
assess this possible effect modification.
The statistical analyses were conducted using STATA

version 13.1 (StataCorp).

Results
Baseline characteristics of the cohort members according
to birth size can be viewed in Table 1, and the

Table 1 Baseline characteristics of cohort members, follow-up
of 22,931 women

Number (%)

Mother’s age at birth, mean (SD) 28.0 (6.1)

Birth weight, g

Mean (SD) 3446 (508)

< 3000 g 3684 (16.1)

3000–3499 g 8657 (37.8)

3500–3999 g 7672 (33.5)

≥ 4000 g 2912 (12.7)

Missing 6 (0.03)

Birth length, cm

Mean (SD) 50.5 (2.1)

< 49 3190 (13.9)

49 3055 (13.3)

50 5298 (23.1)

51 4317 (18.8)

≥ 52 7066 (30.8)

Missing 5 (0.02)

Head circumference, cm

Mean (SD) 34.8 (1.5)

< 34 3849 (16.8)

34 5397 (23.5)

35 6408 (27.9)

36 4642 (20.2)

≥ 37 2549 (11.1)

Missing 86 (0.4)

Total 22,931 (100)
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distribution of breast cancer cases according to molecu-
lar subtype is shown in Table 2.
Table 3 shows the results for birth weight, birth

length, and head circumference related to the risk for
each molecular subtype. Birth length (per 2 cm incre-
ment) was positively associated with risk of Luminal
A breast cancer (HR = 1.2, 95% CI, 1.0–1.3), Luminal
B (HER2+) breast cancer (HR = 1.3, 95% CI, 1.0–1.7),
and TN breast cancer (HR = 1.4, 95% CI, 1.0–1.9), but
there were no clear associations with Luminal B
(HER2-) and HER2 type (p for heterogeneity 0.8). For
birth weight and head circumference, there were no
clear associations with risk for any of the molecular
subtypes.
The multivariable results did not substantially differ

from those only adjusting for attained age. The re-
sults restricted to the subset of women with informa-
tion on maternal height and the adult risk factors age
at first birth and parity (results not tabulated) were

similar to the main results, however, for some cat-
egories, the number of participants was low in the
subset analysis.
In a separate analysis (Table 4), we assessed whether

associations of birth length (per 2 cm increment) and
molecular breast cancer subtypes, indicated as luminal
or non-luminal breast cancer, differed by maternal
height (dichotomized at the median, 163 cm). For non-
luminal subtypes (HER2+ and TN), there was a positive
association if mothers were 163 cm or taller (HR = 1.5,
95% CI, 1.0–2.2 per 2 cm), and no association if mothers
were shorter than 163 cm (HR = 1.0, 95% CI, 0.7–1.6,
per 2 cm, LR-test p = 0.4). For luminal breast cancer (Lu-
minal A and Luminal B (HER2-)), there was a similar,
but weaker pattern: thus, there was a weak positive asso-
ciation if mothers were 163 cm or taller (HR = 1.3, 95%
CI, 1.1–1.5 per 2 cm) and no clear association (HR = 1.0,
95% CI, 0.9–1.2 per 2 cm) if maternal height was less
than 163 cm (LR-test p = 0.7).

Table 2 Descriptive statistics for the 537 breast cancer cases with molecular subtyping

Luminal A Luminal B (HER-) Luminal B (HER+) HER 2 type Triple negative Total

Number (%) 232 (43.2) 175 (32.6) 65 (12.1) 24 (4.5) 41 (7.6) 537 (100)

Mean age at diagnosis (SD) 56.4 (9.8) 54.1 (11.3) 53.8 (9.8) 51.5 (10.7) 53.9 (11.3) 54.9 (10.5)

Tumour grade (%)

1 58 (25.0) 3 (1.7) 1 (1.5) 1 (4.2) 0 63 (11.7)

2 155 (66.8) 93 (53.1) 19 (29.2) 3 (12.5) 6 (14.6) 276 (51.4)

3 19 (8.2) 79 (45.1) 45 (69.2) 20 (83.3) 35 (85.4) 198 (36.9)

Histopathological type

Ductal 198 (85.3) 155 (88.6) 60 (92.3) 18 (75.0) 31 (75.6) 462 (86.0)

Lobular 24 (10.3) 8 (4.6) 2 (3.1) 0 0 34 (6.3)

Tubular 2 (0.9) 0 0 0 0 2 (0.4)

Mucinous 6 (2.6) 2 (1.1) 0 0 0 8 (1.5)

Medullary 0 6 (3.4) 3 (4.6) 6 (25.0) 6 (14.6) 21 (3.9)

Papillary 0 1 (0.6) 0 0 0 1 (0.2)

Metaplastic 0 0 0 0 2 (4.9) 2 (0.4)

Other 2 (0.9) 3 (1.7) 0 0 2 (4.9) 7 (1.3)

Tumour size, cm (%)

< 2 151 (65.1) 79 (45.1) 26 (40.0) 4 (16.7) 14 (34.2) 274 (51.0)

2–5 49 (21.1) 59 (33.7) 28 (43.1) 10 (41.7) 16 (39.0) 162 (30.2)

> 5 5 (2.2) 7 (4.0) 1 (1.5) 0 2 (4.9) 15 (2.8)

Uncertain 27 (11.6) 30 (17.1) 10 (15.4) 10 (41.7) 9 (22.0) 86 (16.0)

Stage

0 0 0 0 1 (4.2) 0 1 (0.2)

I 105 (45.3) 57 (32.6) 14 (21.5) 8 (33.3) 17 (41.5) 201 (37.4)

II 92 (39.7) 90 (51.4) 37 (56.9) 12 (50.0) 14 (34.2) 245 (45.6)

III 10 (4.3) 8 (4.6) 3 (4.6) 1 (4.2) 3 (7.3) 25 (4.7)

IV 4 (1.7) 4 (2.3) 4 (6.2) 1 (4.2) 1 (2.4) 12 (2.6)

Unknown 21 (9.1) 16 (9.1) 7 (10.8) 1 (4.2) 6 (14.6) 51 (9.5)
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Discussion
In this long-term follow-up for breast cancer, we found
that birth length was positively associated with risk both
for Luminal A, Luminal B (HER2+), and TN breast can-
cer, and the results suggest that these associations dis-
played a homogeneous pattern, based on the test for
heterogeneity. We also found evidence that the positive
association of birth length was present in women whose
mothers were relatively tall (at population median or
taller).
To understand these findings, the literature does not

provide any direct help, because risk of molecular breast
cancer has not been previously studied in the context of
birth size. However, one study has assessed birth weight
with risk for breast cancer according to hormone recep-
tor status.
[10], and found that a positive association with risk for

ER positive, but not for ER negative breast cancer. Al-
though that study used birth weight as indicator for
birth size, and our results suggested a positive associ-
ation limited to birth length, the luminal subtypes of
breast cancer overlap to a substantial degree with ER

positive tumours, and the results may therefore support
each other.
However, the positive association that we found for

birth length was also present for the HER+ subtype and
for triple negative (TN) breast cancer. Moreover, the
strength of the positive associations was rather similar
for the different subtypes.
The major strength of the present study is the large

cohort of women born between 1920 and 1966, and the
long-term breast cancer follow-up provided by record
linkage with the Cancer Registry of Norway. The notifi-
cation of cancer to the Cancer Registry of Norway is
mandatory and regulated by law, and the registration is
virtually complete [23]. Baseline information on birth
size was measured and stored in birth records that we
have transcribed and computerized, and later combined
with adult information about age at first birth and parity.
We used archival diagnostic tumour tissue to determine
the molecular subtype, using a predetermined subtyping
algorithm [3, 4], and the same antibodies and cut-off
levels for all cases. However, in the present study, we
classified the Basal phenotype and the Five negative

Table 3 Indicators of birth size associated with risk of molecular subtypes of breast cancer

Luminal A Luminal B (HER2-) Luminal B (HER2+) HER2 type Triple negative

n HR (95% CI) a n HR (95% CI)a n HR (95% CI)a N HR (95% CI)a n HR (95% CI) a

Birth weight (g)

< 3000 37 1.0 (0.6–1.5) 26 1.1 (0.7–1.8) 7 0.6 (0.2–1.4) 4 1.2 (0.3–4.1) 7 0.7 (0.3–2.0)

3000–3499 77 1.0 63 1.0 28 1.0 9 1.0 15 1.0

3500–3999 82 1.2 (0.9–1.7) 65 1.2 (0.8–1.7) 21 0.9 (0.5–1.6) 7 0.8 (0.3–2.2) 12 1.0 (0.5–2.2)

≥ 4000 31 1.3 (0.8–1.9) 16 0.8 (0.4–1.3) 9 1.1 (0.5–2.4) 4 1.1 (0.3–3.8) 5 1.2 (0.4–3.4)

Per 500 g increment 227 1.1 (1.0–1.3) 170 0.9 (0.8–1.1) 65 1.2 (0.9–1.6) 24 1.0 (0.6–1.4) 39 1.3 (0.9–1.8)

Birth length (cm)b

< 49 35 1.0 23 1.0 6 1.0 5 1.0 5 1.0

49 20 0.6 (0–4-1.1) 16 0.7 (0.3–1.2) 11 1.8 (0.6–5.1) 2 0.4 (0.1–2.0) 6 2.0 (0.5–7.4)

50 60 1.1 (0.7–1.7) 46 1,0 (0.6–1.7) 14 1.3 (0.5–3.7) 7 0.7 (0.2–2.3) 9 1.8 (0.5–6.2)

51 35 0.9 (0.5–1.4) 37 1.2 (0.7–2.0) 10 1.3 (0.4–3.8) 5 0.8 (0.2–3.0) 7 2.1 (0.6–7.9)

> 51 77 1.2 (0.8–1.9) 49 1.0 (0.6–1.7) 24 2.0 (0.8–5.5) 5 0.5 (0.1–2.0) 12 2.4 (0.7–8.5)

Per 2 cm increment 227 1.2 (1.0–1.3) 171 1.0 (0.8–1.2) 65 1.3 (1.0–1-7) 24 0.8 (0.5–1.3) 39 1.4 (1.0–1.9)

< 50 cm 112 1.0 81 1.0 31 1.0 14 1.0 19 1.0

≥50 115 1.2 (0.9–1.6) 90 1.2 (0.9–1.7) 34 1.2 (0.7–2.0) 10 0.9 (0.4–2.2) 20 1.5 (0.8–3.1)

Head circumference (cm)

< 34 40 1.0 26 1.0 10 1.0 5 1.0 9 1.0

34 50 1.0 (0.6–1.5) 39 1.0 (0.6–1.7) 16 1.2 (0.5–2.6) 7 0.9 (0.3–3.0) 7 0.7 (0.3–2.0)

35 59 1.0 (0.6–1.5) 50 1.1 (0.7–1.8) 19 1.2 (0.5–2.6) 6 0.6 (0.2–2.1) 10 0.9 (0.3–2.4)

36 46 1.1 (0.7–1.7) 34 1.1 (0.6–1.8) 11 1.0 (0.4–2.4) 5 0.8 (0.2–2.8) 7 1.0 (0.3–2.7)

≥ 37 31 1.3 (0.8–2.2) 22 1.3 (0.7–2.3) 8 1.4 (0.5–3.5) 1 0.3 (0.0–2.6) 6 1.5 (0.5–4.6)

Per 1.5 cm increment 226 1.1 (0.9–1.2) 171 1.0 (0.9–1.2) 64 1.1 (0.9–1.4) 24 0.9 (0.5–1.2) 39 1.1 (0.8–1.5)
aHRs adjusted for gestational age at birth, birth order, birth year in 5 year categories, maternal age at birth, and maternal socioeconomic status
bLunn McNeil likelihood-ratio test, p = 0.7
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phenotype as TN in order to avoid subtypes with rela-
tively few cases.
Limitations of the study include lack of longitudinal

information on childhood and adolescent growth, in-
cluding height and weight gain, which could be inter-
mediate factors, and have been shown to be associated
with breast cancer risk in previous studies [24, 25]. For
ethical reasons, we were not allowed to contact cohort
members who were still alive to update relevant infor-
mation. Another limitation of our study is the lack of
biological material from the time of birth. Possibly, mea-
surements of cord blood hormones would be a useful
approach to address the intrauterine roots of breast can-
cer more directly [26], but because participants were
born between 1920 and 1966, biological material from
their births could not be expected to be available. None-
theless, measures of birth size (birth weight, birth length,
head circumference) could be interpreted as proxy fac-
tors for intrauterine growth and hormonal exposures in
utero [26, 27]. Lastly, there is always a concern linked to
the representativeness of cases in a single observational
study, and therefore, our results need verification in
other studies.
The main finding of this study suggests that birth

length is positively associated with risk of Luminal A
and Luminal B (HER2+) breast cancer, both of which
are ER positive tumours, and with TN breast cancer,
which is ER negative. Interestingly, associations of birth
length were not consistent across ER and HER2 status,
as indicated by the lack of association for the HER2 type,
which is ER negative, and the Luminal B (HER2-) type,
which is ER positive. This suggests that the association
of birth length with breast cancer risk is still unresolved
and may involve other factors than ER and HER2. Des-
pite the relatively large study cohort, the number of inci-
dent cases was still moderate, and the results of a larger
study, or from other cohort studies, would most likely
contribute with useful insights that would nuance our
findings.

Conclusions
The fact that birth length was the only measure of birth
size that was associated with any of the subtypes, may
point to longitudinal growth as particularly important,
regardless of ER status. It is also compelling that the
positive association of birth length was present only
among women whose mothers were relatively tall. This
may further support the possibility that determinants of
longitudinal growth may be at the core of the intrauter-
ine roots of breast cancer [11, 28].
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