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Abstract

Background: Colorectal cancer (CRC) is the second leading cancer killer in the US today and patients with metastatic
disease have only a 14% 5-year survival. One of the most impactful recent advances in cancer therapy, immune checkpoint
inhibition, has not been shown to be effective for the majority of these patients. In this study, we use The Cancer Genome
Atlas (TCGA) and recently developed informatic-based tools to identify targets for immune based therapy in colorectal
cancer patients.

Methods: Open access, pre-processed (level 3) mRNA data and clinical data from colorectal patients from the TCGA was
downloaded from FireCloud. Using the Microenvironment Cell Populations-Counter method (MCP-Counter), cytotoxic
lymphocyte scores were calculated for all patients. Patients were then grouped by cytotoxic lymphocyte score (High vs Low),
pathologic stage, and location to identify differentially expressed genes. Pathway enrichment analysis was performed using
Reactome to determine differentially expressed genes associated with immune pathways. Survival analysis was performed
with identified differentially expressed genes.

Results: In the TCGA dataset, there are 461 colon and 172 rectal cancer patients. After stratifying patients by
cytotoxic lymphocyte score, anatomical location, and stage, we found a significant number of differentially
expressed genes. We identified one pathway, “immunoregulatory interactions between a lymphoid and non-
lymphoid cell”, that was highly enriched and included in all tumor locations and stages. Survival analysis
performed with differentially expressed genes in this pathway identified 21 different genes associated with
survival and cytotoxic lymphocyte infiltration, with ~ 70% of these genes occurring in the metastatic right-
sided CRC group. Specifically, all genes associated with survival in the metastatic right-sided colorectal cancer
group with low cytotoxic lymphocyte scores positively impacted survival.

Conclusions: Utilizing the TCGA, a publicly available dataset, and informatics-based analyses, we identified
potential targets to improve immune based therapy in colorectal cancer. Additionally, we note the most
targets in metastatic right-sided CRC patients, the patient group with the worst predicted survival. The results
from this study demonstrate the ability of informatics-based analytic techniques to identify new therapeutic
targets as well as improve patient selection for intervention, helping us to achieve the goals of precision-
based oncology.
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Background
Despite recent advances in detection and therapy, colo-
rectal cancer (CRC) remains the second leading cause of
cancer-related death in the US [1]. Immune based ther-
apies such as immune checkpoint inhibition have re-
cently made significant advances in a number of difficult
to treat malignancies like non-small cell lung cancer,
melanoma, and renal cell cancer [2]. However, these
results have not yet extended to the majority of patients
with CRC [3]. This is despite significant data that anti-
tumor immunity is important for prognosis and treat-
ment response in these patients [4, 5]. This suggests that
there is significant progress to be made in the applica-
tion of immune based therapy in CRC.
When considering immune based treatments, a critical

factor is effective tumor infiltration of cytotoxic lympho-
cytes [6]. In colorectal cancer, this is evident as patients
who demonstrate response to immune checkpoint inhib-
ition and currently have an FDA approved indication for
this therapy, are those with microsatellite instability-high
(MSI-H) tumors [7]. These tumors are characterized by
high mutational load, neoepitope formation, and an in-
tense lymphocytic infiltrate when compared to microsat-
ellite stable (MSS) tumors [8]. Microsatellite instability-
high tumors, however, are also associated with increased
mutations in immune related genes and expression of
negative regulatory genes, demonstrating that tumors try
to dampen the immune response by multiple pathways
[9, 10]. Additionally, recent studies have suggested that
the use of other markers including lymphocyte infiltra-
tion and tumor mutational burden may better predict
survival and the potential for response to immune based
therapy [5, 11]. It is therefore critical to develop a better
understanding of immune resistance mechanisms to im-
prove therapy in colorectal cancer patients.
In the current era of precision medicine, research is

concentrated on providing more effective treatments by
focusing on patient specific factors. This is particularly
important in colorectal cancer, as subsets of patients re-
sponsive to targeted therapy, immune-based therapy,
and chemotherapy have previously been identified [3, 12,
13]. Colorectal cancer, however, is a heterogeneous dis-
ease made up of multiple subgroups [14]. Even simple
clinical characteristics often overlooked in molecular
studies, such as anatomic location, are important for
prognosis [15, 16]. Despite these differences in subtype
and clinical characteristics, T lymphocyte infiltration has
been demonstrated to be important for prognosis [5].
Data repositories such as The Cancer Genome Atlas

(TCGA) allow for the in-depth study of patients on a mo-
lecular and clinical basis [17]. Recently, a novel computa-
tional method for predicting the abundance of different
cells within the tumor microenvironment using RNA-seq
data was developed and validated with histologic

specimens called the Microenvironment Cell Population–
Counter (MCP-Counter, [4]). This method allows for an
effective comparison of the composition and pathways as-
sociated with cellular infiltration in the tumor microenvir-
onment, improving over other methods primarily based
on microarray data and gene set enrichment analysis. In
this study, we use the MCP-counter program to create
tumor cytotoxic lymphocyte (CL) abundance scores. After
grouping patients based on cytotoxic lymphocyte abun-
dance score, stage, and tumor location, we found one im-
mune pathway that was highly enriched at all tumor
locations and stages, the “Immunoregulatory interactions
between a Lymphoid and a non-Lymphoid cell” pathway,
suggesting specific targets to improve immune based ther-
apy in colorectal cancer patients.

Methods
The cancer genome atlas data access and processing
The data shown here is based upon data originally gen-
erated and organized by FireCloud from the Broad Insti-
tute (Fig. 1). Full permission access transcriptomic data
was obtained from dbGAP. We downloaded CRC pa-
tients’ open access, pre-processed mRNA expression
data (level 3 data, [18]) from both platforms, Illumina-
HiSeq and Illumina-GA; as well as mRNA RNA-Seq by
Expectation Maximization (RSEM) normalized data; and
patients’ clinical data from the cohorts TCGA_COAD_
ControlledAccess and TCGA_READ_ControlledAccess
by gsutil Tool.
We integrated pertinent clinical data (age, gender, micro-

satellite status, anatomical location, pathologic stage, Tumor
Node and Metastasis (TNM) classification, days to last follow
up, and vital status), and RNA-seq by participant ID. Each
CRC patient has pre-identified microsatellite status labeled as
“microsatellite instability test results”. Thirty-four patients
with colon cancer and 18 patients with rectal cancer were ex-
cluded due to missing information including indeterminate
microsatellite status, unclear anatomical location or patho-
logic stage, and unmatched RNA-seq data. Then for every
patient, we implemented the R package Microenvironment
Cell Populations-Counter on the RNA-Seq by Expectation
Maximization (RSEM) normalized RNA-seq data to create
cell type abundance scores [4]. There are 10 cell populations
simultaneously quantified in the tumor microenvironment,
including 8 immune cell populations (T cells, CD8 T cells,
Cytotoxic lymphocytes, NK cells, B lineage, Monocytic
lineage, Myeloid dendritic cells, Neutrophils), endothelial
cells and fibroblasts. Specifically, the gene set for cytotoxic
lymphocytes includes the genes: CD8A, EOMES, FGFBP2,
GNLY, KLRC3, KLRC4, and KLRD1. We used the median
value of the cytotoxic lymphocytes (CL) score to group the
patients into high (≥median value, CL-High) and low (< me-
dian value, CL-Low) groups. We then grouped patients by
anatomical location and stratified by cytotoxic lymphocyte
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score and pathologic stage. For consistency in clinical inter-
vention while increasing group size, we assigned pathologic
stage I-II to “early” stage, stage I-III as “localized”, and stage
IV as “metastatic” (Fig. 1). Patients were grouped by tumor
subsite: tumors located in the cecum, ascending colon, hep-
atic flexure, and transverse colon were categorized as having
right-sided colon cancer (Fig. 1, RSC); tumors located in the
splenic flexure, descending colon, sigmoid colon or

rectosigmoid junction were categorized as having left-sided
colon cancers (Fig. 1, LSC); patients with tumors located in
the rectum were kept in this group (Fig. 1, REC).

Demographics and clinicopathologic characteristic
analysis
Demographic, clinical, and pathologic characteristics
were retrieved as stated above. Statistical analyses were

Fig. 1 An outline of the methods and organization of this study. This flowchart describes the process and breakdown of patients into anatomical
location groups and pathological stages based on cytotoxic lymphocytes (CL) abundance score. After dividing patients into anatomical groups
and stages, we then compared CL-High and CL-Low to determine differential expressed genes (DEGs). Pathway enrichment and Survival analysis
was then undertaken using identified DEGs. Pathway associations were determined for DEGs using the Reactome online browser. CL, cytotoxic
lymphocytes; COAD, colon adenocarcinoma; READ, rectal adenocarcinoma; DEG, Differentially Expressed Gene; Nc, the number of cases; Ng, the
number of genes; RSC, right-sided colon cancer; LSC, left-sided colon cancer; REC, rectal cancer
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performed using Prism 7 (GraphPad Software). Patients’
basic clinical features were summarized by descriptive
statistics, including means and standard deviation, and
an unpaired t-test was used for normally distributed
continuous data. Categorical variables were compared
using Fisher’s exact and chi-square tests. A p value <
0.05 was considered statistically significant.

RNA-seq differential gene expression analysis
RNA-seq differential gene expression analysis was performed
with the edgeR package using the raw data downloaded from
the Illumina- HiSeq and Illumina-GA platforms [19]. Differ-
entially expressed genes were defined as genes with an abso-
lute fold change > 1 between patients with high and low
cytotoxic lymphocyte scores with a p value < 0.05 [19]. Genes
with Benjamini-Hochberg adjusted False Discovery Rate
(FDR) < 0.05 were considered to be significantly differentially
expressed for further steps. For each cohort, we identified 20,
531 total genes by RNA-seq raw counts. The Reactome on-
line browser was used to identify immune functional differ-
entially expressed genes [20]. Figure 1 outlines this process.

Pathway enrichment and survival analysis
Pathway enrichment analysis was performed to evaluate
the pathways associated with differentially expressed
genes. The genes included in the MCP-counter cytotoxic
lymphocyte gene panel (CD8A, EOMES, FGFBP2,
GNLY, KLRC3, KLRC4, and KLRD1) were excluded
from pathway enrichment analysis. Dotplot was used to
illustrate the comparison of enriched Reactome path-
ways among differentially expressed genes in each
location and stage. These results were analyzed by clus-
terProfiler, DOSE, and ReactomePA R packages. Next,
we performed survival analyses using the identified dif-
ferentially expressed genes. Patients were organized by
stage and location as outlined above. The normalized
RNA-seq data of differentially expressed genes used for
survival analysis was processed using the Survival R
package [20]. For each differentially expressed gene, if
the normalized gene expression value was more than the
median level, we labeled it as “high,” and otherwise as
“low.” The Kaplan–Meier survival curves generated were
assessed by the Cox regression model for each immune
functional differentially expressed gene using the Surv-
miner R package [21, 22]. The survival curves of patients
with high gene expression and low gene expression were
compared by log-rank test. For each patient, overall sur-
vival (OS) was used as the endpoint, either the days from
diagnosis to death, or to the last follow-up (Fig. 1).
The Reactome pathway online browser was used to

identify differentially expressed genes associated with
survival in sub-pathways of “immunoregulatory interac-
tions between a lymphoid and a non-lymphoid cell path-
way” (Fig. 1).

Results
Patient characteristics
In the most recently updated TCGA dataset (June 01,
2016), there are 461 colon cancer (COAD) and 172 rectal
cancer (READ) cases (Fig. 1, [17]). Thirty-four patients with
colon cancer and 18 patients with rectal cancer were ex-
cluded due to missing information. The RNA-seq data with
matched clinical data were integrated from COAD patients
(Nc = 427) and READ patients (Nc = 154). Cytotoxic
lymphocyte abundance scores were generated using the
MCP-counter method [4]. Patients were then separated
based on the median cytotoxic lymphocyte score (26.72;
95% CI: 24.1–30.1, Additional file 1: Table S1, values and
analysis included in Additional file 2). Patients with cyto-
toxic lymphocyte scores ≥ the median were classified as
cytotoxic lymphocyte-high (CL-High) and those with scores
< the median were classified as cytotoxic lymphocyte-low
(CL-Low). We then confirmed that there was a significant
difference in cytotoxic lymphocyte scores between CL-High
and CL-Low groups (73.66 ± 64.2 v 14.07 ± 6.69, p < 0.0001,
Additional file 1: Figure S1). Colorectal cancer patients
were then separated by anatomical location, cytotoxic
lymphocyte score, and stage (Fig. 1). The demographic,
clinical, and pathologic characteristics of each patient co-
hort is summarized in Table 1. Microsatellite status com-
position of patients with CL-High and CL-Low tumors was
significantly different in the right-sided colon cancer (p <
0.0001) and rectal cancer (p = 0.0264) groups with more
MSI-H patients among the CL-High patients at both loca-
tions (Table 1). Additionally, cytotoxic lymphocyte scores
correlated significantly with pathologic tumor stage in
right-sided colon cancer (p = 0.0278) and rectal cancer
(p = 0.0279) patients, but not in left-sided colon cancer pa-
tients (Table 1). This analysis demonstrates that there are
significant differences based on tumor location, suggesting
that this variable is an important consideration when ana-
lyzing patient data [15, 23].

Differential gene expression analysis
For each cohort, we next performed RNA-seq differen-
tial gene expression analysis. Expression of 20,531 genes
was determined for each tumor sample from the TCGA.
Then gene expression was compared between patients
with CL-High and CL-Low tumors in each cohort based
on tumor location and stage using the edgeR package
(analysis included in Additional file 2). In right-sided
early, localized, and metastatic colon cancer patients,
1882, 1781, and 1054 differentially expressed genes were
observed, respectively. In left-sided patients, 805, 925,
and 1255 genes were differentially expressed in each
stage. And in rectal cancer patients, 888, 1316 and 150
genes were differentially expressed at each stage (Fig. 1).
In the left-sided group, differentially expressed genes
were highest in the metastatic cohort; however, in right-
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sided and rectal cancer patients, the metastatic cohort
had the lowest number of differentially expressed genes.
This again suggests that both tumor location and stage
are important considerations when analyzing alterations
in gene expression. Differentially expressed genes found
in the above analysis were subsequently imported into
the Reactome Pathway Browser to determine involve-
ment in immune related functional pathways (Fig. 1,
[15]). Interestingly, despite significant variation in the
number of differentially expressed genes, the ratio of
genes associated with immune function was similar in
all sites and stages.

Pathway enrichment and survival analysis
To further determine whether there were overlapping
pathways associated with cytotoxic lymphocyte infiltra-
tion in colorectal cancer, we then compared the Reac-
tome pathway enrichment analysis at each location
based on stage. Using the p value adjusted for false dis-
covery rate and the ratio of differentially expressed genes
in each pathway, we found that the “immunoregulatory
interactions between a lymphoid and a non-lymphoid
cell” was the most highly enriched pathway in early and
local patients at all tumor locations. Additionally, this
was the most highly enriched pathway in patients with
metastatic right-sided cancer. This pathway was also
among the top pathways enriched among patients with
metastatic left-sided colon cancer and rectal cancer
(Fig. 2, data and analysis included in Additional file 2).
This suggests that despite significant heterogeneity
among subjects, redundant pathways of deregulation
may be conserved across stage and location.
To further understand the potential for targetable

genes within this pathway, we then took differentially
expressed genes in the “immunoregulatory interactions
between a lymphoid and non-lymphoid cell” pathway
and performed a survival analysis using the Kaplan-
Meier method and Cox-Proportional Hazards Model
based on differentially expressed gene, location, cyto-
toxic lymphocyte score, and pathologic stage (Fig. 3,
Table 2, remaining survival curves and analysis included
in Additional file 2). There are a total of 297 genes in-
cluded in this pathway, and we found 21 (7.1%) unique
genes associated with survival in this pathway. As Fig. 1
demonstrates, the number of differentially expressed
genes were variable with most genes associated with sur-
vival in the right-sided colon cancer group. Additionally,
the positive and negative impact of differentially
expressed genes on survival depended on cytotoxic
lymphocyte abundance scores. The majority of genes as-
sociated with a positive impact on survival (bold in
Table 2) were in the CL-Low group whereas the majority
of genes with a negative impact on survival (italicized in
Table 2) were found in the CL-High group. In CL-High

Table 1 Patient Characteristics

Characteristic High Low P value

Gender, n

RSC 156 96 0.3637

Male 77 54

Female 77 42

LSC 68 106 0.1231

Male 41 51

Female 27 55

REC 63 91 0.5118

Male 37 48

Female 26 43

MS, n

RSC 156 96 < 0.0001*

MSS/MSI-L 92 89

MSI-H 64 7

LSC 68 106 0.0771

MSS/MSI-L 64 105

MSI-H 4 1

REC 63 91 0.0264*

MSS/MSI-L 59 91

MSI-H 4 0

Age,Mean ± SD

RSC 70 ± 13.69 67 ± 12.95 0.2222

LSC 66 ± 11.11 64 ± 13.07 0.4267

REC 64 ± 10.56 65 ± 12.32 0.81

Pathologic stage, n (%)

RSC 156 96 0.0278*

I 33(21.2%) 11(11.5%)

II 73(46.8%) 38(39.6%)

III 38(24.4%) 32(33.3%)

IV 12(7.7%) 15(15.6%)

LSC 68 106 0.1374

I 12(17.6%) 17(16.0%)

II 26(38.2%) 33(31.1%)

III 23(33.8%) 30(28.3%)

IV 7(10.3%) 26(24.5%)

REC 63 91

I 10(15.9%) 20(22.0%) 0.0279*

II 29(46.0%) 21(23.1%)

III 17(27.0%) 33(36.3%)

IV 7(11.1%) 17(18.7%)

RSC Right-sided colon cancer, LSC Left-sided colon cancer, REC Rectal cancer,
MSS Microsatellite stable, MSI-L Microsatellite instability-low, MSI-H
Microsatellite instability-high
*Indicates statistically significant difference (p < 0.05)
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right-sided colon cancer patients with metastatic disease,
all differentially expressed genes had a negative impact
on survival; however, all immune functional differentially
expressed genes in the CL-Low group had a positive im-
pact on survival. Often, patients with rectal cancer and
left-sided cancer are considered to have similar disease
biologically. While we found few differentially expressed
genes in this pathway associated with survival in the left-
sided and rectal cancer groups, differentially expressed
genes in the left-sided colon cancer group primarily had
a positive impact on survival with the converse being
true in patients in the rectal cancer group. Together this
data demonstrates that even within conserved immune
pathways, there is significant heterogeneity in the impact
on patient survival. This further suggests the importance
of a patient centered approach for the application of im-
mune based therapy in colorectal cancer.

Discussion
Cytotoxic lymphocyte infiltration is critical for response
to immune based therapy [6] and has been shown to
predict survival and treatment response in colorectal
cancer [4, 5]. A better understanding of potential targets
is critical for the improvement of immune based therapy
in colorectal cancer as currently utilized therapy is not
effective in the majority of patients. Therefore, in this
study we have combined publicly available data re-
sources with computational methods to focus on genes
that may have an impact both on tumor associated cyto-
toxic lymphocytes and survival [4]. Comparing patients
with high and low cytotoxic lymphocyte abundance
scores, we found many differentially expressed genes at
all tumor locations and stages. Unsurprisingly, the group
with the highest number of immune related differentially
expressed genes was the right-sided colon cancer group.
This may be a reflection of the higher number of MSI-H
patients in this group, which is expected to have a higher

mutation rate, and therefore, potentially more genes
with altered expression.
To further define potential therapeutic targets, we then

performed pathway enrichment analysis. In this analysis,
we found the pathway, “immunoregulatory interactions
between a lymphoid and non-lymphoid cell”, was among
the most highly enriched and altered in all sites and stages.
A few pathways were occasionally more highly enriched,
however were not affected at all sites or stages, therefore,
we chose to focus on this pathway. The “immunoregula-
tory interactions between a lymphoid and non-lymphoid
cell” pathway involves a number of cell surface signaling
pathways that are involved in the regulation of anti-tumor
immunity [20]. After performing survival analyses using
the differentially expressed genes from this pathway, we
found the majority of genes affecting survival were in the
right-sided patient group consistent with the differential
gene expression analysis. Patients with right-sided colon
cancer have significantly worse survival than other tumor
locations at all stages, and right-sided colon cancer pa-
tients with metastatic disease demonstrate poorer survival
with current chemotherapy regimens. This group, there-
fore, likely represents the group with the most important
need for new therapeutic options [15, 23]. There was,
however, a clear dichotomy between patients with high
and low cytotoxic lymphocyte abundance scores. Nearly
all genes affecting survival found in the CL-Low patients
had a positive impact, whereas nearly all genes affecting
survival in the CL-High patients had a negative impact.
This is not entirely unsuspected given we know that tu-
mors attempt to evade anti-tumor immunity through
various mechanisms [16]. Other groups have also demon-
strated this in the context of MSI-H colorectal cancer,
noting a significant upregulation of multiple negative reg-
ulators of immunity in these patients [9, 10]. This data
further underscores the need to develop and test new im-
mune based therapy in patients with colorectal cancer tai-
lored to patient specific factors.

Fig. 2 Pathway Enrichment analysis based on tumor location and stage. Pathway enrichment was ranked using a composite of the adjusted p
value for false discovery rate (color) and gene ratio (size). a pathway enrichment for early stage CRC (Stage I and II) based on location; b pathway
enrichment analysis for localized CRC (Stages I-III) based on location; c pathway enrichment analysis for metastatic stage CRC (Stage IV) based on
location. This analysis showed that the “immunoregulatory interactions between a lymphoid and a non-lymphoid cell” was the most highly enriched
pathway in early and local patients at all sites. Additionally, this was the most highly enriched pathway in patients with metastatic right-sided cancer.
This pathway was also among the top pathways enriched among patients with metastatic left-sided colon cancer and rectal cancer. (Input data
included in Additional file 2)
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In our survival analysis, we identified several potential
targets for combination therapy. CD40L is a cell surface
marker expressed on activated T cells that promotes
maturation of antigen presenting cells, upregulating co-
stimulatory molecules and activating antigen presenta-
tion machinery, and may represent the most attractive
target identified in this work. In our analysis, this gene
demonstrated a positive impact on survival in metastatic

patients with low cytotoxic lymphocyte abundance
scores. In preclinical models, CD40 agonists have dem-
onstrated a significant ability to activate anti-cancer
immunity, overcome immune checkpoint inhibition re-
sistance, and work in concert with other immune based
treatments [24]. Currently, a number of clinical trials are
open studying these drugs in combination with other
immune based treatments; however, none are specifically

Fig. 3 Representative survival curves based on tumor location and stage. Survival curves with the p values derived from Kaplan-Meier analysis.
a RAET1E was positively associated with survival in right-sided colon cancer patients with high cytotoxic lymphocyte scores in early and localized
stages; b LAIR1(CD305) was positively associated with survival in right-sided colon cancer patients with low cytotoxic lymphocyte scores in the
metastatic stage; c KLRC1 was positively associated with survival in left-sided colon cancer patients with low cytotoxic lymphocyte scores in the
early stage; d HCST was negatively associated with survival in rectal cancer patients with low cytotoxic lymphocyte scores in the localized group
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directed at colorectal cancer patients. The fact that there
are drugs available targeting this interaction may lend it-
self to rapid translation in these patients. Additionally,
we found potentially attractive targets in CD96 and
CD18 (ITGB2), each of which has demonstrated some
significant impact on anti-tumor immunity in pre-
clinical studies with the potential for translation in the
future [25–27].
One limitation of this study is related to patient num-

bers and clinical data available, as with many database
studies. Due to patient numbers, we included patients in
Stage I and II in the analysis for both “early” and “local”
disease. This was done to increase patient numbers
assigned to each group and improve our analysis. Based
on our results, we felt this helped to support findings in
the “early” stage patients as the Stage III patients con-
tributed 40–60% of “local” patients depending on disease
location. Another important potential confounding fac-
tor, however, is significant heterogeneity in therapy,
most notably in patients with metastatic disease (Stage
IV). These were real world patients not treated on spe-
cific study protocols, so this heterogeneity in treatment
may represent an impactful difference. Additionally, the
patients included in this study did not receive immune
based therapy, so the impact of cytotoxic lymphocyte in-
filtration on response to immune based treatments can-
not be directly assessed. However, a number of studies
have previously shown that cytotoxic lymphocyte infil-
tration in colorectal cancer predicts survival and re-
sponse to therapy [4, 5, 8, 10], therefore augmenting
anti-tumor immunity is likely to be impactful when con-
sidering combination with conventional treatments such
as chemotherapy, or immune based therapy alone. Re-
cent studies in cancer therapy have also begun to under-
stand that the immune response is critical to the efficacy
of chemotherapy and radiotherapy, further highlighting
the need to understand altered immune pathways in
cancer [28]. Despite these limitations, resources such as
the TCGA, when combined with informatics-based ana-
lysis, yield highly impactful results that can be used to
develop future human studies and inform translational
pre-clinical studies. The goals of precision-based oncol-
ogy will be best met by combining studies of all types to
select both the best therapy for each patient, as well as
the best patient for each therapy.

Conclusion
In this study, we integrate comprehensive RNA-seq data,
clinical and pathologic data, and cytotoxic lymphocyte
scores to determine pathways associated with immune
response and survival in patients with colorectal cancer.
We identified one pathway, “immunoregulatory interac-
tions between a lymphoid and non-lymphoid cell”, that
was highly enriched and included in all tumor locations

Table 2 Differentially expressed genes in the “Immunoregulatory
interactions between a lymphoid and a non-lymphoid cell” pathway
associated with survival grouped by pathologic stage, cytotoxic
lymphocyte (CL) status, and anatomical location

Immunoregulatory interactions between a Lymphoid and a non-
Lymphoid cell

Location Stages CLs Status Gene Symbol P-value

Right Early (I,II) High RAET1E 0.033

LILRA1 0.031

CD33 0.018

Low N/A

Localized (I,II,III) High RAET1E 0.013

LILRA1 0.0087

LILRA4 0.042

CD33 0.017

Low KLRC1 0.027

Metastasis (IV) High MADCAM1 0.046

FCGR2B(CD32) 0.046

SIGLEC8(CD329) 0.046

CLEC4G 0.046

Low CD96 0.027

LILRB1 0.015

ITGB2(CD18) 0.033

CD40LG 0.029

C3 0.018

SIGLEC9 0.0071

SH2D1A 0.027

LAIR1(CD305) 0.0043

CD300A 0.0043

Left Early High N/A

Low KLRC1 0.025

Localized High N/A

Low N/A

Metastasis High N/A

Low CLEC2B 0.046

Rectum Early High N/A

Low CLEC4G 0.046

Localized High N/A

Low HCST 0.019

FCGR1A(CD64) 0.039

CLEC4G 0.022

Metastasis High N/A

Low N/A

CLs Cytotoxic lymphocytes; gene symbols with bold font indicate positive
impact on patient’s survival, gene symbols with italic font indicate negative
impact on patient’s survival
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and stages. We then found specific genes associated with
survival, primarily in patients with the worst survival,
those with metastatic right-sided colon cancer, that may
be targeted to improve therapy. Future studies will focus
on further exploration of immune pathway interactions
using multi-omics analysis in humans, and mechanistic
studies of T lymphocyte recruitment and activation in
murine models of colorectal cancer.
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1186/s12885-020-6513-4.

Additional file 1: Figure S1. Comparison of cytotoxic lymphocyte scores in
High (CL-high) and Low (CL-low) patients. ****p < 0.0001. Table S1. Distribution
of cytotoxic lymphocyte abundance scores including median with 95% CI and
quartiles for the entire patient cohort.

Additional file 2. This data file includes the results of all differentially
expressed genes when comparing each tumor location and stage. This
file also includes all results from the pathway enrichment analysis that are
included in the visualization (Figure 2). Additionally, the survival analysis
from all genes with a significant impact on survival is included in this file.
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