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Toward developing a metastatic breast
cancer treatment strategy that incorporates
history of response to previous treatments
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Abstract

Background: Information regarding response to past treatments may provide clues concerning the classes of
drugs most or least likely to work for a particular metastatic or neoadjuvant early stage breast cancer patient.
However, currently there is no systematized knowledge base that would support clinical treatment decision-making
that takes response history into account.

Methods: To model history-dependent response data we leveraged a published in vitro breast cancer viability
dataset (84 cell lines, 90 therapeutic compounds) to calculate the odds ratios (log (OR)) of responding to each drug
given knowledge of (intrinsic/prior) response to all other agents. This OR matrix assumes (1) response is based on
intrinsic rather than acquired characteristics, and (2) intrinsic sensitivity remains unchanged at the time of the next
decision point. Fisher’s exact test is used to identify predictive pairs and groups of agents (BH p < 0.05).
Recommendation systems are used to make further drug recommendations based on past ‘history’ of response.

Results: Of the 90 compounds, 57 have sensitivity profiles significantly associated with those of at least one other
agent, mostly targeted drugs. Nearly all associations are positive, with (intrinsic/prior) sensitivity to one agent
predicting sensitivity to others in the same or a related class (OR > 1). In vitro conditional response patterns
clustered compounds into five predictive classes: (1) DNA damaging agents, (2) Aurora A kinase and cell cycle
checkpoint inhibitors; (3) microtubule poisons; (4) HER2/EGFR inhibitors; and (5) PIK3C catalytic subunit inhibitors.
The apriori algorithm implementation made further predictions including a directional association between
resistance to HER2 inhibition and sensitivity to proteasome inhibitors.

Conclusions: Investigating drug sensitivity conditioned on observed sensitivity or resistance to prior drugs may be
pivotal in informing clinicians deciding on the next line of breast cancer treatments for patients who have
progressed on their current treatment. This study supports a strategy of treating patients with different agents in
the same class where an associated sensitivity was observed, likely after one or more intervening treatments.

Keywords: Metastatic breast cancer, Resistance, Recommendation algorithm

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: aleksandra.olow@merck.com
1Department of Laboratory Medicine, Helen Diller Family Comprehensive
Cancer Center, University of California San Francisco, San Francisco, CA
94115, USA
2Merck Research Laboratories, 213 E Grand Avenue, South San Francisco, CA
94080, USA

Olow et al. BMC Cancer          (2021) 21:212 
https://doi.org/10.1186/s12885-021-07912-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-021-07912-7&domain=pdf
http://orcid.org/0000-0002-0113-8306
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:aleksandra.olow@merck.com


Background
Once breast cancer has spread to distant sites, it is con-
sidered to be an incurable disease leading to death. The
development of new drugs for managing breast cancer
has led to longer life-spans for women with some types
of Stage IV disease, such ER+ and Her2+ subtypes, but
less so for others, including those with BRCA1/2 wild-
type triple negative (TN) disease [1, 2]. What nearly all
women with Stage IV disease have in common is that
once diagnosed with metastatic recurrence, they remain
in treatment for life. A typical treatment course for
women with ER+ MBC is to first cycle through all the
endocrine treatments, and then transition to cytotoxic
chemotherapies or endocrine/targeted therapies when
endocrine treatments are no longer effective (Fig. 1a)
[3]. Women with TN disease are on cytotoxic chemo-
therapies from the time of first recurrence, moving from

drug to drug and protocol to protocol upon progression.
For all, managing patient care is a matter of selecting
drugs or drug combinations to be given in sequence,
ideally using the response history of the individual
patient and associations mined over the population in
addition to molecular features to select the next treat-
ment after the current one fails, with the object of
prolonging life while maintaining quality of life (Fig. 1b).
Unfortunately, such a rational, history-dependent,

data-supported algorithm for treatment selection does
not currently exist. Though there have been many clin-
ical trials comparing outcome and response rates for
particular drugs [4–6], these trials tend to be narrowly
focused and short term. They do not address long-term
strategies or practical questions faced by every medical
oncologist treating metastatic breast cancer patients. For
example, if a patient initially responded well to a drug in

Fig. 1 Transitioning to a MBC treatment model incorporating history of response. a Current treatment model for MBC, where patients switch
treatments upon progression following NCCN guidelines and physician choice. b Two example patient trajectories, the top showing a typical
sequence with progressively decreasing progression free intervals (PFI) from the time of metastatic recurrence. The bottom illustrates a potential
departure, with a longer PFI (green) following a shorter PFI (orange). In the top trajectory, the progression free interval PFIi/PFIi-1 is always < 1,
whereas in the bottom, PFIi/PFIi-1 > 1 for a transition. c Schematic showing a learning/treatment model for MBC. The left-hand side shows a
network of possible treatments, where each therapeutic class has multiple agents (e.g., Tx_1.2 = treatment Class 1, agent 2). Upon progression,
patients being treated with Agent I in Class J (Tx_i.j) can potentially transition to any other treatment in the network. Transitions are selected
based on probabilities generated by an adaptive randomization engine (right). This engine generates predictive probabilities based on the
patient’s treatment-response history and molecular phenotype using (1) cell line-based phenotype- and history-dependent response predictions,
and (2) a community database of MBC patient Tx and PFI sequences. All treatment-PFI sequences are fed back into the engine to refine
predictions. Within the engine, the endpoint is progression free interval ratio PFIi/PFIi-1. At a higher level of resolution/abstraction, this schema
constitutes a SMART MBC learning/treatment system with the goal of identifying the optimal strategy to maximize PFIi/PFIi-1 (short term) and ∑PFI
(long term) using response history and molecular tumor features. In a trial setting the comparator would either be the typical treatment trajectory
for MBC patients (A), or possibly the same treatment network with equal probabilities assigned to all treatment transitions, adjusting for subtype
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class A, but progressed quickly on a drug in class B,
what is the best-odds choice for the next treatment,
and/or how to prioritize among clinical trial options?
Currently, there is a lack of high-throughput sequen-

tial and combinatorial treatment data supporting rigor-
ous investigation of this question over a wide range of
therapeutics. However, high throughput drug sensitivity
data on cell line panels permits investigation of the more
constrained question: ‘if the past history of response of a
tumor to a particular agent or set of agents is known,
and if the tumor has not been sufficiently altered by sub-
sequent treatments to change its likelihood of respond-
ing to a new agent, what is the likelihood of sensitivity
to this agent?’. In other words, what does a cancer’s
treatment response history tell us about its intrinsic sen-
sitivity or resistance to compounds it has not yet been
treated with, and how can we use this information to
make a ‘history-informed guess’ as to the best treatment
to try next?
As a first step in this direction, we utilized public

in vitro viability panels with 90 experimental or ap-
proved therapeutic compounds and 84 breast cancer cell
lines representing 35 luminal, 27 basal, 10 claudin-low, 9
normal and 3 of unknown subtypes, with 27 of them
ERBB2 amplified [7]. At the time of this publication, 39
of the studied compounds have been approved by the
US Food and Drug Administration, including eight for
breast cancer, as indicated by the NIH, National Cancer
Institute website. To uncover patterns of drug response,
we used both standard response pattern clustering and
statistical association methods and applied data mining
algorithms like those used in online advertising technol-
ogy by companies like Amazon or Google, to recom-
mend products customers are likely to want based on
their purchasing histories. Association mining with rec-
ommender systems is an efficient algorithm which is not
only capable of handling big datasets, but importantly
provides both an exhaustive, and easy to interpret list of
rules. With the growing amount of high-throughput
drug screening panels, this approach offers a scalable so-
lution to model complex multi-way relationships be-
tween drugs. Prior research has showcased the use of
similar approaches space to predict drug responses for
specific unseen cell-lines and patient based on their in-
trinsic transcriptional or molecular profiles [8–11]. We
show that statistical association analysis and recommen-
dation systems can be used to support rational treatment
decision-making that takes into account the individual
patient drug response history alone. This approach can
be easily extended to serial exposure data capturing ac-
quired sensitivity or resistance once such high through-
put datasets become available (Fig. 1c), and ideally
would also incorporate a tumor’s molecular feature tra-
jectory and is applicable to neoadjuvant chemo

−/targeted-therapy trials for early-stage breast cancer
seeking to use information on response to one therapy
to determine the next with the eventual goal of patho-
logic complete response (pCR).

Methods
Dataset processing and annotation
Cell line viability published data from 84 breast cancer
cell lines tested in triplicate against nine concentrations
of 90 therapeutic compounds, including conventional
cytotoxic agents such as well as targeted agents such as
hormone and kinase inhibitors, often with overlapping
activity [7] was used (Supplemental Table 1A). The cell
line compendium is composed of 35 luminal, 27 basal,
10 claudin-low, 7 normal-like, 2 matched normal cell
lines, and 3 of unknown subtype [7]. Fourteen luminal
and seven basal cell lines were also ERBB2-amplified [7]
(Supplemental Table 1A).
The concentration required to inhibit growth by 50%

(GI50) was used as the response measure for each com-
pound. To obtain a binarized response dataset, these
drug responses were simplified as follows: the previously
established GI50 dichotomization threshold for each
compound [7] was used as a cut-off for treatment re-
sponse encoded as a binary variable (sensitive = 1 or re-
sistant = 0). For each drug, a generalized therapeutic
target is manually annotated (Supplemental Table 1B) to
categorize it by its primary mode of action.

Odds ratio (log (OR)) matrix as a model for history-
dependent response
In the absence of data derived from cells treated sequen-
tially with multiple treatments, we model history-
dependent response data as a matrix of odds ratios (log
(OR)) of responding to one drug given knowledge of (in-
trinsic/prior) response to another drug, for all drugs in
the panel. We refer to this association between two
compounds as conditional sensitivity. Prior to construct-
ing the OR matrix, cell lines with more than 50 missing
GI50 values were excluded from the binary response
dataset yielding binarized response data for 90 drugs and
50 cell lines. For each agent, we used Fisher’s exact test
to assess association between the response profile of the
agent vs. all other agents, and applied Benjamini Hoch-
berg multiple testing correction to p-values to assess sig-
nificance (BH p < 0.05). This model assumes (1) past
response to a drug, whether sensitive or resistant, is
based on intrinsic rather than acquired characteristics
and (2) a cell line (or patient’s) intrinsic sensitivity/resist-
ance profile remains unchanged despite the passage of
time and treatment, at the time of the next decision
point. Parallel uncorrected analysis using only Fisher p <
0.05 rather than FDR-corrected BH p < 0.05 is also pro-
vided in Supplemental Figure S2.
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Clustering OR analysis
To explore the relationships between cell lines in terms
of drug responses, as well as similarities between the ex-
amined compounds in the binarized drug response data-
set, we clustered the binary data using binary distance
matrix and a ward-clustering algorithm, and the con-
tinuous (log (OR)) data using correlation distance and
complete-linkage clustering. The uncertainty in the hier-
archical cluster analysis was calculated using Pvclust (v.
2.2.0), an add-on package for a statistical software R (v.
3.6.1) [12, 13]. We calculated probability values (p-
values) for each cluster using multiscale bootstrap re-
sampling techniques. Two types of p-values are calcu-
lated: approximately unbiased (AU) p-value and
bootstrap probability (BP) value. The cutoff p-value for
cluster selection is set at AU alpha = 0.9.

Recommender systems
In order to predict the level of response for a cell line in
a subsequent treatment, as well as create a list of the top
recommended compound, we utilized a data mining
method for making drug recommendations through a
collaborative filtering algorithm. Shortly, this approach
examines each cell line that responded to a particular
drug and creates lists of other drugs they also responded
to, calculating the confidence levels for each subsequent
drug. Compounds that appear most frequently and meet
confidence, lift and support criteria given a prior com-
pound, become then a part of the drug recommendation
rules. This approach creates a graphical network of four
types of drug relationships: (1) if sensitive to drug A,
then sensitive to drug B, (2) if sensitive to drug A, then
resistant to drug B, (3) if resistant to drug A, then also
resistant to drug B, and (4) if resistant to drug A then
sensitive to drug B.
R language implementation of apriori recommendation

system algorithm (arules package v 1.6.6) was used on a
binary dataset of response of 70 cell lines to 90 thera-
peutic compounds, to obtain non-redundant recommen-
dations i.e., rules with minimum confidence level of 0.8
and minimum support of 0.2. These cutoff points en-
sured that drugs with insufficient amount of information
(support) are excluded, as well as that the established
rules have a high probability to be correct for new rec-
ommendations (confidence). Only one-to-one drug rela-
tionships were considered for this analysis. For each
mined rule we calculated values, which can be inter-
preted as the deviation of the support of the whole rule
from the support expected under independence given
the supports of the antecedent drugs/items (LHS) and
the consequent drug recommendations (RHS) [14].
Higher lift values indicate stronger associations. The
compound listed on the LHS of a rule, is the specified
sensitivity/resistance constraint or condition for the

sensitivity/resistance of the compound listed in the RHS
of the rule. In other words, given the sensitivity/resist-
ance to a LHS drug (“if”), we infer sensitivity/resistance
to RHS drug (“then”).

Results
Clustering analysis of binarized drug response data
reveals anti-cancer agents with similar patterns of
response across breast cancer cell lines
The drug response matrix used in this study derives
from published cell line viability data from 84 breast
cancer cell lines tested in triplicate against nine concen-
trations of 90 therapeutic compounds, including conven-
tional cytotoxic agents as well as targeted agents such as
hormone and kinase inhibitors, often with overlapping
activity [7]. The concentration required to inhibit growth
by 50% (GI50) was used as the response measure for
each compound.
As a first step in exploring the similarities and differ-

ences between cancer therapeutics, in terms of their pat-
terns of sensitivity/resistance observed across breast
cancer cell lines, we created a binarized response dataset
using previously established GI50 dichotomization
thresholds for each compound [7] and encoded treat-
ment response as a binary variable (sensitive = 1 or
resistant = 0). (See Methods for additional details.)
Unsupervised hierarchical clustering of this binary drug

response data matrix (Fig. 2, Supplemental Figure S1),
examined along the columns, illustrates that cell lines
show similar patterns of response based on related tran-
scriptional subtype (e.g. most of luminal and ERBB2 amp-
lified luminal cell lines cluster together). Claudin-low and
certain basal subtypes appear most responsive to cell cycle
and proteasome inhibitors, whereas luminal subtypes tend
to be more sensitive to HDAC and PI3K pathway
inhibitors.
Examined along the rows the heatmap in Fig. 2 reveals

as expected, that many compounds with similar and re-
lated modes of action tend to cluster together. For in-
stance, six out of seven PI3K pathway inhibitors cluster
strongly together, and closely to a cluster containing all
five of the HDAC inhibitors. As well, platinum drugs cis-
platin, oxaliplatin, and carboplatin cluster together, as
do microtubule/spindle inhibitors paclitaxel, ispinesib,
and ixebepilone. Thus, breast cancer cells with intrinsic
sensitivity to a drug in the PI3K, HDAC inhibitor, DNA
damaging platinum, or microtubule inhibitor class, also
tend to be sensitive to other agents in that same class.
There are notable exceptions in the compound clus-

ters. Interestingly, BEZ235 a dual ATP-competitive PI3K
and mTOR inhibitor for p110α/γ/δ/β and mTOR
(p70S6K) clustered away from the PI3K pathway inhibi-
tors group and closer to a more diverse cluster contain-
ing MAPK/ERK pathway inhibitors and antimetabolites
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which are pathways strongly interconnected with mTOR
signaling. Additionally, Nutlin-3a (a MDM-2 mediated
stabilizer of tumor suppressor p53) clustered with a
group on PI3K pathway inhibitors. Akt signaling is
known to engage in control of MDM-2 mediated p53
levels and therefore the agent’s clustering highlights the
similarities in underlying mechanism of action. These
data suggest out-of-class treatment choices for cancers
that have responded to an agent in the dominant class
defining the cluster.

Knowledge of intrinsic/prior drug response predicts
response to over half of the drug panel
To more quantitatively address the question of which
pairs or groups of agents have statistically significantly

associated response profiles, we applied Fisher’s exact test
to all pairs of agents (Fig. 3, Supplemental Figure SI2). If
two agents are significantly associated, knowledge of
(intrinsic/prior) sensitivity or resistance to one of the
agents could in principle be used to improve the predic-
tion of sensitivity to the other drug on the panel. We refer
to this relationship as conditional sensitivity, i.e. response
status to one compound associated with sensitivity/resist-
ance to another agent.
After adjusting p-values for multiple testing, response

to 57/90 drugs is significantly associated to response to
at least one other agent (Fig. 3a). The number of associ-
ated drug response-prediction partners per drug ranged
from 0 to 11, with the most highly connected nodes be-
ing erlotinib, tykerb: IGF1R, and an AKT1–2 inhibitor

Fig. 2 Relationships between transcriptional subtypes and response to specific drug classes represented in a heatmap of binary response values
determined using a GI50 threshold (white color encoding resistance, dark blue – sensitivity); binary distance, ward clustering. Compounds with
similar mechanisms of action cluster closely together. Luminal cell lines cluster separately from those of another transcriptional subtype. 50 cell
lines with more than 50 numeric measurements are represented
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from Sigma, likely reflecting the enrichment for PI3K
pathway inhibitors on the panel (Supplemental
Table 1B).
We identified 33 compounds that did not exhibit condi-

tional sensitivity; predominantly comprised of non-
specific antimetabolite drugs and MAPK/ERK inhibitors.

The antimetabolite compounds that fall into this category
were either highly toxic to most cell lines irrespective of
sensitivity profile (e.g., methotrexate), or relatively non-
toxic (e.g., ibandronate). Interestingly, when investigating
the complete set of compounds belonging to both drug
classes, the therapeutics that did have a partner

Fig. 3 Prior/Intrinsic drug response associations. a Waterfall plot showing the number of agents with response that can be predicted (y axis;
Fisher test BH p < 0.05) using knowledge of (prior/intrinsic) response of an agent (x axis). b Heatmap showing the odds ratios (log (OR))) of
responding to one drug given knowledge of (intrinsic/prior) response of another drug, for all drugs in the panel with at least one significant
predictive pair (BH p < 0.05). Red: positive association between drugs A and B (OR > 1; (intrinsic/prior) sensitivity to drug A predicts sensitivity to
drug B, and (intrinsic/prior) resistance to A predicts resistance to B); Blue: negative association between drugs A and B (OR < 1; (intrinsic/prior)
resistance to drug A predicts sensitivity to drug B, and vice versa). Two main clusters, cytotoxic vs. targeted agents, resolve into six main response
clusters: (C1) DNA damaging/cell cycle, (C2) Aurora A kinase and cell cycle checkpoint inhibitors; (C3) microtubule poisons; (C4) AKT/mTOR/HDAC
inhibitor mixed cluster; (C5) HER2/EGFR inhibitors; and (C6) PIK3C catalytic subunit inhibitors. Color bars represent manually annotated generalized
modes of action. Clustering was performed using complete linkage and Pearson correlation distance
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significantly associated with response – only had a single
one, e.g. MEK1/2 inhibitors AZD6244 and GSK1120212
have only one significantly associated drug partner.

Nearly all significant associations predict sensitivity to
different agents in the same or a similar class
The heatmap in Fig. 3b shows the odds ratios (log (OR))
of responding to one drug given knowledge of (intrinsic/
prior) response to another drug, for all drugs in the
panel with at least one significant predictive pair (BH
p < 0.05).
As described in Methods, we use this OR matrix as a

model for history-dependent response data, in the
absence of a dataset derived from cells (or patients)
treated sequentially with multiple treatments. This
model assumes (1) past response to a drug, whether
sensitive or resistant, is based on intrinsic rather than
acquired characteristics and (2) a cell line/patient’s
intrinsic sensitivity/resistance profile remains unchanged
despite the passage of time and treatment, at the time of
the next decision point.
In the heatmap red represents a positive association

(OR > 1), or similar pattern of response between agents.
If an association is positive, (intrinsic/prior) sensitivity to
one drug predicts sensitivity to a second drug; likewise,
resistance to the first drug predicts resistance to the sec-
ond drug. For example, (intrinsic/prior) sensitivity to
carboplatin (column) predicts sensitivity to cisplatin
(row, red). Overall, the clusters of response-associated
agents fall into the broad classes of cytotoxic vs. targeted
drugs (Fig. 3b). Within the larger cytotoxic cluster are
three subclusters: (C1) commonly used DNA damaging
agents (e.g., platinums and anthracyclines), (C2) cell
cycle kinase inhibitors (e.g., VX-680), and (C3) micro-
tubule poisons including taxanes and ixabepsilone. The
targeted agent group contains smaller clusters of
response-associated agents featuring (C5) HER2/EGFR
inhibitors; (C6) PI3K inhibitors; and (C4) a mixed group
of AKT/mTOR/HDAC inhibitors (Fig. 3b). Multiscale
bootstrap resampling performed to estimate p-values for
hierarchical clustering established clusters (C1-C3 and
C5-C6) to be highly supported by the data with p-values
< 0.05 (Supplemental Figure S3). Cell lines sensitive to
one agent in any of these clusters are likely to be sensi-
tive to others in the same cluster. Mixed cluster C4 was
not highly supported but there are drug pairs within the
cluster, such as rapamycin and vorinostat, with signifi-
cantly associated responses BH p < 0.05 (Supplemental
Figure S2B).
Associations that might be less apparent in a clustered

response heatmap such as Fig. 2 are of the ‘cross re-
sponse type’ variety, wherein (intrinsic/prior) resistance
to one drug predicts sensitivity to a different drug or
vice versa. This class of relationship is of special interest,

because of its potential utility in identifying an effective
next treatment for patients who were highly resistant to
a prior therapy. However, of the 88 significant drug pair
response associations (BH Fisher p < 0.05), 85 represent
similar profiles of response; and only 3 represent cross-
response class associations (Supplemental Figure S4).
These resistance-conditioned sensitivity pairs are alkylat-
ing antineoplastic agent cisplatin and an HDAC inhibi-
tor LBH589; EGFR inhibitor erlotinib and neddylation
inhibitor MLN4924, and anti-helminthic mebendazole
and cell cycle inhibitor purvalanol A.

Recommendation system built on in vitro data of drug
response further reveals conditional patterns of drug
response in breast cancer cell lines
In order to further refine history dependent response
predictions for breast cancer cell lines, as well as create
a list of the top recommended compounds, we utilized a
recommender systems analysis as detailed in the
Methods section. Applying this method to our binary
response matrix we obtained a dataset with 200 non-
redundant probability of drug response rules with a
minimum confidence level of 0.8 and a minimum sup-
port of 0.2. Only rules with a one-to-one drug relation-
ship were considered. For each rule, a lift value was
calculated to indicate the strength of association
between the antecedent drugs (LHS) and the consequent
drug recommendations (RHS). This analysis enables us
not only to investigate drug associations, but also con-
sider four different types of associations: (1) if sensitive
to drug A, then sensitive to drug B (discovered associa-
tions n = 92), (2) if sensitive to drug A, then resistant to
drug B (n = 25), (3) if resistant to drug A, then also re-
sistant to drug B (n = 70), and (4) if resistant to drug A
then sensitive to drug B (n = 13).
The mined rules were used to create a directional net-

work of dependencies between drugs, presumably medi-
ated by relationships between mechanisms of action and
the spectrum of therapeutic vulnerabilities in breast can-
cer. The high complexity of such a representation is bet-
ter visualized over smaller subsets of the graph;
therefore, the graph visualization in Fig. 4a highlights
the hundred strongest (highest lift) association rules. A
complete list of mined rules is further provided in
Supplemental Table 2. The arrows in the plot corres-
pond with association type and begin from a label repre-
senting an observed antecedent (LHS, intrinsic) drug
response (resistance or sensitivity), and point towards
the consequent (RHS) drug response. For example, the
strongest association according to this analysis is (lift =
2.262) supports an association between sensitivity to
HER2/EGFR inhibitor Lapatinib (LHS), and consequent
sensitivity to Erlotinib – another EGFR inhibitor (RHS).
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The findings made by recommender system around
sensitive-to-sensitive relationships, mirror closely
observations from previous OR-based clustering ana-
lyses. All of the previously described drug categories
(C1-C6, Fig. 3b) can be traced back to node clusters in
the recommender system graph (Fig. 4a). For example,
we can see proximal connectivity, i.e. a shared pattern of
conditional drug response, between groups of DNA
damaging/cell cycle inhibitors like Carboplatin and

Cisplatin, as well was Oxaliplatin, Doxorubicin, CPT-
11, Epirubicin and Topotecan, mirroring findings of
Cluster (C1), as well as PI3K pathway inhibitors found
in group (C6) (Fig. 3b), i.e. GSK2119563,
GSK2126458, GSK1059615, Everolimus, Temsirolimus
and GSK2141795.
There are a number of new findings in this analysis

that are not observed with the Odds ratio model
approach, and they often revolve around associations

Fig. 4 Recommender system results. a Graph representation of 100 rules with highest lift values; vertices represent drugs and are colored to
reflect drug target classification as specified in the legend. Edges indicate the rule-governed relationships between them, colored based on the
type of relationship. b Matrix plot of all discovered rules that met the 0.2 support and 0.8 confidence cutoff criteria. Squares are colored by
combination of confidence and support values with more red representing higher confidence in the association, with blue representing higher
support for the association. Axis labels were colored to help identify drug relationships: dark red corresponding to “resistant” and grey
corresponding to “sensitive”. In addition, “_sens” and “_res” types of relationships were appended to the drug names in axis labels and
correspond to “sensitive” and “resistant” respectively
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with opposite response types (“if resistant, then sensi-
tive” and “if sensitive then resistant”). These types of rec-
ommendations would be most valuable in clinical
settings when next lines of treatment for patients with
drug resistance. The recommender system analysis re-
vealed thirteen associations of this specific type, the
strongest being the relationships between HER2 inhibi-
tor Erlotinib and proteasome inhibitor MLN4924. In this
case, the recommender system suggests Erlotinib for
MLN4924 resistant cell lines (lift = 2.07, confidence =
0.857) and vice versa, MLN4924 for lines resistant to
Erlotinib (lift = 2.0454, confidence = 0.818). Interestingly,
the system also recommends a proteasome inhibitor
Bortezomib if intrinsic sensitivity to Lapatinib (HER2
inhibitor) was detected (confidence = 0.875, lift = 2.041)
– an association not revealed in prior analysis (Fig. 3b
Fisher BH p = 0.076).

Conditional patterns of drug response in known breast
cancer molecular subtypes
A natural question is whether agent-response de-
pendencies vary by molecular subtype. Though num-
bers are very small, we used the recommendation
system side by side with the OR matrix approach to
explore differences in drug response patterns in the
three select molecular subtypes represented in the
dataset: luminal (n = 17), ERBB2-amplified (n = 10),
and basal or claudin-low combined (n = 18) (Supple-
mental Figure 5). After correcting for multiple hy-
pothesis testing of the OR matrix, we found
significantly similar response profiles for two com-
pounds in the luminal set, six in basal or claudin
low, and none in the smallest ERBB2-amp group
(Supplemental Figure 5A). In the basal and claudin-
low group we see clustering of docetaxel and pacli-
taxel, both chemotherapeutic taxanes, as well as of
PI3K-targetting drugs GSK2126458 and GSK2119563,
closely related in mechanism of action to a nearby
MEK inhibitor AZD6244. It is noteworthy that the
recommender system highlighted these same rela-
tionships in each grouping, when sorted by top lift
scores (Supplemental Figure 5B, C), but also includes
additional compounds within the drug cluster, e.g.,
docetaxel and paclitaxel are joined by another check-
point inhibitor, vinorelbine. In addition, the recom-
mender system captures heterogeneous response
edge types, e.g., in the luminal subtype, cells that are
resistant to Olomucine II, are likely to be sensitive
to ERKi II (FR180304). While our conclusions are
limited by small subset size, this analysis suggests
the consistency of findings as well as potential utility
for applying history-dependent response quantifica-
tion in a molecular subtype context.

Discussion
Typically, managing metastatic breast cancer care in-
volves selecting multiple drugs regimens over pa-
tient’s lifetime, with new therapeutics being
introduced sequentially upon progression or in the
case of accumulated toxicity. Though information re-
garding response to past treatments may provide
clues regarding the classes of drugs most and least
likely to work for a particular patient, currently there
is no systematized knowledge base that would sup-
port clinical treatment decision-making that takes
past treatments and responses into account. Such a
knowledge base could also be useful for emerging
neoadjuvant clinical trial designs in early stage breast
cancer that adapt within individual patients using
response data from the first treatment block to help
select the second treatment block, with the goal of
maximizing the probability of achieving a pCR.
Ideally, to address these needs one would develop

a history-dependent drug response predictor based
on data from cells (or patients) treated sequentially
with multiple treatments. Lacking such data, here we
propose a odds ratio (log (OR)) matrix as a model
for history-dependent response data. Briefly, to gener-
ate this matrix we analyzed previously published
in vitro viability data obtained from 91 breast cancer
cell lines. We calculated the OR of response to a
variety of compounds given information on sensitiv-
ity or resistance to other agents using an in vitro
cell line drug screen panel. We thus identified the
subset of 57 compounds with a response that can be
predicted by a ‘history’ of either sensitivity or resist-
ance to one or more of the 90 drugs on the panel,
as well as the most effective follow-on treatments
for each specific drug. Utilizing clustering methods
after filtering for significance, we established five
highly data supported clusters of compounds with
shared response patterns: (C1) commonly used DNA
damaging agents (e.g., platinums and anthracyclines),
(C2) cell cycle kinase inhibitors (e.g., VX-680), (C3)
microtubule poisons including taxanes and ixabepsi-
lone, (C4) a mixed group of AKT/mTOR/HDAC in-
hibitors, (C5) HER2/EGFR inhibitors and (C6) PI3K
inhibitors. The similar patterns of response may help
guide selection of alternative drug options for indi-
vidual patients; and in addition, may help elucidate
the mechanisms of action for each compound and
the relationships between agents.
Though we hoped to identify pairs and groups of

agents with cross-response relationships, wherein (in-
trinsic/prior) resistance to one drug predicts sensitiv-
ity to one or more agents, our analysis uncovered few
results of this type. Rather, nearly all the significant
response-prediction agent pairs were for similar

Olow et al. BMC Cancer          (2021) 21:212 Page 9 of 12



response profiles, which could be useful to help prioritize
a ‘next’ treatment for patients who initially responded to
an agent, perhaps prior to one or more intervening treat-
ments of a different class. This type of approach is already
widely used in HER2+ and ER+ metastatic breast cancer,
where patients are treated with a series of different anti-
HER2 or endocrine agents, respectively, resulting in longer
survival times. This project begins to establish a rational
basis for inclusion of additional agents for these patients,
and supports a similar strategy for other subtypes and
agent classes.
In addition to the approach of applying hierarchical

clustering to an OR matrix model of history-dependent
response data, we employed data mining algorithms that
use drug response ‘history’ to further inform the best
strategies to circumvent treatment resistance. Frequent
item set mining and association rule induction [15, 16]
are powerful methods for so-called market basket ana-
lysis, which aims at finding regularities in the shopping
behavior of customers of supermarkets, online shops etc.
With the induction of frequent item sets and association
rules one tries to find sets of products that are fre-
quently bought together, so that from the presence of
certain products in a shopping cart one can infer (with a
high probability) that certain other products are present.
Such information, especially if expressed in the form of
association rules, can often be used to increase the num-
ber of items sold, for instance, by directly suggesting
items to a customer. We treated sensitivity and resist-
ance responses to drugs similarly to shopping transac-
tions, and breast cancer cell lines, to customers.
Through this approach we were able to find and exam-
ine four types of associations between directional re-
sponse patterns: (1) if sensitive to drug A, then sensitive
to drug B, (2) if sensitive to drug A, then resistant to
drug B, (3) if resistant to drug A, then also resistant to
drug B, and (4) if resistant to drug A then sensitive to
drug B which further confirmed our Odds-ratio-model-
based findings, as well as established new ones such as
sensitivity to proteasome inhibitor Bortezomib if intrin-
sic sensitivity to Lapatinib (HER2 inhibitor) was detected
(confidence = 0.875, lift = 2.041) – an association not re-
vealed in prior analysis (Fisher BH p = 0.076). The in-
creased observational power could be attributed to the
directionality of recommender analysis, which is not
available in the symmetrical approach of a Fisher’s exact
test.
The utilization of these approaches comes with cer-

tain limitations. On a fundamental level, the first
limitation is in assuming that cancer cell lines studied
in vitro are reasonable models of tumors in patients,
and that drug response can be fully determined by
GI50 threshold values from in vitro viability studies.
Evaluation of cancer therapeutics where cytotoxicity is

not a primary mode of action may become less in-
formative, for example ibandronate sodium salt, a
bone resorption blocking activity meant to prevent
metastasis rather than kill tumor cells. This problem
could be systematically addressed by excluding non-
cytotoxic compounds, restricting viability data to clin-
ically relevant combinations of compounds, or/and in-
cluding other drug response measures such as
apoptotic activity or cell cycle arrest. Also, more real-
istic models such as xenografts or mouse models in
immune-intact mice could be employed.
Another fundamental issue arises from the fact that

once tumors are treated, their biology changes, though
the maintenance of basic pathways of intrinsic sensitiv-
ity/resistance forms the basis for (mostly successfully)
treating HER2+ metastatic patients with sequential
HER2-targeted agents, and likewise for treating ER+
metastatic patients with sequential hormone modulators.
The recommendations created from non-sequential
treatment data, while helpful for patients with cancers
that maintain basic driving mechanisms of intrinsic sen-
sitivity/resistance, are likely to be deficient in addressing
acquired resistance that substantially modifies tumor
drivers. To amend this limitation, additional data from
sequential treatment in vitro viability panels are neces-
sary, or better yet longitudinal data on treatment, re-
sponse, and response duration from a large number of
metastatic patients and/or early stage patients treated
with sequential neoadjuvant therapies. Utilizing sequen-
tial treatment data, one could explore temporal depend-
encies, i.e. if a patient had a good response to drug A in
the past, but then eventually progressed and has since
been through three more lines of treatment, is drug A
likely to work again? These data could be used to con-
struct an OR model as well, though with ‘real’ history-
conditioned sensitivity experiments the matrix would
likely be asymmetric, if treatment order modulates the
probability of response.
With the recent advancement of technology and in-

creased knowledge of transcriptional subtypes in breast
cancer, it will also be essential to include this type of in-
formation in the recommendation systems. In order to
avoid over-fitting of such predictions, larger datasets
than the one studied here are required. Increasing the
amount of data will also provide more support for each
recommendation making the predictions even more
reliable.
Not every path in breast cancer therapy is straightfor-

ward, and clinicians face difficult decisions every day.
The use of big biomedical datasets and data mining
methods such as recommendation systems, could be piv-
otal in informing clinicians deciding on next line of
breast cancer treatments for treatment-resistant or pro-
gressing patients.
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Conclusions
In this manuscript we propose a rational, history-
dependent, data-supported analytical approach for
cancer treatment selection based on prior drug sensi-
tivity. Our findings from the association statistical
analysis support a strategy of treating patients with
different agents in the same class where sensitivity
was previously observed. The directionality of comple-
mentary recommender analysis allows for discovery of
additional drug associations where resistance to prior
treatment corresponded with sensitivity to another
compound. We believe that the presented approach
may be pivotal in informing clinicians deciding on the
next line of treatments for patients who have pro-
gressed on their current regimen.
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tivity to drug B, and vice versa). White squares denote pairs with p > 0.05.
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