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Abstract

Background: Cancer stem cells are important for the development of many solid tumors. These cells receive
promoting and inhibitory signals that depend on the nature of their environment (their niche) and determine cell
dynamics. Mechanical stresses are crucial to the initiation and interpretation of these signals.

Methods: A two-population mathematical model of tumorsphere growth is used to interpret the results of a series of
experiments recently carried out in Tianjin, China, and extract information about the intraspecific and interspecific
interactions between cancer stem cell and differentiated cancer cell populations.

Results: The model allows us to reconstruct the time evolution of the cancer stem cell fraction, which was not
directly measured. We find that, in the presence of stem cell growth factors, the interspecific cooperation between
cancer stem cells and differentiated cancer cells induces a positive feedback loop that determines growth,
independently of substrate hardness. In a frustrated attempt to reconstitute the stem cell niche, the number of cancer
stem cells increases continuously with a reproduction rate that is enhanced by a hard substrate. For growth on soft
agar, intraspecific interactions are always inhibitory, but on hard agar the interactions between stem cells are
collaborative while those between differentiated cells are strongly inhibitory. Evidence also suggests that a hard
substrate brings about a large fraction of asymmetric stem cell divisions. In the absence of stem cell growth factors,
the barrier to differentiation is broken and overall growth is faster, even if the stem cell number is conserved.

Conclusions: Our interpretation of the experimental results validates the centrality of the concept of stem cell niche
when tumor growth is fueled by cancer stem cells. Niche memory is found to be responsible for the characteristic
population dynamics observed in tumorspheres. The model also shows why substratum stiffness has a deep influence
on the behavior of cancer stem cells, stiffer substrates leading to a larger proportion of asymmetric doublings. A
specific condition for the growth of the cancer stem cell number is also obtained
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Background
For some time, it has been known that the presence of
cancer stem cells (CSCs) is important for the develop-
ment of many solid tumors [1–6]. According to the CSC
hypothesis these cells are often crucial for the develop-
ment of resistance to therapeutic interventions [7, 8].
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In healthy tissues the proportion of stem cells is small;
homeostatic equilibrium is maintained through the sig-
nals that the stem cells receive from their niches. The
onset of cancer is likely to destroy this equilibrium and
cancerous tissues may exhibit a higher proportion of stem
cells than normal tissues [9]. This increased proportion
of cancer stem cells may underlie the aggressive behav-
ior of high-grade tumors [2, 10]. As recently explained by
Taniguchi et al. [11], the cross-talk between tumor ini-
tiating (stem) cells and their niche microenvironment is
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a possible therapeutic target. Understanding the nature
of the interactions between CSCs and their environment
is therefore important for the development of effective
intervention procedures.
Interesting mathematical models have been developed

to explain various properties of stem-cell-driven tissue
growth. Stiehl and Marciniak-Czochra proposed a math-
ematical model of cancer stem cell dynamics to describe
the time evolution of a leukemic cell line competing with
healthy hematopoiesis [12]. This group later provided
evidence that the influence of leukemic stem cells on
the course of the disease is stronger than that of non-
stem leukemic cells [13]. Yang, Plikus and Komarova used
stochastic modeling to explore the relative importance of
symmetric and asymmetric stem cell divisions, showing
that tight homeostatic control is not necessarily associ-
ated with purely asymmetric divisions and that symmetric
divisions can help to stabilize mouse paw epidermis lin-
eage [14]. Recently, Bessonov and coworkers developed a
model that allowed them to determine the influence of
the population dynamics on the time-varying probabilities
of different cell fates and the ascertainment of the cell-
cell communication factors influencing these probabilities
[15]. These authors suggest that a coordinated dynamical
change of the cell behavior parameters occurs in response
to a biochemical signal, which they describe as an under-
lying field. Here we will describe the effects of cellular
interactions using nonlinear terms instead.
Live cells are generally sensitive to substratum rigid-

ity and texture [16]. A growing tumor must compete for
space with the surrounding environment; the resulting
mechanical stresses generate signals that impact on the
tumor cells. Cells integrate these mechanical cues and
respond in ways that are related to their phenotype. Their
active response may also lead to phenotype modifications
[17, 18]; in fact, mechanical cues generated by the envi-
ronment can trigger cancer cell invasion [19]. Environ-
mental stiffness may then be associated with tumor pro-
gression, a process that can also be promoted by mechan-
ically activated ion channels [20].
What is the influence of the mechanical environment

on cancer stem cells? At each generation, CSCs divide
symmetrically, generating either two newCSCs or two dif-
ferentiated cancer cells (DCCs), or asymmetrically, gener-
ating one CSC and one differentiated cancer cell [7, 21].
Quorum sensing controls differentiation of healthy stem
cells, but it is thought to be altered in cancer stem cells
[22]. Mechanical inputs are an important component of
the altered control mechanism and can be assumed to
play a role in the fate of the cancer stem cells. In vitro
experiments have been designed to probe the influence of
mechanical stresses of various types on tumor cells. The
solid-stress inhibition of multicellular spheroid growth
was already demonstrated by Helmlinger and coworkers

in 1997 [23]. The results of these experiments were shown
to follow allometric laws [24]. Interestingly, Koike et al.
showed that spheroid formation with Dunning R3327
rat prostate carcinoma AT3.1 cells is facilitated by solid
stress [25].
A study by Cheng et al. suggested how tumors grow in

confined locations where levels of stress are high, showing
that growth-induced solid stress can affect cell pheno-
type [26]. Using spheroid cell aggregates, Montel et al.
showed that applied pressure may be used to modulate
tumor growth [27] and observed that cells are blocked by
compressive stresses at the G1 checkpoint [28]. The orga-
nization of cells in a spheroid is modified by physical con-
finement [29], which likewise modifies the proliferation
gradient [30]. The stiffness of hydrogels has been shown to
determine the shape of tumor cells, with high stiffnesses
leading to spheroidal cells, a feature known to occur in
in vivo tumors [31]. By studying the behavior of adult
neural stem cells under various mechanical cues, Saha
et al. showed that soft gels favored differentiation into
neurons while harder gels promoted glial cultures. Impor-
tantly, they also showed that low substrate stiffness inhib-
ited cell spreading, self-renewal, and differentiation [32].
Osteocyte-like cells were shown to significantly induce
compaction of tumor spheroids formed using breast can-
cer cells [33].Matrix stiffness was shown to affect, through
mechanotransduction events, the osteogenic outcome of
human mesenchymal stem cell differentiation [34]. HeLa
cells were used to show that both an attractive contact
force and a substrate-controlled remote force contribute
to the formation of large-scale multicellular structures in
cancer [35].
Fifteen years ago, Discher, Janmey, and Wang not only

explained that the stiffness of the anchoring substrate can
have a strong influence on the cell state, but they also indi-
cated that stem cell differentiation may be influenced by
the nature of the substrate [36]. It is relevant that naive
mesenchymal stem cells were shown to commit to vari-
ous phenotypes with high sensitivity to tissue elasticity:
They differentiate preferably into neurons and osteocytes
if they are cultured on soft and rigid matrices, respec-
tively [37]. On the other hand, human mesenchymal stem
cells adhere onto precalcified bones, which are softer than
calcified bones [16]. It is also known that hydrodynamic
shear stress promotes the conversion of primary patient
epithelial tumor cells into specific cancer stem-like cells
[38]. Smith et al. found that the mechanical context of
the differentiation niche can drive endothelial cell iden-
tity from human-induced pluripotent stem cells, showing
that stiffness drives mesodermal differentiation, leading to
endothelial commitment [39]. Thus, microenvironments
help specify stem cell lineages, although it may be diffi-
cult to decouple the influence of mechanical interactions
and surface topography and stiffness from biochemical
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effects [16, 39]. Since they are grown in the absence of the
complex signaling system prevalent in the environment
of real tumors, tumorspheres, spheroids formed by clonal
proliferation out of permanent cell lines, tumor tissue, or
blood [40], are suitable candidates to probe the influence
of mechanical stimuli on stem-cell-fueled cancer growth.
Wang et al. cultured breast CSCs on soft and hard

agar matrix surfaces, investigating the effects that sub-
strate stiffness has on cell state and proliferation [41].
These authors showed that breast cancer stem cells can
be kept in states of differentiation, proliferation or qui-
escence depending on a combination of adherent growth
and stem cells growth factors, but they focused on the
experimental possibilities and did not draw conclusions
about how these agencies may modify the stem cell niche
to lead to the observed behavior. Recently, we devel-
oped a two-population tumorsphere model to identify
the role of the intraspecific and interspecific interactions
that determine tumorsphere growth [18]. Application of
our model to three breast cancer cell lines studied by
Chen and coworkers [9] indicates that while intraspecific
interactions are inhibitory, interspecific interactions pro-
mote growth. This feature of interspecific interactions was
interpreted in terms of the stimulation by CSCs of the
growth of DCCs in order to consolidate their niches and
of the plasticity of the DCCs to dedifferentiate into CSCs
[18]. Here we use this model to analyze the experimen-
tal results of Wang et al. [41], discussing how substrate
stiffness influences growth and finding that the concept of
cancer stem cell niche is central for its understanding. In
the next section we review the model of Ref. [18] and in
the following sections we apply it to the results of Ref.[41]
and discuss their implications.

Methods
We model mathematically the growth of a tumorsphere
considering two cell populations: Cancer stem cells (S)
and differentiated cancer cells (D). By including in the last
class all cells with any degree of differentiation we can iso-
late the role played by the stem cells. We further assume
that:

• The single basal growth rate r characterizes the
timescale of the system. By construction, it matches a
priori the population doubling time (PDT) of the
DCCs. This provides a more suitable description than
the previous model with two basal growth rates [18]
since, in general, it is not possible to discriminate
between these rates in experiments such as that of
Ref. [41].

• When a CSC undergoes mitosis there is a probability
ps that two new CSCs are generated, a probability pd
that two DCCs are generated, and a probability pa
that there is an asymmetric division. Because of

Fig. 1 Schematic representation of the cell division outcomes and
the intrinsic growth rates. Each of these is given by the product of the
basal growth rate r and the probability of the respective outcome. a
Parent cells replicate themselves originating daughter cells in their
same class. b CSC differentiation occurs in two ways: if asymmetric,
the S population remains unchanged; if symmetric, S decreases

normalization, pa = 1 − pd − ps. These probabilities
should be multiplied by the basal growth rate r, see
Fig. 1, in such a way that it is possible to reasonably
model the effective creation rates of new cells.

• The members of each subpopulation interact with
each other (intraspecific interactions) and with the
members of the other subpopulation (interspecific
interactions), c.f. Fig 2. These interactions are

Fig. 2 The signs of the coefficients αij indicate whether the
interactions promote or inhibit growth. Cells already present in the
tumorsphere either favor (αij < 0) or hinder (αij > 0) the production
of new cells. Arrows indicate the influence of each population on the
newborn cells



Benítez et al. BMC Cancer          (2021) 21:276 Page 4 of 11

described by proportionality factors αij whose signs
and magnitudes quantify the number of cells that are
created in the system due to interactions with
preexisting cells. The indices i and j may represent S
or D. They indicate either intraspecific (i = j) or
interspecific (i �= j) interactions.

We can describe the evolution of the two interacting
populations by generalizing the standard equations for
two competing species (see, p. ej. [42], p. 67).

dS
dt

= r[ psS]
{
ps − pd

ps
− αSSS − αSDD

}
, (1a)

dD
dt

= r[D+ (1+pd −ps)S] {1 − αDDD − αDSS} . (1b)
The first term inside the braces on the right-hand side

of Eq. (1a) corresponds to the net intrinsic creation of new
CSCs (symmetric CSC divisions minus divisions yield-
ing two DCCs). Note that asymmetric divisions do not
change the number of cancer stem cells, but symmet-
ric differentiation removes the parent CSC from the S
population, as illustrated in Fig. 1. The second and third
terms correspond, respectively, to the effects on the CSC
population of the interactions with other CSCs and with
differentiated cancer cells.
The factor in the square brackets on the right-hand side

of Eq. (1b) is proportional to the rate of creation, in the
absence of interactions, of differentiated cells due to the
division of other DCCs (first term), plus the asymmetric
division and differentiation of CSCs (second term). The
first term between braces corresponds to the interaction-
free growth of the system. The second and third terms
represent, respectively, the influences of the other DCCs
and of the CSCs on the differentiated cancer cell popula-
tion. The effect of cell-cell interactions on cell creation is
assumed to be proportional to the abundances of the pop-
ulations emitting the signals and of those receiving them;
therefore, the corresponding terms are quadratic in the
populations. The interaction strengths are represented by
the coefficients αij. Negative interaction coefficients (αij <

0) describe growth-promoting interactions, e.g. the j pop-
ulation promotes the growth of the i population. Positive
values of αij describe the growth inhibition of population
i by population j. In particular, as shown in Fig. 2, αSS tells
us how CSCs promote/inhibit the creation of new CSCs,
αDD tells us how DCCs promote/inhibit the creation of
new DCCs, while αDS informs us about the influence of
CSCs on the generation of new differentiated cancer cells
and αSD the influence of DCCs on the generation of new
cancer stem cells.
There are no analytic solutions for these differential

equations. Their numerical solutions yield the time evolu-
tion of both subpopulations, S(t) and D(t). In Additional

file 1 we summarize some properties of Eqs. (1) and their
solutions that we will use in our analysis.

Fitting with the model
The data sets correspond to the total cell number T in the
spheroids. Thus, we fit the data with T = S + D, where S
andD are the numerical solutions of the system of Eqs. (1).
Thereby, our model allows us to obtain information on
the dynamics of the CSC and DCC subpopulations and, in
particular, on the time evolution of the CSC fraction, from
data corresponding to the whole spheroid. Due to the
scarcity of data points and the ensuing difficulties of the
optimization problem, fitting our model to the data leads
to different sets of possible parameter values. To obtain
the optimal set, we use a random grid search (RGS) algo-
rithm. The RGS algorithm consists in randomly sweeping
some domain for initial conditions in parameter space. In
our case, such a domain is bounded by physically reason-
able assumptions such as that the values of probability be
pi ∈[ 0, 1] with i ≡ s, d and the growth rate r > 0. Also
we ask for the outcome of the fitting process to give nor-
malized positive probabilities, positive populations in the
range of validity of the data, and fractions of the order of
the ones reported by Wang et al. We then collect in a his-
togram all the parameters that have a relative error lower
than 5% when fitting the data points. To do this we define
a relative error measure given by the nonlinear estimator

R = 1
n

n∑
i=1

(
yi − Y (ti)

yi

)2
.

Here n is the number of data points, yi the data value
at time ti, and Y (ti) the function value obtained by fit-
ting the data. This estimator is the same as the function
we minimize through the fitting process (the classical R2

parameter also used as a minimization - objective func-
tion, is not a good reporter for a nonlinear problem). A
first selection criterion of the RGS algorithm ensures that
no accepted parameter set has an accuracy below 95%. A
consistent statistical interpretation of the process requires
that the order of magnitude and, especially, the sign of
each parameter be the same in all realizations. Therefore,
even if different combinations of the fitting parameters
yield acceptable descriptions of the experimental results,
the qualitative mechanisms that control spheroid growth
can be satisfactorily identified. We thus find a distri-
bution for each parameter and select the median as its
representative value.

Results
The initial stages
First, let us answer the following question: Given that we
start tumorsphere growth from a small CSC seed, what is
the minimum size Sm needed for this seed to guarantee
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CSC population growth? By setting D = 0 in Eq. (1b), we
see that there are two cases:

a) If differentiation is inhibited, ps > pd , as in the case
of the soft and hard experiments discussed below,
the linear term dominates and the initial seed may be
arbitrarily small: a single cancer stem cell may
generate a tumorsphere.

b) If ps < pd , it is easy to see that the condition for
initial CSC number is that the quadratic term be
large enough, i.e. S0 > Sm, with

Sm = ps − pd
αSSps

. (2)

We thus need αSS < 0 : The CSCs must cooperate
to yield additional cancer stem cells starting from a pure
CSC seed. A larger cooperative interaction implies that
we can use a smaller seed. In this case, the intraspecific
interaction coefficient αSS plays a key role in the growth
determination from the very beginning of the process. It is
worth mentioning that in the experiments discussed here
the conditions ps < pd and S0 > Sm are never satisfied
simultaneously. Usually, ps is smaller than pd, and there is
a minimum number of stem cells required to ensure stem
cell growth. But if a differentiation - inhibiting agent is
added to the system, increasing ps, a single cancer stem
cell may suffice to generate growth. As shown in Addi-
tional file 1, we can linearize our equations to describe
the initial evolution of a small system, finding that the
trajectory in the S − D plane starts as,

D(t) = (D0 + S0)
S0

S(t)1/(ps−pd) − S(t), (3)

where S(0) = S0 and D(0) = D0. Initially, if pd > ps, the
number of differentiated cells increases, while the num-
ber of stem cells decreases, and the representative point
gets close to the D-axis. If there is growth in the stem cell
subpopulation, it is due to the nonlinear terms.
Our model therefore generates a simple analytical

description of the early stages of tumorsphere evolution
and specifies the conditions for a successful implantation
of the initial cancer stem cell seed. Unless a potent anti-
differentiation agent is added to the growth medium, we
expect the differentiation probability pd to be larger than
ps. If so, our Eq. (2) predicts the minimum number of
stem cells needed to initiate successful spheroid growth.
This number depends only on ps, pd, and the intraspe-
cific interaction between cancer stem cells, which must
be cooperative. Weak cooperation or a small ps would
mean that the tumorsphere must be started from a large
nucleus.
In the next section we review the experimental results

reported in [41] and determine the model parameters.

Experimental data
We used our model to analyze the results of Wang and
coworkers [41]. These authors studied the growth of
breast cancer cell cultures belonging to three different cell
lines: MCF7, MDA-MB-231 and MDA-MB-435. For each
of these tumor lines they grew tumorspheres using three
different environmental conditions, as detailed below. In
all cases the spheroids initially have 4-5 cells that origi-
nate from a single CSC. Since only the MDA-MB-231 cell
line yielded bona fide round spheroids for all three experi-
mental specifications, we will use this line to compare our
findings with the experimental results. To facilitate the
implementation of the model presented in [18], we report
the data in terms of cell numbers.

Soft substrate
In the soft experiment, cells were cultured using soft
(0.05%) agar as the matrix surface for cell contact. Differ-
entiation inhibitors were added to the growth medium to
increase the CSC fraction. Under these conditions there is
little incentive for the stem cells to either duplicate or leave
their quiescent status. Only the tendency to build a suit-
able niche may break the quiescence. Hence their small
basal growth rate. As a result, a slow exponential growth
of CSCs prevails in the early stages of tumorsphere growth
as depicted in Fig. 3. Such behavior can be predicted as
shown in Eq. 3 and Eqs. (A3) and (A4) in Additional file 1,
but the basal growth rate is so small that the process
appears to be almost linear. The CSCs population (red
line) is always much larger than its DCC counterpart; as a
matter of fact, Wang et al. reported a 95% of CSC at day
8 with a low growth rate. The distribution of the fitting
values generated by the RGS method is shown in Addi-
tional file 2, Fig. A. Note there, and in Table 1, the very

Fig. 3 Growth in the soft experiment. Data-based model results for
the CSC (red) and DCC (green) spheroid subpopulations grown on a
soft substrate. The blue line fits the total cell population
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Table 1 The three chosen parameter sets obtained from fits to
the experimental data

Constant Units Soft Hard Control

r [1/days] 0.0685 0.1335 0.0240

ps none 0.9701 0.7124 0.1646

pd none 0.0019 0.0000 0.3911

αSS [1/cells] 0.0873 -0.0456 0.0028

αSD [1/cells] -0.4185 -0.5280 0.0266

αDS [1/cells] -0.2061 -0.1376 -1.0683

αDD [1/cells] 0.3668 1.8329 -0.3087
S

S+D |8days none 0.9479 0.913 0.141

high (close to unity) value of ps, the positive sign of the
intraspecific interaction coefficients and the negative sign
of the interspecific interaction coefficients.

Hard substrate
In the hard experiment, cells were cultured using hard
(30%) agar as the contact matrix surface. Differentiation
inhibitors were also added to the growth medium. For this
experiment we expect the model to describe a high frac-
tion of CSCs, as in soft, but nowwith a higher proliferation
rate. Applying the RGS method to this data set, we see
that this is indeed so (see Table 1 and Additional file 2,
Fig. B for the resulting parameters), obtaining the curves
depicted in Fig. 4. At early times, growth is nearly linear, as
observed in soft, but only for the first four days, speeding
up afterwards. The CSCs outnumber the DCCs, reaching
91% of the cell population by day 8, consistently with the
results reported in [41]. This fraction is a little lower than
in soft but would become much larger than that at later
times.

Fig. 4 Growth in the hard experiment. Data-based model results for
the CSC (red) and DCC (green) spheroid subpopulations grown on a
hard substrate. The hard substrate yields a faster growth rate than the
soft substrate, and, at late times, a higher fraction of CSCs

Fig. 5 Growth in the control experiment. Fitting the controlmedium
data predicts unlimited growth, faster than in either soft or hard, but
now driven by the DCCs. The number of CSCs does not increase

The symmetric CSC reproduction probability is still
high, but noticeably lower than in soft, and the basal rate
is twice that in soft. The interspecific interaction coeffi-
cients are negative, as in soft, but the CSC intraspecific
interaction coefficient is now negative, too.

Control substrate
In the control experiment, cells were cultured using hard
(30%) agar as the contact matrix surface, but no differen-
tiation inhibitor was added to the medium. The stem-cell
promoting factors EGF and bFGF were replaced by neu-
tral serum and the cells were grown on a hard substrate
[41]. In this case, although the spheroid cannot preserve
its spherical shape at late times, a fitting attempt, shown
in Fig. 5, is informative (the corresponding boxplots are
shown in Additional file 2, Fig. C).Although the CSC num-
ber remains nearly constant, the DCCs can proliferate
indefinitely, leading to fast overall growth.
All the new relevant information obtained from fitting

the experimental data is summarized in Table 1, where we
report the values of the parameters of our model. Those
values have an accuracy of 98% and their correspondig
distributions are reportedd in Additional file 2. Further-
more, in Table 2, we report some quantities, derived from
parameters in Table 1 that will be useful in the following
sections.

Table 2 Useful derived quantities from some values of Table 1

Constant Units Soft Hard Control

1/r [days] 14.59 7.49 41.66

rp [1/days] 0.0663 0.0951 -0.0054
1
rp [days] 15.08 10.52 -185

p = (ps − pd) none 0.9682 0.7124 -0.2265
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Discussion
In normal tissues, homeostasis is guaranteed by factors
secreted by differentiated cells that inhibit the division
and self-renewal of stem cells [22, 43]. Cancer stem cells
may partially escape these controls, but their activity is
still influenced by their environment. In non-anchored
cells, as is the case analyzed in the present work, cluster-
ing of most integrins on the plasma membrane by ECM
molecules, and thus FAs formation, is lost. In normal cells,
such events are sufficient to trigger anoikis, but upregu-
lation of specific integrins can confer anoikis resistance.
For instance, ανβ3 integrin has the ability to maintain
receptor clustering in non-adherent cells (reviewed in
Hamidi and Ivaska [44]). Interestingly, the MDA-MB-231
cells used by Wang et al. [41] are an ανβ3 integrin-
overexpressing breast cancer cell line and highly depen-
dent on ανβ3-emanating signals for proliferation and
survival [45, 46], and it is likely that changes in the stiff-
ness of the substratum may alter integrins clustering and
consequently, cell proliferation.
We would like to emphasize some experimental facts

from Ref. [41] that are useful for the interpretation of the
results:

• A remarkably high percentage (> 95%) of the cells
cultured under soft and hard conditions with growth
factors express the stem cell marker Oct4, which is
frequently used as a marker for undifferentiated cells.
Oct-4 expression must be tightly regulated; too much
or too little leads to cell differentiation.

• The soft and control experiments show low activity
of telomerase, a marker for proliferation. The higher
telomerase activity exhibited by hard indicates a
faster growth rate. This is consistent with the
expression rates of Ki67-positive, which are close to
90% for hard and minimal in the other cases.

• The high (95%) CSC fraction and low ( < 5%)
proliferation rate observed in soft at day 8 suggest a
population largely consisting of quiescent CSCs. The
proliferative fraction was higher in hard.

• In control, markers indicate a strong dominance of
the differentiated state. The stem cell fraction (∼ 5%)
and proliferation rate (5% according to KI-67 and
22% according to flow cytometry) are both low.

In the soft and hard experiments, cells must adapt to
the restrictions imposed by the application of the stem
cell maintenance factors EGF and bFGF. We especially
extracted information about the cell dynamics from four
features: the basal growth rate, the CSC fraction, and
the intraspecific and interspecific interaction parameters.
The parameter sets resulting from fitting the model to
the hard, soft and control experiments, summarized in
Table 1, are quite different. We next separately interpret
the results of each experiment.

Soft substrate
The computed basal growth rate r is 0.069 day−1, which
means that the PDT is close to 15 days. This is consis-
tent with the results obtained by Wang et al. [41] using
flow cytometry, but somewhat longer than typical can-
cer stem cells doubling times, which range from 3 to 11
days, depending on tumor type and culture conditions
[47, 48]. DCCs normally reproduce faster but, because
in this model r represents the average growth rate of
the whole population, we recover a PDT consistent with
that of the dominating CSCs. This lends support to our
modeling assumption of a single basal growth rate.
Quiescence is the prevalent state of the stem cells. Since

their function is to replenish dead or damaged cells, they
enter the cycle when their niches signal the need for new
cells. In soft (and in hard) the addition of differentiation
inhibitors implies that the CSCs always record low DCC
populations. This drives them into the cycle, where they
divide but, prevented from differentiating, overwhelm-
ingly generate new CSCs. Differentiation is very unlikely
(pd = 0.0019) and we may neglect it to simplify the anal-
ysis. If we do this, there is no linear contribution of the
CSCs to DCC generation. With the parameter values in
Table 1, the equilibrium point where the two kind of cells
coexist is located at (S∗,D∗) = (−21.7,−7.0) cells. This
point lies in the third quadrant indicating that there is
no physical/biological coexistence of the two populations.
There are no attractors in the first quadrant and all trajec-
tories diverge. This confirms that CSCs lose their normal
quiescent state in a continuous (and futile) attempt to
produce more DCCs.
The (positive) intraspecific interaction coefficients αii

are here directly related to the individual maximum
population sizes of the respective subpopulations. If we
assumed that the two subpopulations did not interact,
ij = 0, i �= j, Eq. (1a) would read:

dS
dt

= rS
[
(ps − pd) − psαSSS

]
, (4)

which is a logistic equation that leads to a maximum
population size Sc = (ps − pd)/(psαSS) � 12 cells. In this
way, from Eq. (1b), we obtain Dc = 1/αDD � 2 cells for
the DCCs, which is six times smaller than Sc. Therefore,
if there were no interactions between subpopulations our
model would predict a 14-cell spheroid, a size that would
be reached by day 17. Interactions between the popula-
tions are needed to understand the faster growth observed
in the experiment. The negative values of the interspecific
interaction coefficients, αij < 0, i �= j lead to a positive
feedback loop: An increase in one subpopulation drives
an increase in the other. The numbers in Table 1, espe-
cially the relatively large value of αSD (5 times that of αSS),
and the relatively low value of αDS (less than half of αDD),
indicate that this interplay favors a net increase in CSC
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number but is not strong enough to lead to an increase in
DCC number.
The feedback loop mechanism is activated to generate

a suitable niche, which requires a low S/(S + D) frac-
tion. The inhibition of differentiation causes the CSCs to
continuously reproduce in a frustrated attempt to recre-
ate the DCC population required by the niche. Since the
population equilibrium corresponding to a stable niche
is never reached, cycling CSCs seldom return to quies-
cence. In Fig. 6, the fraction S/(S + D) is depicted for the
three experiments up to day ten. Due to the inhibitor’s effi-
cacy, this fraction falls very slowly for the soft and hard
substrates (light blue and orange lines, respectively), but
decays freely in the control environment.

Hard substrate
When the substrate hardens the environmental condi-
tions that mediate cell-to-cell signaling change and the
CSC phenotype becomes more amenable to proliferation,
as seen by comparing Figs. 3 and 4. The growth rate r,
which still represents the PDT of the CSCs because of
their prevalence, is twice as large as that correspond-
ing to growth on the soft substrate. Our interpretation
is that increasing the substrate hardness alters the CSC
phenotype required to reach the cell fraction that regu-
lates niche size. As in soft, the CSCs try to increase the
DCC population but now they are immersed in a dif-
ferent environment. The duplication of the growth rate
r, the reduction of the symmetric duplication probabil-
ity ps, and the emergence of a large fraction (> 50%) of
asymmetric divisions indicates that the direct effect of
the differentiation-inhibiting factors is weaker than in soft.

Fig. 6 CSC fractions. Time evolution of the cancer stem cell fraction
predicted by the model for the three experiments. In both soft and
hard the stem cell fraction remains very high, since the stem cell
maintenance factors are a barrier to DCC generation. In control the
differentiation barrier is not present and the stem cell fraction
decreases towards the value corresponding to the niche

Indirect effects appear through the interspecific coeffi-
cients, especially the relatively large and negative (-0.53)
αSD. As Fig. 6 shows, by day 8 the DCC fraction is not
much larger than in soft, indicating that the attempt to
establish the niche has also failed in hard.
More remarkable is that the intraspecific CSC coeffi-

cient has changed its sign, an indication that CSCs record
a stressed environment that they may perceive as due to
the presence of damaged tissue. This generates a phe-
notype different from that in soft [18], which accelerates
cell division. On the other hand, the large and positive
DCC intraspecific coefficient, αDD = 1.83, implies a huge
increase of the inhibitory signaling between DCCs with
respect to soft. In this case, the discussion following Eq. 4
suggests for this system a maximum intrinsic DCC num-
ber smaller than unity, Dc = 1/αDD � 0.5 cells, meaning
that on this substrate the DCC subpopulation would not
be able to survive without the CSCs.
The general picture is that of a growing tumorsphere

whose response to the substrate is to increase its cell num-
ber as fast as possible, aiming to reach a DCC fraction that
equilibrates the niche, a goal that cannot be attained due
to the presence of differentiation-inhibiting agents. The
influence of the niche, as in [18] , is thus a cornerstone for
the biological interpretation of the model results.

Control substrate
As mentioned in the previous section, we cannot expect
the model to give a completely accurate description of
the control substrate experiment, but its interpretation
may shed light on the system dynamics. In this condition
CSCs are allowed to freely differentiate. These cells record
an environment where the proportion of DCCs increases
monotonically and the population fractions should tend
to those corresponding to niche equilibrium. However,
Figs. 5 and 6 suggest that there is no limit to the increase
of the DCC fraction.We conjecture that this behavior may
be explained by migration: after the spheroid reaches a
given size, cells start to migrate and the average number of
DCCs recorded by each CSC does not increase. One con-
sequence is that the CSC number remains stationary as
shown in Fig. 5. In fact, their effective PDT is of about six
months, i.e., they are generally quiescent, as they should.
Furthermore, note that the whole PDT leads to a dupli-

cation of the first 5 cells after 41 days (1/0.024), which
is three times slower than the soft rate (15 days). To
explain the rapid spheroid growth we need to consider
the contribution of the interactions. From Table 1 we see
that interactions favor DCCs and restrict CSCs prolifera-
tion. A more detailed analysis of the evolution of the two
subpopulations reveals the following:

• CSCs: The positivity and very low absolute values of
αSS and αSD ensure the stability of the CSC number.
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The dominant contribution to the change in the CSC
number is given by the linear term, which yields
|psr|−1 = 185 days, meaning that the CSCs are
quiescent during the whole experiment.

• DCCs: Approximating Eq. (1b) with S → 0, we get
D = 1/αDD. Because αDD < 0, the quadratic term
always promotes DCC number growth. As
mentioned in the case of hard, a negative sign in the
intraspecific interaction parameter is related to
signaling loss. Sphere disaggregation in control
suggests that the hard substrate promotes migration,
weakening cell-to-cell interactions. Given that the
CSC pool remains constant while many cells move
away from the spheroid, we can also conclude that
the migrating cells are likely to be differentiated.

Of note, our analysis of these experiments implies that
the absence of the stem cell growth factors in control leads
to the disappearance of the feedback loop that plays such
a crucial role in both soft and hard. The existence of the
feedback loops detected in soft and hard can similarly
be inferred from experiments carried out with the can-
cer lines SUM159, MCF-7, and T47D, which were also
cultured with stem cell growth factors [9, 18].
Even if the CSC fractions are not far from unity in both

soft and hard, the detailed reasons for their behavior are
different. In both cases the cell subpopulations assist each
other, generating a positive-feedback cycle that leads to
continuous growth, an indication that cell-to-cell signal-
ing is crucial to determine the process. The effect of the
substrate on intraspecific interactions in hard is strong.
There, CSCs are weakly promoting, but DCCs are so
strongly inhibitory that the DCC population would disap-
pear if it were not for the significant cooperation from the
CSCs, which is expressed mainly through a considerable
fraction of asymmetric divisions. The inhibition between
DCCs is also likely to induce the phenotype change indi-
cated by the large and negative value of αSD. The parame-
ter αDS, which controls the influence of cancer stem cells
on differentiated cancer cells, is always negative, and very
strong so in control, suggesting that CSCs have a pro-
moting and protective influence on DCCs, a phenomenon
that was already observed by Kim and coworkers. These
authors found that CSCs protect DCCs from anoikis pro-
moting tumor formation when the two subpopulations
are mixed [49]. The smaller magnitude of αDS in the soft
and hard experiments suggests that stem cell maintenance
factors weaken, but do not cancel, this protective effect.

Conclusion
The analysis of experimental data with our model con-
firms Wang’s conclusions and indicates that the substrate
regulates the details of tumorsphere evolution and that
a powerful engine of tumorsphere growth is the stem

cell “memory" of its niche. By comparing growth on the
hard and soft substrates, our analysis also confirms the
observations that substrate stiffness promotes cancer cell
proliferation (as recently reviewed by Nia et al. [50]. What
is more interesting is that the evident differences between
the parameters describing growth on the hard and control
substrates indicate that the response of stem and non-
stem cancer cells to an increase in substrate stiffness is
likely to be mediated by different processes.
In summary, the ability of stem cells to sense their envi-

ronment plays a crucial role in tumorsphere evolution.
Our model has proven to be particularly useful at deter-
mining why substratum stiffness has a profound influence
on the behavior of cancer stem cells, soft substrates favor-
ing symmetric divisions and hard substrates leading to a
large proportion of asymmetric doublings. In vivo stud-
ies are needed to further our understanding of niche
processes under natural environments.
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