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Abstract

Background: Probe electrospray ionization-mass spectrometry (PESI-MS) can rapidly visualize mass spectra of small,
surgically obtained tissue samples, and is a promising novel diagnostic tool when combined with machine learning
which discriminates malignant spectrum patterns from others. The present study was performed to evaluate the
utility of this device for rapid diagnosis of colorectal liver metastasis (CRLM).

Methods: A prospectively planned study using retrospectively obtained tissues was performed. In total, 103 CRLM
samples and 80 non-cancer liver tissues cut from surgically extracted specimens were analyzed using PESI-MS. Mass
spectra obtained by PESI-MS were classified into cancer or non-cancer groups by using logistic regression, a kind of
machine learning. Next, to identify the exact molecules responsible for the difference between CRLM and non-
cancerous tissues, we performed liquid chromatography-electrospray ionization-MS (LC-ESI-MS), which visualizes
sample molecular composition in more detail.

Results: This diagnostic system distinguished CRLM from non-cancer liver parenchyma with an accuracy rate of
99.5%. The area under the receiver operating characteristic curve reached 0.9999. LC-ESI-MS analysis showed higher
ion intensities of phosphatidylcholine and phosphatidylethanolamine in CRLM than in non-cancer liver parenchyma
(P < 0.01, respectively). The proportion of phospholipids categorized as monounsaturated fatty acids was higher in
CRLM (37.2%) than in non-cancer liver parenchyma (10.7%; P < 0.01).

Conclusion: The combination of PESI-MS and machine learning distinguished CRLM from non-cancer tissue with
high accuracy. Phospholipids categorized as monounsaturated fatty acids contributed to the difference between
CRLM and normal parenchyma and might also be a useful diagnostic biomarker and therapeutic target for CRLM.
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Background
Colorectal cancer is the third most common cancer
worldwide and is ranked as the second most frequent
cause of cancer-associated mortality in industrialized

countries. Colorectal liver metastasis (CRLM) is the
major cause of mortality in patients with colorectal can-
cer, affecting approximately 50% of patients [1, 2]. The
mainstay of treatment for CRLM is complete surgical re-
section of all metastatic lesions [3–5]. Recent advance-
ments in radiologic imaging techniques, especially
intraoperative ultrasonography, have enabled us to iden-
tify additional new hepatic nodules in 14 to 24% of pa-
tients [6–8]. However, it is sometimes difficult to
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correctly diagnose whether such new hepatic nodules
are CRLM tumors. In such cases, intraoperative biopsy
is one option for diagnosis of hepatic nodules. However,
the diagnostic quality of frozen sections is sometimes in-
ferior to that of paraffin-embedded sections [9]. Thus,
rapid and accurate diagnostic techniques taking place of
frozen section are needed.
We recently developed a new diagnostic system that

combines probe electrospray ionization-mass spectrom-
etry (PESI-MS) and machine learning [10]. PESI is the
one of ionization methods that requires only a few milli-
grams of a sample without any complicated pretreat-
ments. PESI-MS is a mass spectrometry using PESI,
which enables to rapidly obtain results compared to con-
ventional mass spectrometry [11]. The obtained mass
spectra are processed using machine learning algorithms
such as logistic regression or support vector machines to
discriminate cancer from non-cancer tissues [12]. Previ-
ous experiments demonstrated high discriminating
power for hepatocellular carcinoma and renal cell car-
cinoma [10, 11]. PESI-MS and machine learning is a
cutting-edge diagnostic tool that can detect the differ-
ence in lipid profiles between various cancerous and
non-cancerous tissues. While PESI-MS can rapidly
visualize mass spectra, it cannot identify individual mol-
ecules and their pattern of mass spectra. To identify the
molecules responsible for the difference between cancer-
ous and non-cancerous samples, we used liquid
chromatography-electrospray ionization-MS (LC-ESI-
MS), which provides a more detailed view of sample mo-
lecular compositions.
Our present study aims to validate PESI-MS and ma-

chine learning for the rapid diagnosis of CRLM.

Methods
Patients and sample collection
This is a prospectively planned study using retrospect-
ively obtained tissues. Patients who underwent surgical
resection of CRLM at The University of Tokyo Hospital
during February 2014 and October 2017 were potential
candidates for this study. The study comprises two mass
spectrometry experiments using resected specimens.
First, we investigated the diagnostic accuracy of PESI-
MS and machine learning for CRLM. Next, we used LC-
ESI-MS to examine the key molecules that distinguish
cancer from non-cancer. This study was approved by the
Institutional Ethics Committee of The University of
Tokyo, and written informed consent was obtained from
all participants.
Of all candidates, patients whose maximum tumor

diameter exceeded 5 × 5 × 5mm were included in the
further analysis. We obtained a block of approximately
5 × 5 × 5mm from surgically resected CRLM and an
equivalent block of non-cancer liver parenchyma. If

multiple CRLMs were resected, the largest nodule was
chosen. If the remaining specimen size following this
sample procedure precluded accurate histological ana-
lysis, the patients were excluded from this study. Patients
with specimens that showed gross necrosis were also ex-
cluded. Analysis of liver parenchyma was waived in pa-
tients with impaired liver function––Child–Pugh class B
and indocyanine green retention rate at 15 min
(ICGR15) of > 20.0%––and only the tumor specimen
was analyzed. Obtained specimens were immediately
frozen in liquid nitrogen and stored at − 80 °C until ana-
lysis. LC-ESI-MS was applied for patients in whom both
the tumor and the liver parenchyma were analyzed using
PESI-MS.
The assessment of the diagnostic accuracy of the logis-

tic regression-based diagnostic algorithm consisted of
two steps. First, the mass spectra of each cancerous or
non-cancerous tissue were acquired by PESI-MS. Sec-
ond, all mass spectra were learned by logistic regression
to discriminate the blind samples. Furthermore, the dis-
criminant accuracy of diagnostic algorithm was validated
using 20 independent specimens that were obtained dur-
ing surgery undertaken in 2018.

PESI-MS and machine learning
PESI-MS measurements are described in more detail in
a previous report [13]. Briefly, for sample preparation
before PESI-MS, 2.5 mg of tissue was homogenized in
100 μl of 50% ethanol using a disposal pestle (Argos
Technologies, Vernon Hills, IL, USA). The homogenate
was centrifuged at 15,000×g for 5 min, and the super-
natant was diluted by 50% ethanol to 4-fold for positive
ion mode and 2-fold for negative ion mode. Nine micro-
liters of sample solution were placed in the sample plate
(Shimadzu Corp., Kyoto, Japan) to perform PESI-MS.
Ambient ionization unit (DPiMS-8060; Shimadzu

Corp.) was used for PESI combined with a triple quadru-
pole mass spectrometer (LCMS-8060; Shimadzu Corp.)
for direct MS, and the analyses were performed as previ-
ously described [12]. Analyses were performed for both
positive and negative ion mode. The probe needle with a
tip radius of < 1 μm was moved downward to touch the
sample solution and then upward to apply high voltage
(2.3 kV for positive and − 2.0 kV for negative ion mode)
for ESI. This movement was repeated, and generated
ions were introduced into the mass spectrometer. Fig-
ure 1a shows the procedure of PESI-MS analysis. Acqui-
sition of scanning data was completed within
approximately 10 min after beginning the sample prepar-
ation. Representative mass spectra of each sample were
generated using LabSolutions (Shimadzu Corp.). The ab-
scissa indicates mass-to-charge ratio (m/z), and the or-
dinate shows ion intensity (label-free quantification).
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Logistic regression analysis was applied to each mass
spectrum pattern and corresponding tissue type, that is,
CRLM or non-cancerous liver. The expression levels of
analyzed lipids obtained from each sample were

individually normalized by the median value. Normalized
datasets of CRLM and normal liver parenchyma were
learned by logistic regression, a type of machine learn-
ing, and blinded samples were classified as cancer or

Fig. 1 Workflow of a probe electrospray ionization-mass spectrometry (PESI-MS) and machine learning and b liquid chromatography-electrospray
ionization-mass spectrometry (LC-ESI-MS). In PESI-MS, a small amount of sample solution (9 μL) is placed onto the sample plate and directly
analyzed without any further pretreatments. In this system, we use all spectral peaks to construct the database instead of annotating each
spectral peak. In contrast, we separate the analytes by liquid chromatography in LC-ESI-MS, followed by annotation of each molecule. The data
are further evaluated by statistical methods

Fig. 2 Diagram showing the registry process of patients in this study. All 183 specimens composed of both cancer and non-cancer tissues were
used in the PESI-MS experiment, and 150 were used in the LC-ESI-MS experiment
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not. The possibility of cancer was indicated as the value
of probability (0.0–1.0). The detailed procedure, math-
ematical formula of data processing and discriminant
analysis were previously described [14]. To evaluate the
discriminative accuracy of the algorithm, leave-one-out
cross validation (LOOCV) and 10-fold cross validation
(10-fold CV) were applied. LOOCV procedure is sum-
marized as follows. One sample is left out of all samples;
this one is considered as the validation set and the
remaining samples are assumed as the training set. This
cycle is repeated until all samples enter the test set [15].

The 10-fold CV procedure was as follows. Original sam-
ples were randomly separated into 10 equally sized sub-
groups. Of the 10 subgroups, a single subgroup was
retained as the blind data for testing the model, and the
remaining nine subgroups were used as training data.
The procedure was repeated for all subgroups, with each
of the 10 subgroups used exactly once as the blind data.
The 10 results were then averaged (or otherwise com-
bined) to produce a single estimation. The 10-fold CV
for randomly constructed subgroups was performed 10
times. Additionally, the discriminant accuracy of the
diagnostic algorithm was further validated using speci-
mens from additional patients with 40 data sets (20
CRLMs and 20 non-cancerous tissue).

LC-ESI-MS
For LC-ESI-MS, 1 mg of tissue was homogenized in
100 μl of 0.1% formic acid in methanol using a disposal
pestle as described above, and the homogenate was
mixed using a ThermoMixer C (Eppendorf, Hamburg,
Germany) for 5 min at 4 °C. After standing on ice for 5
min, the homogenate was centrifuged at 15,000×g for 5
min. The resulting supernatant was diluted by methanol
to 50-fold, and 500 μl of sample solution was placed in a
LabTotal Vial (Shimadzu Corp.) to perform LC-ESI-MS.
In LC-ESI-MS, high-pressure liquid chromatography

(Nexera X2; Shimadzu Corp.) and ESI unit were installed
to LCMS-8060 (Fig. 1b). For analysis of tissue compo-
nents, LC/MS/MS Method Package for Phospholipid
Profiling (Shimadzu Corp.) was applied in accordance
with the manufacturer’s instructions. A Kinetex C8 col-
umn (Kinetex C8, 150 mm × 2.1 mm i.d., 3.6-μm particle
size; Phenomenex, Torrance, CA, USA), mobile phase A
(20 mM ammonium formate in water) and mobile phase

Table 1 Clinicopathological background of patients with CRLM

Variables n = 103

Age, year 68 (35–84)

Sex, M/F* 61 (59.2) / 42 (40.8)

Primary, Colon/Rectum 65 (63.1) / 38 (36.9)

Timing, synchronous/metachronous 64 (62.1) / 39 (37.9)

Child-Pugh classification, A/B/C 95 (92.2) / 8 (7.8) / 0 (0.0)

ICGR15, % 8.7 (0.1–24.5)

CEA, ng/ml 9.4 (0.6–625.5)

CA19–9, IU/ml 21 (1–1400)

Neoadjuvant chemotherapy 44 (42.7)

Adjuvant chemotherapy 40 (38.8)

Number of nodules 3 (1–20)

Maximum tumor diameter, cm 2.4 (0.5–15.0)

KRAS, wild type 54 (56.8)

Differentiation, well/mod/por 21 (26.6) / 53 (67.1) / 5 (6.3)

Values are described as median (range) or n (%)
M male, F female, CRLM colorectal liver metastasis, ICGR15 indocyanine green
retention rate at 15min, CEA carcinoembryonic antigen, CA19–9 carbohydrate
antigen 19–9

Fig. 3 Normalized mean mass spectra by PESI-MS. Both a positive and b negative ion modes are shown. Note that overt differences in ion
species were not apparent between the positive and negative ion modes. Blue: non-cancer liver parenchyma. Red: colorectal liver metastasis
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B (acetonitrile: isopropanol 1:1 v/v) were used for LC
separation. The concentration of mobile phase B was
programmed as 20% (0 min) – 20.0% (1 min) – 40.0% (2
min) – 92.5% (25 min). The oven temperature was 45 °C.
Data processing and molecular identification/quantifica-
tion were performed automatically using LabSolutions
software (ver. 5.82 SP1; Shimadzu Corp., Kyoto, Japan).
PESI-MS presents mass spectra associated with mole-

cules of up to 2000m/z, which include most phospho-
lipids. A total of 457 ion intensities of phospholipids
with definite numbers of carbon atoms and double-
bonded acyl groups were analyzed.

Statistical analysis
Continuous variables are expressed as median and range.
ROC curves were drawn using probability data from lo-
gistic regression (threshold value: 0.500). The absolute
ion intensities obtained from LC-ESI-MS were compared
using Mann–Whitney U test. Statistical analyses were
performed using SPSS Statistics, version 25.0 (IBM
Corp., Armonk, NY, USA).

Results
Patient characteristics
A flow chart of patient selection and sample selection is
shown in Fig. 2. Among 202 patients who underwent
surgical resection of CRLMs, 99 were excluded because

they met either of the following criteria: (1) a tumor
smaller than 5 × 5 × 5mm or a small tumor volume that
did not allow qualitative histological examination after
sampling for MS (n = 74), or (2) a necrotic area that oc-
cupied most of the tumor (n = 25). Therefore, we made
103 CRLM and non-cancer background liver specimens
as candidates of this study. Of these 103 non-cancer liver
specimens, 23 were excluded from the analysis because
they were obtained from patients with impaired liver
function (Child–Pugh class B or ICGR15 of > 20.0%). Fi-
nally, PESI-MS was performed on 103 CRLM specimens
and 80 non-cancer liver specimens. Next, the matched
CRLM and non-cancerous samples from each patient
were selected to apply LC-ESI-MS. Hence, 75 CRLM
and normal liver parenchyma could be re-analyzed. The
demographics and clinicopathological features of the 103
patients with CRLM are summarized in Table 1. Forty-
four patients (43%) underwent neoadjuvant
chemotherapy.

PESI-MS and machine learning
Normalized mean mass spectra of CRLM and non-
cancer liver parenchymal tissue are shown in Fig. 3. The
mass spectral pattern of each category differed in posi-
tive and negative ion modes. These spectral patterns
were learned and analyzed using logistic regression and
validated using LOOCV method. Among 103 CRLM

Fig. 4 Receiver operating characteristic curve of probability by discriminant analysis. By discriminating the spectral data by machine learning, the
area under the curve (AUC) was 0.9999; this value achieved both extraordinarily high sensitivity and specificity
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samples, 102 samples were correctly diagnosed. Mean-
while, all 80 non-cancer samples were correctly diag-
nosed. Specificity, sensitivity and accuracy of logistic
regression were 100, 99 and 99%, respectively. Ten-fold
CV demonstrated that the total accuracy rate was 99.0%.
(Supplementary Table 1). ROC curve of logistic regres-
sion for discriminating CRLM is shown in Fig. 4, in
which the area under the curve was 0.9999.
In the independent validation set, 18 CRLMs were cor-

rectly diagnosed, while all 20 non-cancerous samples
were correctly diagnosed. Specificity and sensitivity were
100.0 and 90.0% respectively (Supplementary Table 2).

LC-ESI-MS
We identified 457 species of phospholipids, among
which 146 ion (31.9%) species showed significantly dif-
ferent ion intensities between CRLM and non-cancer
liver parenchyma (P < 0.01). Table 2 shows top 10 phos-
pholipids among these 146 species. The total ion inten-
sity of each phospholipid, including phosphatidylcholine,
phosphatidylethanolamine, phosphatidylserine,

phosphatidylinositol, sphingomyelin, lysophosphatidyl-
choline, lysophosphatidylethanolamine, lysophosphatidy-
linositol and lysophosphatidylglycerol, was compared
between CRLM and non-cancer liver parenchyma
(Fig. 5). Notably, the expression of phosphatidylcholine
and phosphatidylethanolamine in the non-cancer liver
parenchyma (mean: 2.32 × 108 arbitrary unit [AU] and
6.19 × 107 AU, respectively) was higher than CRLM
(mean: 1.46 × 108 AU and 1.11 × 107 AU; P < 0.01,
respectively).
As shown in Table 2, phospholipid species that are up-

regulated in non-cancer liver tissues are more likely to
contain fatty acids (no double bonds exist in the carbon
chain) and polyunsaturated fatty acids (more than two
double bonds exist in the carbon chain), while those in-
creased in CRLM are predominantly monounsaturated
fatty acids (one double bond exists in the carbon chain).
The total ion intensities of saturated, monounsaturated,
and polyunsaturated fatty acids were calculated in
CRLM tissue and non-cancer liver parenchyma. Mono-
unsaturated fatty acids accounted for 37% of total phos-
pholipids in CRLM and 11% of those in non-cancer liver
specimens (P < 0.01). Conversely, the total ion intensity
of the other two saturated fatty acids was higher in non-
cancer liver tissue than in CRLM (Table 3).

Discussion
This new rapid diagnostic system showed high accuracy
rate (99%) in discriminating CRLM tumor from non-
cancer liver parenchyma. LC-ESI-MS analysis revealed
that phospholipids categorized as monounsaturated fatty
acids were more highly expressed in CRLM than in non-
cancer liver parenchyma. The most distinctive feature of
PESI-MS is that it provides mass spectra of individual
tissue rapidly using small amounts of sample. These
characteristics are advantageous in clinical situations.
Crucially, the precise differential diagnosis of new hep-
atic lesions found intraoperatively can be completed dur-
ing the operation. This new diagnostic system has the
potential to supersede the mainstream––but less accur-
ate––methods of intraoperative biopsy and frozen sec-
tion diagnosis of liver lesions that are unexpectedly
found during surgery [9].
In late years, other types of ambient mass spectrom-

etry, including intelligent knife, which is composed of
rapid evaporative ionization mass spectrometry, or Mas-
Spec Pen, which is composed of desorption electrospray
ionization mass spectrometry have been studied in clin-
ical settings [16, 17]. These techniques are classified in
the same category as PESI-MS, and do not require chro-
matographic separation. PESI is a new ionization
method that does not require the desalting procedure
and can ionize a large variety of molecular components
that are difficult to ionize by the former two modalities.

Table 2 Candidate marker of phospholipids to discriminate
CRLM

m/z Candidate
molecule

Median ion intensity P value
(−log10)Non-cancer CRLM

Dominant in non-cancer liver specimen

760.50 PE (38:7–16:1/22:6) 12,970.0 0.0 28.3

712.50 PE (34:3–16:0/18:3) 19,792.0 0.0 27.7

788.55 PE (40:7–18:1/22:6) 153,466.0 0.0 26.8

806.50 PS (40:7–18:1/22:6) 8562.0 0.0 27.0

863.55 PI (36:1–16:0/20:1) 8974.0 0.0 25.6

762.50 PE (38:6–16:0/22:6) 2,058,266.0 57,728.0 25.5

736.50 PE (36:5–16:0/20:5) 121,756.0 11,973.0 25.4

850.55 PC (38:6–16:0/22:6) 480,734.0 29,393.0 25.4

738.50 PE (36:4–16:0/20:4) 566,367.0 63,337.0 25.4

790.55 PE (40:6–18:0/22:6) 1,171,554.0 66,685.0 25.4

Dominant in CRLM specimen

747.55 SM (34:1-d18:1/16:0) 175,390.0 375,704.0 20.2

830.60 PC (36:2–16:0/20:2) 0.0 9619.0 19.9

800.60 PE (40:1–18:1/22:0) 0.0 17,383.0 18.6

856.60 PC (38:3–18:1/20:2) 0.0 8239.0 18.2

768.55 PE (38:3–18:1/20:2) 0.0 39,983.0 16.3

858.60 PC (38:2–18:1/20:1) 0.0 18,930.0 16.3

766.55 PE (38:4–18:2/20:2) 0.0 17,581.0 14.1

830.60 PC (36:2–16:1/20:1) 0.0 8761.0 10.9

716.55 PE (34:1–16:1/18:0) 0.0 65,533.0 10.9

786.55 PS (36:2–18:1/18:1) 0.0 3703.0 8.4

CRLM colorectal liver metastasis, PE phosphatidylethanolamine, PC
phosphatidylcholine, SM sphingomyelin, LPC lysophosphatidylcholine
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Additionally, it is easier to manipulate PESI-MS com-
pared with conventional mass-spectrometry. An oper-
ator only has to push the “acquire” button following the
setting of the sample plate on the machine interface,
while LC-MS requires dedicated column, chromato-
graphic and MS/MS conditions. Although the initial cost
is nearly equal to other mass spectrometer, it is
maintenance-free for PESI.
This new diagnostic system could be effective in intra-

operative evaluation of surgical margin, lymph node me-
tastasis and disappearing CRLM after chemotherapy.
CRLM frequently invades intrahepatic vascular struc-
tures, which could affect the postoperative prognosis [4,
18]. However, a surgical margin is sometimes judged
negative at intraoperative examination using frozen sec-
tion although postoperative examination using paraffin-
embedded sections did positive [19]. Similarly, a small
foci of cancerous cells in a resected lymph node is some-
times confirmed only after operation. These diagnostic
discrepancies would be attributable to the small sample
volume. PESI-MS and machine learning can detect can-
cerous tissue as small as 2.5 mg, which might help to
overcome this difficulty in diagnosing surgical margin

and lymph node metastasis. Resection of disappearing
CRLM after effective chemotherapy remains a clinical
challenge because such a tumor is difficult to identify
during operation. In such cases, surgeons search for
tumor in the resected specimen. However, any suspi-
cious lesion in the specimen slices is sometimes missed
because of the small tumor size. PESI-MS might be sen-
sitive in detecting tumor cells in such specimen even if
tumor is not visible. Further studies are required to
analyze the surgical margin, lymph node and disappear-
ing CRLM using this new diagnostic system.
Approximately one-third of the 465 investigated phos-

pholipids showed significantly different ion intensity levels
between CRLM and non-cancer liver parenchyma by LC-
ESI-MS analysis. This was in good agreement with previ-
ous reports demonstrating significant changes in lipid pro-
files in cancer patients [20–22]. Other reports have
demonstrated the high discriminant accuracy of PESI-MS
and machine learning for head and neck cancer and breast
cancer (92.9 and 96.0%, respectively) [12, 23]. Similarly,
this system also could rapidly discriminate CRLM from
non-cancerous tissue. In particular, our study confirmed
the results of a previous study showing that

Fig. 5 Comparison of lipid contents between non-cancer liver parenchyma and colorectal liver metastasis. Note that the amount of both
phosphatidylcholine and phosphatidylethanolamine were significantly lower in colorectal liver metastasis (P < 0.01, respectively). PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PS, phosphatidylserine; PI, phosphatidylinositol; SM, sphingomyelin

Table 3 Degree of FA saturation

Saturated FAs Mono-unsaturated FAs Poly-unsaturated FAs

Non-cancer 46.8% 10.7% 42.5%

CRLM 39.2% 37.2% 23.6%

FA fatty acids, CRLM colorectal liver metastasis
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phosphatidylcholine and phosphatidylethanolamine are
highly expressed in normal hepatocyte (P < 0.01; Fig. 5)
[24].
Monounsaturated fatty acids were recently reported to

be correlated with tumor biology [25–27]. In the present
study, monounsaturated fatty acids comprised 37.2% of
all investigated phospholipids, and the proportion was
much higher than that in non-cancer liver parenchyma
(10.7%, P < 0.01). This is consistent with previous reports
demonstrating that the expression level of phospholipids
with monounsaturated fatty acids was higher in colorec-
tal cancer than in normal mucosa (Table 4) [28–30].
There are no reports referring to unsaturation of fatty
acids in CRLM. Our findings support the application of
cancer therapy that targets the enzymes expressed in the
endoplasmic reticulum, such as SCD-1, to CRLM [27,
31]. However, further experiments are required to iden-
tify the exact molecules comprising monounsaturated
fatty acids in CRLM.
This study has several potential limitations. First, the

present study was retrospective and the sample size was
small. The new diagnostic system was applied after mak-
ing final histological diagnosis. Additionally, we excluded
a number of samples because they were prepared only
from patients whose tumor diameter was large enough
after excision for indisputable pathological evaluation. A
further prospective study may be warranted. Second, some
patients underwent neoadjuvant chemotherapy, which
may lead to changes in the lipid profiles of metastatic le-
sions. Incorrect diagnosis in PESI-MS and machine learn-
ing was seen in only one specimen, which was obtained
from non-cancerous liver in the patient who underwent
59 sessions of preoperative chemotherapy (FOLFOX or
FOLFIRI with bevacizumab). Further studies focusing on
the use of this new diagnostic system in the patients
undergoing neoadjuvant chemotherapy may be favored.

Conclusions
The new combination of PESI-MS and machine learning
is likely to provide a higher degree of precision in dis-
criminating CRLM from non-cancerous liver tissue.
Additional analysis using LC-ESI-MS is required to

identify specific monounsaturated fatty acid-bonded
phospholipids as CRLM biomarker candidates.
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Table 4 Previously reported lipid biomarkers in colorectal liver metastasis
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Figueiredo [30] 2018 36 MALDI-MS Sphingolipids Tissue Up Diagnostic Factor
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Present 2020 75 LC-ESI-MS Mono-unsaturated fatty acid Tissue Up Diagnostic Factor

MALDI-MS matrix-assisted laser desorption/ionization-mass spectrometry, LC-ESI-MS liquid chromatography-electrospray ionization-mass spectrometry, SM
sphingomyelin, PE phosphatidylethanolamine
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