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Abstract

Background: Breast cancer is one of the most frequently diagnosed cancers among women worldwide. Alterations
in the tumor microenvironment (TME) have been increasingly recognized as key in the development and
progression of breast cancer in recent years. To deeply comprehend the gene expression profiling of the TME and
identify immunological targets, as well as determine the relationship between gene expression and different
prognoses is highly critical.

Methods: The stromal/immune scores of breast cancer patients from The Cancer Genome Atlas (TCGA) were
employed to comprehensively evaluate the TME. Then, TME characteristics were assessed, overlapping genes of the
top 3 Gene Ontology (GO) terms and upregulated differentially expressed genes (DEGs) were analyzed. Finally,
through combined analyses of overall survival, time-dependent receiver operating characteristic (ROC), and protein-
protein interaction (PPI) network, novel immune related genes with good prognosis were screened and validated in
both TCGA and GEO database.

Results: Although the TME did not correlate with the stages of breast cancer, it was closely associated with the
subtypes of breast cancer and gene mutations (CDH1, TP53 and PTEN), and had immunological characteristics.
Based on GO functional enrichment analysis, the upregulated genes from the high vs low immune score groups
were mainly involved in T cell activation, the external side of the plasma membrane, and receptor ligand activity.
The top GO terms of the upregulated DEGs from the high vs low immune score groups exhibited better prognosis
in breast cancer; 15 of them were related to good prognosis in breast cancer, especially CD226 and KLRC4-KLRK1.

Conclusions: High CD226 and KLRC4-KLRK1 expression levels were identified and validated to correlate with better
overall survival in specific stages or subtypes of breast cancer. CD226, KLRC4-KLRK1 and other new targets seem to
be promising avenues for promoting antitumor targeted immunotherapy in breast cancer.

Keywords: Breast cancer, Tumor microenvironment, Immune-related gene, Prognostic signature, Immunotherapy

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: ln9102@126.com
1Center for Cardiac Intensive Care, Beijing Anzhen Hospital, Capital Medical
University, Beijing, China
Full list of author information is available at the end of the article

Tan et al. BMC Cancer          (2021) 21:126 
https://doi.org/10.1186/s12885-021-07837-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-021-07837-1&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:ln9102@126.com


Background
Breast cancer is one of the most frequently diagnosed
cancers among women worldwide [1]. With improve-
ments in early detection and treatment, the number of
deaths from breast cancer has continuously declined
since 1990 [2]. However, in the United States, an esti-
mated 268,600 women will still be diagnosed with breast
cancer, and 41,760 women will die of breast cancer in
2019 [3].
Multidisciplinary approaches, including chemotherapy,

endocrine therapy, molecular targeted therapy, radio-
therapy, and surgery, are commonly used to improve
breast cancer patient survival. However, not all patients
benefit from combined treatment, and as many as 40%
of women with breast cancer will still be resistant to cur-
rently available targeted therapy approaches [4]. At
present, numerous issues remain unresolved, and there
is a lack of adequate evidence to fully clarify the mech-
anism of breast tumorigenesis. In recent years, obvious
alterations in the tumor microenvironment (TME) have
been increasingly recognized as key in the development
and progression of breast cancer.
The TME consists of tumor cells, stromal cells (such as

fibroblasts, endothelial cells, pericytes, myoepithelial cells,
and adipocytes), immune cells (such as macrophages, den-
dritic cells, natural killer (NK) cells, T lymphocytes, and B
lymphocytes), extracellular matrix (ECM), signaling mole-
cules and cytokines [5, 6]. Stromal cells and immune cells
are two major types of nontumor components in the
TME, so the stromal or immune components are pro-
posed to be valuable for diagnostic and prognostic assess-
ments of the TME. It was demonstrated that epigenetic
alterations generating aberrant gene expression in the cells
of the TME are predictive of clinical outcomes [7]. In
addition, there is increasing interest in the breast cancer
microenvironment as a prognostic factor as well as a po-
tential therapeutic target; thus, a wider assessment of im-
mune responses within the TME by gene expression
profiling might effectively predict clinical outcomes [8]. A
deeper comprehension of the genetic profile of the breast
cancer TME is urgently needed.
In this study, comprehensive bioinformatics analyses

were performed to better understand the immune-related
genetic profile and determine the relationship between
gene expression in the microenvironment of breast cancer
and prognosis. Our study will provide applicable informa-
tion on novel immunological targets from the TME, com-
plement other treatment options for breast cancer and
improve the overall survival (OS) of patients.

Methods
Data sources and preprocessing
RNA sequencing (RNA-seq) data in fragments per kilo-
base of transcript per million mapped reads (FPKM),

single-nucleotide polymorphism data and clinical follow-
up information such as age, molecular subtype, outcome
and survival time of breast cancer were downloaded
from The Cancer Genome Atlas (TCGA) database. A
total of 1097 cases were obtained from the TCGA data-
set. Then, the RNA-seq data were converted into tran-
scripts per kilobase million (TPM) expression profiles.
The immune and stromal scores of the samples were
calculated by the Estimation of STromal and Immune
cells in MAlignant Tumor tissues using Expression data
(ESTIMATE) algorithm via the ESTIMATE R software
package. Next, two series of gene expression profiles
from the Gene Expression Omnibus (GEO) database
(GSE20685 and GSE42568) with clinical data from 431
breast cancer patients were used as the validation data-
sets. The GEO data were downloaded and normalized
by the LIMMA R software package.

Comprehensive assessment of the TME characteristics in
breast cancer
Based on the mean stromal or immune scores as the
cutoff value, the patients were divided into two groups:
the high stromal/immune score group and the low stro-
mal/immune score group. Then, we analyzed the rela-
tionships between different stages/subtypes of breast
cancer and stromal/immune scores. Kaplan-Meier (K-
M) analysis was performed to determine the differences
in OS between the high- and low-score groups of the
four subtypes of breast cancer. In addition, we detected
the correlations between stromal/immune scores and
conventional gene mutations.

Identification of differentially expressed genes (DEGs)
Following the high and low score grouping, we screened
for DEGs to obtain those with a false discovery rate
(FDR) < 0.05 and a log2 fold change (FC) > 1. Heatmaps
and cluster maps of the DEGs were generated using the
Pheatmap package, and volcano plots were designed by
the ggplot2 package in R software. Then, the upregu-
lated genes with high vs low scores were further ana-
lyzed with Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis. GO
categories including biological process (BP), molecular
function (MF), or cellular component (CC) were ana-
lyzed using the EnrichGO function in the clusterProfiler
R package and KEGG analysis was performed by the
EnrichKEGG function in the clusterProfiler R package,
with the parameters pvalue-Cutoff = 0.05 and qvalue-
Cutoff = 0.05. A Venn diagram was used to screen the
overlapping genes between the upregulated DEGs from
high vs low scores and the top 3 GO terms by the online
tool VENNY 2.1 (https://bioinfogp.cnb.csic.es/tools/
venny/index.html).
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Construction of the protein-protein interaction (PPI)
network
The PPI network was established in the Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING)
database and reanalyzed by Cytoscape software. The
medium confidence was set as 0.4. Only individual net-
works with 10 or more nodes were included for further
analysis. The connectivity degree of each node of the
network was calculated. The logFC value of the gene ex-
pression was used to reflect the color of each node, and
the size of the node represented the number of proteins
interacting with the designated protein. Molecular
COmplex Detection (MCODE) was then used to locate
the central gene cluster.

Screening immune-related genes with prognostic value
To identify genes with prognostic value in the TME, we
performed univariate survival analysis and used K-M

analysis to analyze the relationship between the expres-
sion of these genes and the OS of breast cancer patients.
Then, a time-dependent receiver operating characteristic
(ROC) curve was generated to assess the predictive
accuracy.

Statistical analysis
All data in the present study were performed in R soft-
ware (version 3.6.1; https://www.r-project.org/). The
stromal or immune scores were calculated by ESTIMA
TE package. Survival curve was constructed by K-M ana-
lysis and compared by log-rank test, which was done to
explore the survival differences in subtypes or stages of
breast cancer and to identify the prognosis of selected
genes using the GraphPad Prism 6.0 software (GraphPad
Software Inc., La Jolla, CA, USA). Heatmaps, volcano
plots, GO enrichment, KEGG pathway and Time-
dependent ROC curve were plotted by R software.
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Fig. 1 Stromal scores and immune scores were closely correlated with breast cancer. (A) Violin plot of stromal scores in different stages of breast
cancer; (B) violin plot of immune scores in different stages of breast cancer; (C) violin plot of stromal scores in four subtypes of breast cancer; (D)
violin plot of immune scores in four subtypes of breast cancer. *p ≤ 0.05; **p≤ 0.01; ***p≤ 0.001; and ****p≤ 0.0001
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Time-dependent ROC curve as done with the TimeROC
package. The confidence index of AUC was calculated
by combined with Survival and TimeROC package. All
statistical tests were two-sided and P-value< 0.05 was
considered statistically significant.

Results
Immune scores and stromal scores are closely related to
breast cancer subtypes but not associated with breast
cancer stages
In our study, the stromal scores ranged from − 2164.14
to 2050.55, and the immune scores were distributed be-
tween − 1724.88 and 3459.35. First, we assessed the rela-
tionships between stromal scores or immune scores and
different stages of breast cancer. However, neither stro-
mal scores nor immune scores showed significant differ-
ences in different stages of breast cancer (Fig. 1a, b).
Then, we explored whether stromal scores or immune
scores were correlated with breast cancer subtypes. The
average stromal scores of the basal-like subtype were the

lowest of all four subtypes (Fig. 1c); however, the average
immune scores of the basal-like subtype ranked highest
(Fig. 1d). In addition, the immune scores of the HER2-
enriched subtype were higher than those of the luminal
B subtype (Fig. 1d). Finally, we divided the scores into
high and low groups and evaluated the survival probabil-
ities of distinct subtypes in both groups of stromal
scores and immune scores. Unfortunately, the high- and
low-score groups did not show any survival differences
in the four breast cancer subtypes (Fig. S1).

Breast cancer gene mutations were correlated with
stromal scores or immune scores
Some gene mutations are implicated in cancer suscepti-
bility. Thus, we downloaded single-nucleotide poly-
morphism data on several conventional mutant genes in
the clinic, such as BRCA1, BRCA2, CHEK2, PALB2,
BRIP1, TP53, PTEN, STK11, CDH1, ATM, BARD1,
MLH1, MRE11A, MSH2, MSH6, NBN, MUTYH, PMS1,
PMS2, RAD50, and RAD51C. Then, the patients were
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Fig. 2 Gene mutations were associated with stromal scores and immune scores. (A) Distribution of stromal scores for BRCA1 mutant and BRCA1
wildtype; (B) distribution of stromal scores for BRCA2 mutant and BRCA2 wildtype; (C) distribution of stromal scores for CDH1 mutant and CDH1
wildtype; (D) distribution of stromal scores for PTEN mutant and PTEN wildtype; (E) distribution of stromal scores for TP53 mutant and TP53
wildtype; (F) distribution of immune scores for BRCA1 mutant and BRCA1 wildtype; (G) distribution of immune scores for BRCA2 mutant and
BRCA2 wildtype; (H) distribution of immune scores for CDH1 mutant and CDH1 wildtype; (I) distribution of immune scores for PTEN mutant and
PTEN wildtype; (J) distribution of immune scores for TP53 mutant and TP53 wildtype. *p ≤ 0.05; **p ≤ 0.01; ***p≤ 0.001; and ****p≤ 0.0001
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divided into mutant and wild-type groups, and the distri-
butions of stromal scores and immune scores were plot-
ted based on the status of the mutant genes in breast
cancer. When compared with the wild-type group, either
the BRCA1 or BRCA2 mutant group exhibited no sig-
nificantly difference in the stromal scores and immune
scores (Fig. 2a, b, f, g). However, CDH1 mutant cases
had higher stromal scores and immune scores (Fig. 2c,
h). Although stromal scores of the PTEN/TP53 mutant
and wild-type groups were not statistically significant
(Fig. 2d, e), PTEN/TP53 mutant cases exhibited higher
immune scores than wild-type cases (Fig. 2i, j). Other
mutant genes, such as CHEK2, PALB2, BRIP1, STK11,
ATM, BARD1, MLH1, MRE11A, MSH2, MSH6, NBN,
MUTYH, PMS1, PMS2, RAD50, and RAD51C, had no
significant differences in stromal scores or immune
scores between the mutant and wild-type groups (data
not shown). Thus, CDH1, PTEN and TP53 mutations
were closely associated with stromal/immune scores in
breast cancer.

Differential gene expression profiles with stromal scores
and immune scores in breast cancer
To determine the correlation between comprehensive
gene expression profiles and stromal/immune scores, we
analyzed the 1097 cases acquired from the TCGA data-
base. The heatmap shows the top 100 distinct gene ex-
pression profiles of cases belonging to the high vs. low
score groups (Fig. 3a, b). Based on the stromal score
grouping, 2832 genes were upregulated and 253 genes
were downregulated in the high vs. low stromal score
groups. Similarly, 1930 genes were upregulated and 491
genes were downregulated in the high vs. low immune
score groups (p < 0.05, log2 FC > 1). Figure 3c and d
show the volcano plot of differentially expressed genes
(DEGs) in high vs. low stromal/immune score groups.
Next, in order to comprehend the function of DEGs,

we selected the upregulated DEGs for GO enrichment
and KEGG pathway analyses. The top GO terms identi-
fied for the upregulated DEGs from the high vs. low
stromal score groups were extracellular structure
organization, collagen-containing extracellular matrix,
and receptor ligand activity (Fig. 4a). In addition, the top
GO terms of the upregulated DEGs from the high vs.
low immune score groups were T cell activation, exter-
nal side of the plasma membrane, and receptor ligand
activity (Fig. 4b). Moreover, the top KEGG pathways of
the upregulated DEGs from the high vs. low stromal
score and high vs. low immune score groups were neu-
roactive ligand-receptor interaction and cytokine-
cytokine receptor interaction, respectively (Fig. 4c, d).
For deeply exploring the gene profiles of the top GO

terms, we integrated the top 1 term of the BP, MF, or
CC categories as gene datasets. Then, we screened the

overlapping genes between upregulated DEGs and the
gene datasets (Table S1). Venn diagrams showed that
225 genes overlapped between the upregulated genes
from the high vs. low stromal score groups and the gene
datasets (for convenience of description, we named these
genes overlapping 1 genes), and 169 genes overlapped
between the upregulated genes from the high vs. low im-
mune score groups and the gene datasets (for conveni-
ence of description, we named these genes overlapping 2
genes) (Fig. 4e, f).

The screened immune-related DEGs are associated with
good prognosis in breast cancer
We performed a univariate survival analysis to reveal the
relationship between the selected overlapping genes and
prognosis in breast cancer patients from TCGA. Al-
though the overlapping 1 genes did not show statistical
significance in the OS analysis, the overlapping 2 genes
exhibited highly significant differences in the prognosis
of breast cancer, so we chose the overlapping 2 genes for
further analysis. Using p value < 0.05, 54 genes related to
good prognosis were included. Then, a time-dependent
ROC curve (area under the curve (AUC) > 0.6) was
employed to assess the prediction accuracy, and 31
genes with prognostic value in breast cancer remained.
To better understand the interplay among the identified
31 genes, we performed PPI analysis, and Fig. 5a shows
the overall PPI network, which included 29 nodes and
110 edges (Fig. 5a). Then, we selected the extremely crit-
ical module containing 15 nodes for further analysis
(Fig. 5b).
The 15 immune-related genes (CD226, KLRD1,

KLRC4-KLRK1, IL2, KLRK1, ITK, SPN, SLAMF1,
CD1C, FASLG, CD40LG, TBX21, IL7, LAT and ITGAX)
in the TME that are associated with good prognosis are
shown in Fig. 6a-o and Table 1.
Figure 7a-o displays the 15-gene signature of the time-

dependent ROC curve, and their 95% confidence interval
(CI) of AUC were shown in Table 2. The accuracies in
predicting the 1-year, 3-year and 5-year OS of patients
with CD226 (AUC 0.73, 0.62, and 0.57, respectively),
KLRD1 (AUC 0.73, 0.6, and 0.54, respectively), and
KLRC4-KLRK1 (AUC 0.72, 0.6, and 0.56, respectively)
were higher than those with the other selected genes, es-
pecially for the 1-year prediction accuracy (Fig. 7 and
Table 2). Therefore, we identified CD226, KLRD1, and
KLRC4-KLRK1 for further functional evaluation.

High expression of CD226 and KLRC4-KLRK1 results in a
better prognosis in stage II, stage III or luminal B breast
cancer
To further explore the identified CD226, KLRD1, and
KLRC4-KLRK1 genes with prognostic value, we analyzed
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the expression of these genes and their association with
OS in different breast cancer stages or subtypes. Al-
though the high expression of KLRD1 was not re-
lated to a better prognosis in any stage or subtype
variation (data not shown), the expression of CD226
and KLRC4-KLRK1 displayed a strong correlation
with OS for stages or subtypes. High CD226 expres-
sion was related to better prognosis in stage II and

stage III breast cancer, as well as in luminal B breast
cancer (Fig. 8a-c). Similarly, despite not being sig-
nificant for stage II (Fig. 8d), high KLRC4-KLRK1
expression revealed preferable survival probabilities
in stage III breast cancer and in the luminal B sub-
type (Fig. 8e, f). In other stages or subtypes of breast
cancer, CD226 and KLRC4-KLRK1 expression was
not significantly related to OS (Fig. S2).

Fig. 3 Differential gene expression profiles in breast cancer and immune score and stromal score grouping. (A) Heatmap of the top 100
upregulated genes in the high vs low stromal score groups; (B) heatmap of the top 100 upregulated genes in the high vs low immune score
groups; (C) volcano plot of differential genes in the high vs low stromal score groups; (D) volcano plot of differential genes in the high vs low
immune score groups
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Fig. 4 (See legend on next page.)
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(See figure on previous page.)
Fig. 4 Differentially expressed genes (DEGs) for Gene Ontology (GO) enrichment and Kyto Encyclopedia of Genes and Genomes (KEGG) pathway
analyses. (A) GO enrichment analysis of the upregulated genes in the high vs low stromal score groups; (B) GO enrichment analysis of the
upregulated genes in the high vs low immune score groups; (C) KEGG pathway analysis of the upregulated genes in the high vs low stromal
score groups; (D) KEGG pathway analysis of the upregulated genes in the high vs low immune score groups; (E) Venn diagrams showing the
overlapping 1 genes; (F) Venn diagram showing the overlapping 2 genes

Fig. 5 Protein-protein interaction (PPI) analysis of the overlapping immune-related genes. (A) PPI network of 31 screened genes, which included
29 nodes and 110 edges; (B) PPI network of 15 screened genes. The logFC value of the gene expression was used to reflect the color of each
node, and the size of the node represents the number of proteins interacting with the designated protein
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Validating that the prognostic genes identified from the
TCGA database are equally significant in the GEO
database
To validate whether the prognostic genes identified from
the TCGA database are equally significant in the GEO
database, two gene profiles from GEO (GSE20685 and
GSE42568) were used as validation datasets. The gene
expression data of 327 cases from GSE20685 and 104
cases from GSE42568 with clinical information were
downloaded and evaluated for OS. Data from GSE42568
demonstrated that CD226 was related to good prognosis
in breast cancer patients, while KLRC4-KLRK1 did not
show any correlation with breast cancer OS (Fig. 9a, b).
However, the data from GSE20685 showed the reversed

results; instead of CD226, KLRC4-KLRK1 was related to
good prognosis in breast cancer (Fig. 9c, d). Next, we
employed the data from GSE20685 to better confirm the
relationships between gene expression and OS in differ-
ent cancer stages (Fig. 9e-j), and found CD226 was
firmly associated with good prognosis in stage II breast
cancer patients. Thus, our validation datasets partly
proved that high CD226 and KLRC4-KLRK1 expression
levels would predict satisfied overall survival of breast
cancer, especially in specific stages.

Discussion
The TME is crucial in tumor initiation, progression and
drug resistance in breast cancer, and the infiltration of
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Fig. 6 Kaplan-Meier survival curves for the 15 screened genes with good prognosis in breast cancer. The relationship between the expression of
(A) CD226, (B) KLRD1, (C) KLRC4-KLRK1, (D) IL2, (E) KLRK1, (F) ITK, (G) SPN, (H) SLAMF1, (I) CD1C, (J) FASLG, (K) CD40LG, (L) TBX21, (M) IL7, (N) LAT,
or (O) ITGAX and overall survival in breast cancer. P < 0.05 in the log-rank test
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nontumor cells in the TME was calculated by the ESTI
MATE algorithm. The ESTIMATE algorithm developed
based on gene expression is valid and effective in various
cancers, such as prostate cancer, breast cancer, and
colon cancer [9, 10]. By utilizing the breast cancer co-
horts in the TCGA database and ESTIMATE algorithm-
derived scores, we first analyzed the relationship be-
tween stromal/immune scores and different stages or
subtypes of breast cancer, found that stromal/immune
scores were highly correlated with subtypes of breast
cancer, especially in the basal-like subtype. In addition,
the luminal B and HER2-enriched subtypes also showed
relevance with immune scores. These findings demon-
strated that TME variation correlated with subtypes of
breast cancer and possessed immunological characteris-
tics, which was consistent with the findings of a previous
study [11]. However, the high immune-related scores did
not predict a better prognosis in breast cancer subtypes.
This is because prognosis is more influenced by various
factors, such as age, race, never being pregnant or having
a first child after age 30, type of surgical procedure,
initial tumor size, clinical lymph mode status, and
neoadjuvant chemotherapy [12, 13]. Moreover, when
considering the tumor stroma, cancer-associated fibro-
blasts (CAFs) are the major constituent of tumor stroma,
take part in induction of tumor progression in breast
cancer. Mounting evidence indicates that CAFs are het-
erogeneous, like tumor cells, among different subtypes
or in the same subtypes of breast cancer which patients
have different length of survival [14, 15]. Currently, the
potential role of CAFs as a predictive biomarker of
tumor prognosis is still debated.

Second, we analyzed the relationship between the
TME and gene mutations. Although our data demon-
strated that CDH1, TP53 and PTEN mutations were
closely associated with the TME, BRCA1 and BRCA2
mutations did not show significant differences in TME
variation. BRCA1 and BRCA2 mutant genes predispose
individuals to an elevated risk of breast cancer, and
those with a family history of cancer are recommended
to undergo gene detection based on the National Com-
prehensive Cancer Network (NCCN) guidelines [16].
Thus, BRCA1 and BRCA2 mutations are not highly fre-
quent in sporadic cases, the design of upcoming trials
stratifying patients by BRCA status to avoid potential
bias are needed. CDH1, TP53 and PTEN are tumor sup-
pressor genes, their alteration presents poor survival and
worse prognosis in breast cancer [17–19]. Our study
findings coincide with those of a previous exploration
that after the exclusion of BRCA1 or BRCA2, the TME
correlates with TP53, CDH1, and PTEN mutations, their
mutations even revealed a highly or moderately in-
creased risk of breast cancer [20].
Third, when further exploring the DEGs in the TME,

many previous studies have ignored genes with low ex-
pression but exhibit high significance in antitumor activ-
ity. Thus, to eliminate the factor of tumor cells
downregulating the expression of antitumor genes dur-
ing tumor progression, we focused on the genes of the
top GO terms of the upregulated DEGs based on func-
tional enrichment.
Fourth, through step-by-step screening via OS analysis,

time-dependent ROC analysis, and PPI network analysis,
we revealed that the top GO term genes of the upregu-
lated DEGs from the high vs low immune score groups
exhibited better prognosis in breast cancer, which could
be explained by the fact that the immune system plays
an important role in cancer development and therefore
potentially offers novel targeted therapies in antitumor
treatment [21]. Ultimately, we found 2 important TME
genes with good prognosis (CD226 and KLRC4-KLRK1).
CD226, also known as DNAM-1, is an activating re-

ceptor expressed on various immune cells, such as
CD4+ and CD8+ T lymphocytes, regulatory T cells
(Tregs), monocytes, macrophages, and NK cells [22, 23].
CD226 serves as a costimulator, enhances T cell or NK
cell activation [22], and exhibits significance in innate/
adaptive immune regulatory networks. When combined
with its ligand CD115 or CD112 upregulated in tumor
cells [24], CD226 facilitates the cytotoxicity of NK cells
[25]. Moreover, in Treg-mediated tumor immune es-
cape, Tregs express relatively high levels of TIGIT and
low levels of CD226 compared with effector T cells
(Teffs), resulting in a high ratio of TIGIT/CD226 expres-
sion and accelerating tumor development. In contrast,
augmenting CD226 expression and reversing the TIGIT/

Table 1 Genes with prognostic value

Gene symbol HR 95% CI lower 95% CI upper P value

CD226 0.6572 −0.6747 −0.1649 0.0004

KLRD1 0.6819 −0.6759 −0.0899 0.0091

KLRC4-KLRK1 0.3664 −1.8647 −0.1435 0.0002

IL2 0.2775 −2.1727 −0.3909 < 0.0001

KLRK1 0.5749 −1.0037 −0.1035 0.0011

ITK 0.9141 −0.1532 −0.0264 0.0002

SPN 0.9479 −0.0875 −0.0194 0.0002

SLAMF1 0.9197 −0.1436 −0.0239 0.0011

CD1C 0.9643 −0.0636 −0.0091 0.0002

FASLG 0.8986 −0.1904 −0.0234 0.0040

CD40LG 1.0678 0.0306 0.1006 < 0.0001

TBX21 0.8669 −0.2414 − 0.0442 0.0074

IL7 0.8524 −0.2990 −0.0204 0.0265

LAT 0.5610 −1.0788 −0.0772 0.0100

ITGAX 0.9127 −0.1514 −0.0313 0.0019

HR: Hazard ratio; CI: Confidence interval
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Fig. 7 CD226, KLRD1 and KLRC4-KLRK1 had higher predictive accuracies than the other screened genes. Time-dependent ROC analyses were
performed to compare the 15 screened gene signatures: (A) CD226, (B) KLRD1, (C) KLRC4-KLRK1, (D) IL2, (E) KLRK1, (F) ITK, (G) SPN, (H) SLAMF1, (I)
CD1C, (J) FASLG, (K) CD40LG, (L) TBX21, (M) IL7, (N) LAT, and (O) ITGAX in predicting 1-year, 3-year and 5-year overall survival
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CD226 ratio would predict a good clinical outcome [26].
However, reduction in CD226 expression decreases the
immune regulatory capacity, and CD226-deficient CTL
or NK cells exhibit markedly less cytotoxic activity
against DNAM-1 ligand-expressing tumors [27]. Accu-
mulating evidence has shown that CD226 plays a pivotal
role in tumor recognition and cancer immune surveil-
lance [28], even promoting antitumor immune responses
mediated by NK and T cells.
Killer cell lectin-like receptor subfamily C4 - killer cell

lectin-like receptor subfamily K1 (KLRC4-KLRK1) be-
longs to killer cell lectin-like receptor family [29] and
represents naturally occurring read-through transcrip-
tion between neighboring KLRC4 and KLRK1. KLRC4
lacks a significant portion of the KLRC4 coding se-
quence but encodes the KLRK1 protein. Once tumori-
genesis occurs, the amount of KLRK1 ligand increases
immediately. KLRK1 (or NKG2D) is also an activating
receptor expressed by NK cells and T cell subsets,
can augment the cytotoxicity of NK cells/T cells or
synergize with immune checkpoint inhibitors to elimin-
ate tumor cells [30]. However, tumor cells evoke a range
of mechanisms to evade KLRK1 surveillance system de-
tection and impair the clinical benefits of immunother-
apy in various cancers [31, 32]. The downregulation of
KLRK1 hampered NK cell cytotoxicity [33]. Conversely,
blocking the shedding of ligands by tumors or the re-
lease of KLRK1 ligand-bearing exosomes might restore
the expression of KLRK1 receptors on NK cells or T
cells and improve their activity [34].
It was reported that the KLRK1 axis is becoming an

emerging target in cancer immunotherapy [35, 36], and

the overexpression of CD226 or KLRK1 on NK cells re-
sulted in efficient anti-sarcoma activity [37]. These stud-
ies were in accordance with our exploration to provide a
molecular basis for the development of CD226- and
KLRC4-KLRK1-targeted antitumor immune therapeu-
tics. Considering that the samples from GEO data-
base were much fewer than those from TCGA database,
further exploration should include in more breast cancer
patients for verification.
Tumorigenesis is initiated by 3 steps: cancer cell elim-

ination by various immune cells, such as NK cells and
CD8+ T cells, then immune pressure leading to the se-
lection of tumor cell variants and finally, immune escape
by inhibiting effector cells or inducing tolerogenic cells
[38]. Escaping antitumor immunity is a hallmark for the
progression of breast cancer. In the TME, tumor cells
interact with various types of immune cells by activating
immune checkpoint pathways [39, 40]. Immune check-
points (CTLA-4, PD-1/PDL1, LAG3, TIM3 and TIGIT)
are orchestrated by a series of costimulatory and inhibi-
tory signaling molecules and then modulate effector T
lymphocyte (Teff) activity. Recent advancements in anti-
bodies against immune checkpoints have highlighted the
benefits of immune checkpoint inhibitors in both animal
studies and clinical trials [41].
In this study, we also detected immune checkpoint

genes, including CTLA-4, PD-1, LAG3 and TIM3, and
found that their high expression was not associated with
good prognosis in breast cancer (data not shown). This
finding is probably related to the level of checkpoint
gene expression and immune state of the TME [8]. To
achieve unbiased results, the identification of immune

Table 2 AUC (95% CI) of the 15 screened gene signatures in Time dependent ROC analyses

genes AUC (95% CI)

1-year 3-year 5-year

CD226 0.73 (0.6136–0.8428) 0.62 (0.5533–0.6925) 0.57 (0.5007–0.6405)

KLRD1 0.73 (0.6079–0.8430) 0.60 (0.5235–0.6718) 0.54 (0.4685–0.6178)

KLRC4-KLRK1 0.72 (0.6063–0.8328) 0.60 (0.5295–0.6785) 0.56 (0.4868–0.6346)

IL2 0.60 (0.4710–0.7387) 0.60 (0.5310–0.6695) 0.61 (0.5418–0.6779)

KLRK1 0.67 (0.5400–0.7990) 0.59 (0.5220–0.6642) 0.54 (0.4681–0.6149)

ITK 0.67 (0.5445–0.8050) 0.62 (0.5503–0.6953) 0.57 (0.4975–0.6413)

SPN 0.64 (0.5094–0.7626) 0.62 (0.5468–0.6895) 0.57 (0.5014–0.6478)

SLAMF1 0.64 (0.5083–0.7764) 0.61 (0.5350–0.6804) 0.54 (0.4724–0.6145)

CD1C 0.63 (0.4879–0.7658) 0.63 (0.5577–0.7070) 0.60 (0.5286–0.6700)

FASLG 0.62 (0.5020–0.7360) 0.61 (0.5363–0.6765) 0.56 (0.4848–0.6297)

CD40LG 0.62 (0.4941–0.7477) 0.62 (0.5423–0.6935) 0.59 (0.5194–0.6602)

TBX21 0.62 (0.5021–0.7298) 0.58 (0.5084–0.6474) 0.54 (0.4651–0.6066)

IL7 0.60 (0.4624–0.7438) 0.56 (0.4839–0.6391) 0.52 (0.4531–0.5967)

LAT 0.61 (0.4995–0.7263) 0.56 (0.4917–0.6347) 0.53 (0.4583–0.6098)

ITGAX 0.59 (0.4649–0.7191) 0.55 (0.4806–0.6274) 0.56 (0.4878–0.6321)
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checkpoint gene expression level is critical. The investi-
gation into the relationship between immune checkpoint
gene expression and the TME immune state (such as
tumor-infiltrating lymphocytes and the T cell receptor
repertoire) would provide key insights into checkpoint
blockade therapy.
At present, there are multiple antitumor approaches:

inverting tumor immunosuppression (for example,
employing immune checkpoint inhibitors and the direct
induction of the Teff immune response), using immune-
based therapies targeting specific immune cell types (in-
cluding improving cytotoxic efficacy, and promoting im-
mune surveillance through NK cells or Teffs), reducing
the number of immunosuppressive myeloid cells,

inhibiting Tregs, and altering the function of myeloid
cells [7].
Despite combining multidisciplinary treatment strategies,

breast cancer patients still have a comparably high mortal-
ity. An improved understanding of the immune-related
genetic profile of TME in breast cancer and the identifica-
tion of new immunological targets are critical for improving
clinical outcomes. CD226, KLRC4-KLRK1 and subsequent
new targets seem to be promising avenues for promoting
antitumor targeted therapy in breast cancer.

Conclusions
The exploration of the TME and immunological treat-
ment in breast cancer have become increasingly
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Fig. 8 High expression of CD226 and KLRC4-KLRK1 results in a better prognosis in breast cancer. The survival probability differences between
high and low CD226 expression in (A) stage II, (B) stage III, and (C) the luminal B subtype of breast cancer. The survival probability differences
between high and low KLRC4-KLRK1 expression in (D) stage II, (E) stage III, and (F) the luminal B subtype of breast cancer. P < 0.05 in the
log-rank test
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Fig. 9 Validating the prognostic genes identified in the TCGA database are equally significant in GEO database. The relationship between (A) the
expression of CD226 or (B) the expression of KLRC4-KLRK1 and breast cancer prognosis in the GSE42568 dataset; the relationship between (C) the
expression of CD226 or (D) the expression of KLRC4-KLRK1 and breast cancer prognosis in the GSE20685 dataset; the relationship between the
expression of CD226 and (E) stage I, (F) stage II, and (G) stage III breast cancer prognosis in the GSE20685 dataset; the relationship between the
expression of KLRC4-KLRK1 and (H) stage I, (I) stage II, (J) stage III breast cancer prognosis in the GSE20685 dataset. P < 0.05 in the log-rank test
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important in recent years. In our study, although the
TME did not correlate with the stages of breast cancer,
we verified that it was highly associated with the sub-
types of breast cancer and gene mutations (CDH1, TP53
and PTEN) and possessed immunological characteristics.
The combined analysis of OS, time-dependent ROC, and
the PPI network revealed that the genes of the top 3 GO
terms of the upregulated DEGs from the high vs. low
immune score groups were associated with better prog-
nosis in breast cancer, and 15 of them were related to
good prognosis in breast cancer, especially CD226 and
KLRC4-KLRK1. High CD226 and KLRC4-KLRK1 ex-
pression levels were identified, and their correlation with
better OS in specific stages or subtypes of breast cancer
was validated.
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Additional file 1 Fig. S1. The high and low stromal/immune score
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and (B) KLRC4-KLRK1 expression in stage I breast cancer; the survival
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minal A, (D) luminal B, and (E) HER2-enriched subtypes of breast cancer;
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