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Abstract

Background: Tools based on diagnostic prediction models are available to help general practitioners (GP) diagnose
colorectal cancer. It is unclear how well they perform and whether they lead to increased or quicker diagnoses and
ultimately impact on patient quality of life and/or survival. The aim of this systematic review is to evaluate the
development, validation, effectiveness, and cost-effectiveness, of cancer diagnostic tools for colorectal cancer in
primary care.

Methods: Electronic databases including Medline and Web of Science were searched in May 2017 (updated
October 2019). Two reviewers independently screened titles, abstracts and full-texts. Studies were included if they
reported the development, validation or accuracy of a prediction model, or assessed the effectiveness or cost-
effectiveness of diagnostic tools based on prediction models to aid GP decision-making for symptomatic patients
presenting with features potentially indicative of colorectal cancer. Data extraction and risk of bias were completed
by one reviewer and checked by a second. A narrative synthesis was conducted.

Results: Eleven thousand one hundred thirteen records were screened and 23 studies met the inclusion criteria.
Twenty-studies reported on the development, validation and/or accuracy of 13 prediction models: eight for
colorectal cancer, five for cancer areas/types that include colorectal cancer. The Qcancer models were generally the
best performing.
Three impact studies met the inclusion criteria. Two (an RCT and a pre-post study) assessed tools based on the RAT
prediction model. The third study looked at the impact of GP practices having access to RAT or Qcancer.
Although the pre-post study reported a positive impact of the tools on outcomes, the results of the RCT and cross-
sectional survey found no evidence that use of, or access to, the tools was associated with better outcomes. No
study evaluated cost effectiveness.

Conclusions: Many prediction models have been developed but none have been fully validated. Evidence
demonstrating improved patient outcome of introducing the tools is the main deficiency and is essential given the
imperfect classification achieved by all tools. This need is emphasised by the equivocal results of the small number
of impact studies done so far.
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Background
Colorectal cancer is the third most frequent cancer and
the second leading cause of cancer-related death in the
world [1]. In 2014–2016 there were 42,042 new cases of
colorectal cancer in the UK, with 57% of people with
colorectal cancer surviving for 10 years or more [2].
Research suggests that cancer prognosis can be im-

proved by reducing the time to diagnosis [3], as earlier
diagnosis is associated with earlier stage at diagnosis [4],
and earlier treatment is associated with improved sur-
vival [5]. Reducing time to diagnosis also has the poten-
tial to reduce presentation via emergency admissions,
and prevent the poorer survival associated with that
route of diagnosis [6]. A national cancer screening
programme exists in the National Health Service (NHS)
for colorectal cancer, and the National Awareness and
Early Diagnosis Initiative (NAEDI) (to increase public
awareness on the signs and symptoms of cancer [7]) is
intended to improve early diagnosis. However, as many
individuals go through primary care as a route for diag-
nosis [6], so efforts here could improve cancer survival.
Cancer diagnosis in primary care is not straightfor-

ward. Symptoms of cancer are commonly seen but
mostly have non-cancer origins [8]. Of those individuals
referred from primary care via the two-week wait
(2WW) referrals for suspected colorectal cancer in areas
of England, approximately 5–8% were ultimately diag-
nosed with cancer [9, 10]. The type and presence of
symptoms can vary greatly [11] and it is not surprising
that patients can have multiple general practitioner (GP)
consultations before being referred, especially for those
cancers that have less well-known signs and symptoms
[12]. Thus, tools to help improve cancer diagnosis in pri-
mary care have great potential to impact on diagnoses
and subsequent treatment options, leading to better
outcomes for patients.
Diagnostic prediction models combine multiple pre-

dictors, such as symptoms and patient characteristics, to
obtain the risk of the presence or absence of a disease
within an individual patient [13, 14]. These prediction
models can then be used to develop diagnostic tools
(such as a website risk calculator, or mouse mat contain-
ing estimates of risk depending on features) to assist
doctors in estimating probabilities and potentially influ-
ence their decision making [14]. To evaluate diagnostic
prediction models, there are three important stages, or
types of studies: prediction model development, predic-
tion model validation, and assessment of the impact of
prediction models in practice (generally implemented as
diagnostic tools). The first two are often conducted as
part of the same study, and are generally evaluated using
a single cohort design. These types of studies are
commonly found in the diagnostic prediction literature,
with some studies also reporting results of an external

validation [15]. To assess the impact of the prediction
model (the third stage), comparative studies are required
to evaluate the ability of the tool to guide patient man-
agement. However, very few diagnostic prediction
models that are developed go on to be evaluated for
their clinical impact [15] or cost-effectiveness.
Tools currently available to GPs in the UK to help

cancer diagnosis, beyond the National Institute for
Health and Care Excellence (NICE) guidelines for suspected
cancer referral [8], are based on diagnostic prediction
models, and are integrated into GP software systems.

1 The Risk Assessment Tool (RAT) developed by
Hamilton and colleagues which provides estimates
of cancer risk for 17 cancers based on symptoms
alone is integrated into Vision (INPS), and

2 The Qcancer tool, which estimates the risk of 11
cancers based on symptoms and patient
characteristics, and overall cancer risk in males and
females, is integrated into EMIS Web.

There is recent evidence that these tools are being
used in primary care [16], however it is unclear whether
these tools impact on GP decision-making, and ultim-
ately on patient outcomes.
Systematic reviews have looked at the use of predic-

tion models for colorectal cancer in primary and second-
ary care [17]. However, more research in the primary
care setting had been published for colorectal cancer
since, so we sought to systematically review this evi-
dence. The aim of our review was to identify reports on
the development, validation or accuracy of prediction
models, as well as evidence evaluating the impact (i.e.
effectiveness or cost-effectiveness) of symptom-based
diagnostic tools that could be used to inform colorectal
cancer diagnosis decision-making in primary care.

Methods
This systematic review was conducted as part of a wider
programme considering risk assessment tools for any
cancer site [18]. Protocols relevant to the systematic
review described here were registered on PROSPERO
(CRD42017068373, CRD42017068375).
The systematic review was conducted in accordance

with good practice guidelines [19] and is reported here
in line with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [20].

Search strategy
Bibliographic searches of relevant databases (Medline, Med-
line in Process, Embase, Cochrane, Web of Science), were
conducted in May 2017 and updated in October 2019.
The search strategies were developed by an information

specialist (SR) and comprised terms for cancer, terms for
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primary care, terms for decision support tools and terms
for diagnosis (see.supplementary Table S1). No date, lan-
guage or other limits were used. Search filters for clinical
prediction models were investigated but none were
thought to be fully tested or reliable. A balance was sought
between sensitivity of search results and volume of papers
to screen. As the search strategies were originally devel-
oped to identify reports related to prediction models for
any cancer site [18], no cancer site specific terms were
used. Instead, we retrospectively excluded non-colorectal
cancer studies from the current systematic review.
The search results were exported to Endnote X7

(Thomson Reuters, NY, USA) and de-duplicated using
automatic and manual checking.
Additional searches were conducted using Scopus

(Elsevier) on the references, as well as any citations of
the items included after full-text screening, in order to
identify additional relevant studies. Searches were also
conducted for identified named tools (QCancer, RAT,
CAPER, Bristol-Birmingham equation) in order to en-
sure search results were sufficiently comprehensive.

Inclusion and exclusion criteria
Diagnostic prediction models are defined as multivariate
statistical models that predict the probability or risk that
a patient currently has cancer based on a combination of
known features of that patient, such as symptoms, signs,
test results and patient characteristics [21]. Symptoms
could be self-reported by the patient, or prompted by
physician’s questioning. Signs and test results are identi-
fied within primary care via routine testing (such as full
blood count, urine dipstick testing, clinical signs), as are
patient characteristics (socio-demographic variables, per-
sonal and family history). Studies that simply looked at
‘red-flag symptoms’ or symptom lists and (weighted)
scores that did not provide a numerical risk of current
cancer were excluded. Models developed with secondary
care data (i.e. referred patients) were only included if an
attempt was made to validate the models with primary
care data.
Inclusion and exclusion criteria are presented in Table 1.

Selection of studies
Titles and abstracts were screened for relevance inde-
pendently (by BG and RL), and any disagreements were
resolved by consensus. Pilot screening was undertaken
for the first 100 hits to ensure both reviewers were inter-
preting the inclusion and exclusion criteria in the same
way. Articles retained were obtained in full and further
screened independently by the two reviewers. For any
disagreements that were not resolved, a third reviewer
(CH) made the final decision.
The development and validation aspects of particular

prediction models were often reported in multiple

studies (e.g. the development and internal validation of
the Q cancer prediction model was presented in one
paper by Hippisley-Cox and colleagues, 2012 [22] and
the external validation in a separate paper (Collins and
colleagues, 2012 [23]) All studies related to the same
specific prediction model were collated regardless of
whether they refer to the development, validation and/or
impact of that tool.

Data extraction
To extract relevant data from each included study,
standardised data extraction forms were used that
evolved following piloting and discussion among re-
viewers. One reviewer (BG) extracted the data, which
was checked by a second reviewer (RL). The follow-
ing data were extracted from all study types: included
cancer type(s), study design, country, sample size,
participant recruitment (with inclusion and exclusion
criteria) and participant characteristics. For studies
reporting on the development and/or validation of
prediction models an adaptation of the CHARMS
checklist (CHecklist for critical Appraisal and data
extraction for systematic Reviews of prediction Mod-
elling Studies) [24] was used to extract additional
relevant data, including data source, number of par-
ticipants with specific cancer, features of the model
(what symptoms, test results, patient demographics
etc. are included), how features are defined and mea-
sured, definition of primary and secondary outcomes,
how and when outcomes are assessed, main results
(including model performance, validation and esti-
mates of risk), features included in final model. For
studies reporting the impact of tools based on pre-
diction models additional items extracted included
characteristics of the tool (including whether based
on symptoms alone or other features in addition to
symptoms), definition of outcomes, main results in-
cluding confidence intervals, and subgroup analyses,
where available.

Risk of bias assessment
Risk of bias of studies reporting the development and/or
validation of prediction models was assessed with the
PROBAST [25] (Prediction model Risk of Bias ASsess-
ment Tool) checklist. The derived checklist assesses the
risk of bias and applicability of prediction-modelling
studies on 5 domains: participant selection, predictors,
outcome, sample size and missing data, analysis.
For studies reporting on the impact of tools based on

decision models a risk-of-bias form based on the
Cochrane EPOC (Effective Practice and Organisation of
Care) group recommendations [26] was used. All risk of
bias assessments were conducted by one reviewer (BG)
and checked by a second reviewer (RL).
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Synthesis
Owing to the heterogeneity between included studies a
narrative review of the studies was conducted.

Results
Studies identified
Search phrases were finalised and searches were run in
May 2017. A total of 9352 records were obtained
through database searching. Additional reference and
citation searches on tool names resulted in another 4171
records. After de-duplication, 9780 records were ob-
tained. The database searches were updated in October
2019, and resulted in 2254 additional new records (after
de-duplication). After screening the title and abstracts of
these records independently by two reviewers, 260 re-
cords were retained for full text screening.

We identified two systematic reviews. Scanning their
reference list led to the inclusion of two additional
studies not found in the database search. One systematic
review also included validation of models [27]. In the
end, 23 records were identified that were relevant for
colorectal cancer (Fig. 1).
Discussions with collaborators led to the identification

of relevant grey literature, but no such studies were
deemed eligible for inclusion.

Development/validation studies
Elias and colleagues (2017) [27] aimed to identify and
validate published diagnostic models to safely reduce un-
necessary endoscopy referrals for colorectal cancer. A
systematic review of the literature was undertaken up
until 2015 and identified models were validated using a

Table 1 Inclusion and exclusion criteria

Population Included: adult symptomatic patients (with symptoms being indicative of cancer) presenting at primary care or patients
referred with symptoms indicative of cancer

Excluded: asymptomatic patients (screening population).

Technology Included: Diagnostic prediction models, based on 2 or more featuresa, that estimate the risk of prevalent but undiagnosed
colorectal cancer.

Excluded: prognostic or screening prediction models
Statistical tools that estimate the probability of developing cancer over a defined period of time.
Prediction models that did not include colorectal cancer.

Setting Included: primary care

Excluded: secondary care; on-line tools developed for use by the general population

Study design Included:
- any design for the development, validation or accuracy of diagnostic prediction models (as defined under ‘Technology’);
- comparative studies of diagnostic tools that assessed impact in clinical practice (Randomised controlled trials, controlled
before-after, and interrupted time-series;

studies analysing national trends in cancer diagnosis before and after diagnostic tools became available)

Excluded: uncontrolled studies reporting qualitative data

Comparison Usual care or the use of another diagnostic tool

Outcomes For studies reporting development, validation and/or accuracy of prediction models:
Estimates of the risk of being diagnosed with cancer (e.g. ORs, HRs)
AND/OR
Any details on the development, validation or accuracy of the tool:
• Model development: method; assumptions; predictors; shrinkage; coefficient weighting
• Model evaluation (validation)
• Assessing (quantifying) model performance: discrimination (ability to discriminate participants with or without the outcome,
e.g. area under the ROC curve); calibration (agreement between predicted and observed outcome); overall performance
(for discrimination and calibration, e.g. R2); classification (e.g. sensitivity, specificity, predictive values)

For studies reporting evaluations of the impact of tools:
Primary outcomes
- patient-related outcome measures (including the number of cancer diagnoses, time to cancer diagnosis, stage of cancer
at diagnosis, resection rates, patient health-related quality of life, other patient-reported outcome measures);

- survival;
- economic outcome measures (resource use, cost per diagnosis), cost per QALY;
Secondary outcomes
- referral patterns.

Exclude: models that report the risk of survival (or stage at diagnosis etc.)

Publication type Included: Published in full and in English

Excluded: commentaries, letters

Abbreviations: HR Hazard ratio, N/A Not applicable, OR Odds ratio, QALY Quality-adjusted life year, ROC Receiver operating characteristic
Note: a Features include symptoms and other information, such as elicited signs, patient characteristics and test results
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cross-sectional Dutch dataset referred to as CEDAR (n =
810). The definition of model used by Elias and colleagues
is very broad and includes guidelines and weighted scores.
Therefore, although Elias and colleagues identified 18
models, only four are relevant to our review: Fijten and
colleagues (1995) [28] and Marshall and colleagues (2011)
[29] which were identified from our searches, while Muris
and colleagues (1995) [30] and Nørrelund and colleagues
(1996) [31] are new inclusions. Due to the fact that Elias
and colleagues attempted to validate the models they
found, their validation of these four models is included in
the results below.
Of the 20 included model development or validation

studies, 17 report on the development (with some also
reporting on validation) of models, four only report
model validation.

Prediction models
The included studies (excluding the validation by Elias
and colleagues [27]) reported on 13 different prediction
models. Eight models are specifically for colorectal can-
cer: the Bristol-Birmingham equation (Marshall [29]), a

Dutch model (Fijten [28]), a machine learning algorithm
(Kop [32]), a Danish model (Nørrelund [31]), Qcancer
(Hippisley-Cox [22]), RAT 2005 (Hamilton [33]), RAT
2009 (Hamilton [34]) and RAT 2017 (Stapley [35]). One
model relates to metastatic cancer (RAT, Hamilton
[36]), and the remaining four models cover multiple can-
cer sites which include colorectal cancer: Qcancer for
males (Hippisley-Cox [37]), Qcancer for females (Hippis-
ley-Cox [38]), a model for abdominal complaints (Muris
[30]), and a model for abdominal cancers (Holtedahl
2018 [39]). Elias [27] and Collins [23] reported on the
validation of one or more of the above models.
Table 2 provides a brief description of the models,

their stages of development, the cancer sites covered
(colorectal cancer-specific or other) and study designs.
The risk prediction models referred to as RATs [33,

35, 36, 43, 44] were designed to be used with patients
presenting to primary care with “low-risk-but-not-no-
risk symptoms” [45]. Early versions of RATs were devel-
oped using case–control data from Devon, UK as part of
the CAPER studies [34]. Later models were derived
using UK-wide primary care data – the Clinical Practice

Fig. 1 PRISMA diagram of the included studies. Abbreviations: CRC = colorectal cancer
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Table 2 Summary of the prediction models, their stages of development, the cancer sites covered and study designs

Prediction model Number and
category of
descriptors

Stage of
development

Study
design

Country Population Source

Colorectal cancer

Bristol-Birmingham
equation

8
Symptoms,
Test results

External
validation

Retrospective
Case-control

UK Derivation cohort: THIN
Validation cohort: CAPER

Marshall 2011 [29]

External
validation

Prospective
cohort

The Netherlands CEDAR study: Patients
referred to endoscopy
centres by participating
Dutch primary care
practices. 2009–2012

Elias 2017 [27]

Netherlands model 3
Symptoms, Patient
demographics

Apparent
performance

Prospective
cohort

The Netherlands 290 consecutive patients
with rectal bleeding
presenting to 83 GPs in
Limburg (Netherlands)
September 1988 to April
1990Predictors:
Questionnaires
completed by GPs and
patients, and laboratory
test results.

Fijten 1995 [28]

External
validation

Prospective
cohort

UK patients referred from
primary care with
colorectal symptoms
over a 3-yr period to the
Leighton Hospital,
Crewe, Cheshire, UK

Hodder 2005 [40]

External
validation

Prospective
cohort

Netherlands CEDAR study: Patients
referred to endoscopy
centres by participating
Dutch primary care
practices. 2009–2012

Elias 2017 [27]

Machine learning
algorithm

Numerous models
are reported
Patient
demographics,
Symptoms,
Medical history,
Test results

Apparent
performance

Case-control The Netherlands anonymised electronic
records from two GP
database systems from
the Utrecht region,
Netherlands, between 01
and 07-2006 and
31-12-2011

Kop 2015 [41];
Kop 2016 [32];
Hoogendoorn
2015 [42]

Danish model 2
Patient
demographics
Symptoms

Apparent
performance

Prospective
cohort

Denmark Patients presenting to
GPs with first episode of
rectal bleeding.
Study 1: 750 GPs
1989–1991
Study 2: 450 GPs
1991–1992

Nørrelund
1996 [31]

External
validation

Prospective
cohort

The Netherlands CEDAR study: Patients
referred to endoscopy
centres by participating
Dutch primary care
practices.
2009–2012

Elias 2017 [27]

Qcancer 6 (females)
7 (males)
Symptoms, Medical
history, Test results

Internal validation open
Prospective
cohort

UK QResearch database Hippisley-Cox
2012c [22]

External
validation

Prospective
cohort

UK THIN database Collins 2012 [23]

RAT (2005) 10
Symptoms,
Test results

Apparent
performance

Case-control UK Patients attending all 21
general practices in
Exeter, Devon, UKCases
identified from the
cancer registry at the
Royal Devon and Exeter
Hospital

Hamilton 2005 [33]
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Research Datalink (formerly General Practice Research
Database) [35, 44, 46–51], and The Health Improvement
Network (THIN) database [43, 52]. In addition to the

models identified in this systematic review as relevant to
colorectal cancer, RATs exist for the following cancer
sites: lung, ovarian, kidney, bladder, pancreas, breast,

Table 2 Summary of the prediction models, their stages of development, the cancer sites covered and study designs (Continued)

Prediction model Number and
category of
descriptors

Stage of
development

Study
design

Country Population Source

External
validation

Prospective cohort The Netherlands CEDAR study: Patients
referred to endoscopy
centres by participating
Dutch primary care
practices.
2009–2012

Elias 2017 [27]

RAT (2009) 8
Symptoms,
Test results

Apparent
performance

Case-control UK THIN database Hamilton 2009 [43]

RAT (bowel) 10
Symptoms,
Test results

Apparent
performance

Case-control UK GPRD (currently called
the CPRD)

Stapley 2017 [35]

Metastatic cancer

RAT 7
Symptoms,
Test results

Apparent
performance

Case-control UK Patients attending 11
general practices in
Devon, UK

Hamilton 2015 [36]

Multiple cancer sites

Qcancer (female) 7 (uterine)
10 (breast, blood)
11 (ovarian, renal)
12 (cervical)
13 (colorectal,
gastro-oesophageal)
14 (pancreatic)
15 (lung)
22 (other cancers)
Medical history,
Symptoms,
Test results, Patient
demographics

Internal validation Open prospective
cohort

UK QResearch database Hippisley-Cox
2013 [38]

QCancer (male) 3 (testicular)
8 (renal tract)
12 (colorectal)
13 (gastro-oesophageal)
14 (prostate, blood)
15 (pancreatic)
17 (lung)
20 (other cancers)
Medical history,
Symptoms,
Test results, Patient
demographics

Internal validation Open prospective
cohort

UK QResearch database Hippisley-Cox
2013b [37]

Muris abdominal
complaints model

5
Symptoms
Patient
demographics
Test results

Apparent
performance

Prospective cohort The Netherlands Patients presenting to
GPs for new abdominal
complaints. 1989

Muris 1995 [30]

(Netherlands) External validation Prospective cohort The Netherlands CEDAR study: Patients
referred to endoscopy
centres by participating
Dutch primary care
practices.
2009–2012

Elias 2017 [27]

Abdominal model,
Holtedahl and
colleagues (2018)

4
Symptoms, Patient
demographics

Apparent
performance

Prospective cohort Norway,
Denmark,
Sweden,
Scotland, Belgium,
Netherlands

GP records from the
participating countries

Holtedahl,
2018 [39]

Abbreviation: RAT(s) Risk assessment tool(s)
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uterine, brain, prostate, Hodgkin lymphoma, non-
Hodgkin lymphoma and multiple myeloma. The RATs
are available as prints on common office objects (e.g.
mousepads) and are integrated into general practitioner
software in the form of the electronic Cancer Decision
Support (eCDS). Regardless of the format, they provide
risk estimates for patients with single symptoms of pos-
sible cancer, pairs of symptoms and repeat attendances
with the same symptoms. Elias used a Dutch dataset to
externally validate the 2005 colorectal version of RATs
[27]. No other RAT was externally validated.
The QCancer series of models can be used both in

symptomatic (diagnostic models) and asymptomatic
(prognostic models) patients [53]. QCancer was developed
in the QRESEARCH database, a large database comprising
over 12 million anonymised health records from 602
general practices throughout the United Kingdom using
the EMIS (Egton Medical Information Systems) computer
system. Initially, several models were developed for each
cancer type in symptomatic populations, in addition to
colorectal: lung, renal, gastro-oesophageal, pancreatic and
ovarian cancer. An updated approach incorporates mul-
tiple risk factors and symptoms into one model for males
and one model for females to predict cancer risk. Most of
these models have been externally validated in UK-wide
populations (e.g. THIN database [54]). QCancer is avail-
able as an online calculator (www.qcancer.org), which
provides estimates of absolute risk of any cancer with a
breakdown of type of cancer based on both risk factors
such as age, gender and family history, which increase the
likelihood of cancer, and risk markers such as haemoptysis
or features, usually symptoms (e.g. weight loss), suggesting
that cancer is already present.
Marshall and colleagues (2011) used data from the

THIN dataset (> 40,000 participants) to construct a model
for colorectal cancer, known as the Bristol-Birmingham
equation [29]. The model was validated by Marshall et al.
using the UK CAPER dataset and was also validated by
Elias et al. (26) in a Dutch population. Data from 290
patients presenting to GPs in the Netherlands with rectal
bleeding (from 1988 to 1990) were used by Fijten and
colleagues (1995) [28] to develop a prediction model for
colorectal cancer (Netherlands model). The Netherlands
model was validated by Hodder and colleagues (2005) [40]
using secondary care data from the UK, and by Elias and
colleagues (2017) [27] using a Dutch dataset. Kop and col-
leagues (2015) [32, 41, 42] used a machine learning algo-
rithm to develop a prediction model for colorectal cancer
using electronic records of almost 220,000 patients from
two GP practices in the Netherlands. We found no exter-
nal validation of this model. A Danish colorectal model
[31] has also been developed for use in primary care, this
was externally validated using a Dutch dataset by Elias
and colleagues (2017) [27].

Muris and colleagues (1995) [30] developed a model
using data from the Netherlands to predict multiple
cancers related to abdominal complaints, which was
externally validated by Elias [27].
Holtedahl and colleagues (2018) [39] detail the devel-

opment of a prediction model for abdominal cancers.
These are defined as all cancers of the digestive organs,
female genital organs and urinary organs (including
testis). Data on 61,802 patients, recorded during GP con-
sultations over a 10 day period from Norway, Denmark,
Sweden, Scotland, Belgium, and the Netherlands, were
used to develop the model. No validation of the model
was identified.
The models are in various stages of development. A

total of 5 models (or versions of models) have only
assessed apparent performance [35, 36, 39, 41, 43], two
models have been internally validated (Qcancer for
males and Qcancer for females), one model was updated
as a result of using a different data source [43]. One of
the four Qcancer versions [22], one RAT version [33]
and four of the other prediction models [28–31] have
been externally validated, the highest level of evidence
identified in this systematic review. Apart from the two
Qcancer versions, which were externally validated by
Collins and Altman, all other external validations were
conducted by Elias et al. [27]. This was a systematic re-
view which used a cross-sectional Dutch dataset referred
to as CEDAR (n = 810) to validate the models they
identified.
All of the models were developed in primary care set-

tings in Europe. Only five models were not derived from
UK-only data: Fijten and colleagues (1995) [28], Kop and
colleagues (2015) [41], and Muris and colleagues (1995)
[30] were developed in the Netherlands, Nørrelund and
colleagues (1996) [31] was developed in Denmark, and
Holtedahl which used data from Norway, Denmark,
Sweden, Scotland, Belgium and the Netherlands. For
those models having been externally validated, most
were validated in the country in which it was developed
except for: the validation [40] of the Netherlands colo-
rectal cancer model [28] in a UK population, the valid-
ation of the Danish colorectal cancer [31] in a Dutch
population [27] and the validation of the colorectal ver-
sion of RATs (UK) [33] in a Dutch population [27].

Critical appraisal
The assessment of risk of bias is summarised in Table 3,
and given in more detail in supplementary Table S3.
Note that for the RATs and Qcancer models, only one
entry each is shown as all versions of the RAT or Qcan-
cer model scored the same for each aspect of the risk of
bias tool used. Qcancer development and validation
studies were judged to be of low risk of bias. For the
RAT development studies, there is uncertainty as to the
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risk of bias for how predictors and sample size and par-
ticipants were dealt with, and a high risk of bias con-
cerning the analysis. For the development of the other
models, risk of bias was variable across all domains, al-
though most models have a low risk of bias with respect
to how outcomes are dealt with.
The external validation of the colorectal cancer RAT,

and of many of the other models by Elias was judged to be
of uncertain risk of bias for how sample size and patient
flow was dealt with, and how analyses were conducted.
Overall, apart from the Qcancer studies, the risk of

bias of the development and validation studies is mixed
and/or uncertain.

Performance of the models
As with many systematic reviews of prediction
models, we found a mix of outcomes reported on the
different models. The most widely reported outcome
was the area under the curve (AUC). AUC estimates
were calculated from external datasets for seven of
the 13 models (Table 4). As some authors reported
AUCs based on the model derivation dataset, in
Table 4 we distinguishing between whether the re-
ported AUC is estimated using the derivation dataset,
or the external dataset. Note that for the remaining
six models, which includes three of the RATs, we
could find no external validation of any kind.

Table 3 Risk of bias assessment for the included model development/validation studies

Model (author of
first version)

Stage of development covered I. Participant
selectiona

II. Predictorsa III. Outcomea IV. Sample
size and
participant
flowa

V. Analysisa

RAT (Hamilton) series of models for colorectal and meta-static
cancer [33, 36, 43]}

Apparent performance ✓ ? ✓ ? x

External validation (colorectal only) [27] ✓ ✓ ✓ ? ?

QCancer (Hippisley-Cox) series of models for colorectal and
multiple sites for females and males [22, 23, 37, 38]

Internal validation ✓ ✓ ✓ ✓ ✓

External validation (colorectal only) [23] ✓ ✓ ✓ ✓ ✓

Bristol-Birmingham (Marshall) [29] model for colorectal cancer

External validation ✓ ? ✓ ? ✓

External validation (Elias and colleagues,
2017) [27]

✓ ✓ ✓ ? ?

Netherlands’ (Fitjen 1995 [28]) model for colorectal cancer

Apparent performance x ✓ ✓ ? x

External validation (Hodder and colleagues,
2005) [40]

x ? x ✓ ?

External validation (Elias and colleagues,
2017) [27]

✓ ✓ ✓ ? ?

Netherlands’ (Kop) [32] ‘machine learning’ for colorectal cancer

Apparent performance ✓ ? ✓ ? ?

Danish (Nørrelund 1996 [31]) model for colorectal cancer

Apparent performance ✓ ? ✓ ? x

External validation (Elias and colleagues,
2017) [27]

✓ ✓ ✓ ? ?

Netherlands’ (Muris 1995 [30]) model for abdominal complaints

Apparent performance ? ✓ ✓ ? x

External validation (Elias and colleagues,
2017) [27]

✓ ✓ ✓ ? ?

Prediction model for abdominal cancers
(Holtedahl and colleagues, 2018) [39]

Holtedahl, 2018 Apparent performance ? ✓ ? x ?

Abbreviations: RAT (s) Risk assessment tool(s), SR2 Systematic review 2
Notes:amultiple ordered by stage of development if different
Key: ✓, low risk of bias; x, high risk of bias; ?, unclear risk of bias
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The Qcancer models are associated with the highest
estimated AUC value from external validation: 0.92
(0.91, 0.92) and 0.91 (0.90, 0.92) for the male and female
versions of the colorectal Qcancer model.
The Bristol-Birmingham equation was also associated

with a high AUC value for external validity, but only in
one of two studies. The two AUCs from external valid-
ation of the Bristol-Birmingham equation differ, with the
AUC estimate from the UK CAPER dataset being much
higher (0.92 (0.91, 0.94)) than that from the external valid-
ation using the Dutch CEDAR dataset (0.84 (0.77, 0.90))
or the derivation dataset (0.83 (0.82, 0.84)) [27, 29].
The Netherlands model for colorectal cancer was asso-

ciated with the highest AUC score for internal validation
(0.97), but this was not replicated when the model was
used in a different population. The AUC value was
much lower in both external validation studies, using ei-
ther secondary care data from the UK (0.78 (0.74, 0.81))
or Dutch dataset (0.72 (0.62, 0.81)).
The remaining models are estimated to have mean

AUCs between 0.6 and 0.8, with the Danish model for
colorectal cancer and the Muris abdominal complaints
model being the two lowest performing models. The
only RAT for which an AUC is reported is for the 2005
version of the colorectal model from Elias [27], and is
much lower than those from the Qcancer models, 0.81
(0.75, 0.88).

Estimates of NPV, PPV, sensitivity and specificity are
available from the external validations by Elias of the
Bristol-Birmingham equation [29], the models by Fijten
[28], Nørrelund [31], and Muris [30] and the 2005 colorec-
tal RAT [33] . Collins and Altman [23] also report these es-
timates for validation of the colorectal Qcancer model (see
supplementary Table S2). The (male and female) colorectal
Qcancer models are the only models to have estimates of
sensitivity > 0.9 and specificity > 0.7. The 2005 colorectal
RAT has a reported sensitivity of 0.95 and specificity of
0.45. The other four models (Bristol-Birmingham, Fijten,
Nørrelund and Muris) all have high sensitivity (> 0.95), but
very low specificity: 0.06 for Nørrelund to 0.36 for the
Bristol-Birmingham equation. Marshall [29], Holtedahl
[39], Hamilton [33], Hamilton [43] and Stapley [35] also re-
port likelihood ratios (LRs), see Supplementary Table S2c.
Marshall [29] report a LR of 14.7 for the Bristol-
Birmingham equation, while the other 4 studies only report
LRs for individual symptoms included in the model. These
range from < 2 for some symptoms in the model reported
in Hamilton [43] to > 30 for rectal bleeding in the model
reported by Stapley [35].

Impact studies
Three studies were identified that attempted to evaluate
the impact of tools based on diagnostic prediction
models used in practice: a cross-sectional survey [16], a

Table 4 Available AUC estimates (and 95% confidence intervals) for the prediction models

Prediction model Validation
(using derivation
or external dataset)

Dataset used, country AUC (95% CI) Source

Colorectal cancer

Bristol-Birmingham equation [29] Derivation THIN, UK 0.83 (0.82, 0.84) [29]

External CAPER, UK 0.92 (0.91, 0.94) [29]

External CEDAR, Netherlands 0.84 (0.77, 0.90) [27]

Netherlands model [28] Derivation Primary care, Netherlands 0.97 [28]

External Secondary care, UK 0.78 (0.74, 0.81) [40]

External CEDAR, Netherlands 0.72 (0.62, 0.81) [27]

Netherlands model including
polyps [28]

Derivation Primary care, Netherlands 0.92 [28]

Qcancer (male) [22] Derivation Qresearch, UK 0.91 (0. 09, 0.91) [22]

External THIN (multiple imputation), UK 0.92 (0.91, 0.92) [23]

THIN (complete case analysis),
UK

0.90 (0.89, 0.91) [23]

Qcancer (female) [22] Derivation Qresearch, UK 0.89 (0.88, 0.90) [22]

External THIN (complete case analysis),
UK

0.91 (0.90, 0.92) [23]

Danish model [31] External CEDAR, Netherlands 0.6 (0.48, 0.72) [27]

RAT (2005) [33] External CEDAR, Netherlands 0.81 (0.75, 0.88) [27]

Multiple cancer sites

Muris abdominal complaints model [30] External CEDAR, Netherlands 0.62 (0.54, 0.70) [27]
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pre-post study [55] and a randomised controlled trial
[56]. The RCT and pre-post studies evaluated the use of
a combination of tools which included RATs for colo-
rectal cancer. The cross-sectional survey by Price [16]
evaluated the impact of GP practice access to RAT and/
or Qcancer, see Table 5.
Price and colleagues [16] compared UK practice-level

2WW referral rates between GP practices that reported
access to RAT and/or Qcancer, with practices that re-
ported no access to these two tools. The tools included
Qcancer and RAT for any cancer, and the analyses were
not restricted to colorectal cancer.
Hamilton and colleagues (2013) [55] investigated the

number of times two RATs [34] – one for lung and one
for colorectal cancer – were used, together with the
number of subsequent referrals and investigations, be-
fore and 6months after the introduction of the tools in
general practice in the UK.
Emery and colleagues (2017) [56] evaluated the impact

of two complex interventions in rural Australia – a GP
intervention and a cancer awareness campaign – in a
2 × 2 design trial, compared to control groups. The GP
intervention consisted of an “education resource card”
that included RATs for colorectal, lung and prostate
cancer, together with summaries of relevant guidelines
for colorectal, lung and prostate cancer, with the
addition of guidelines for breast cancer and training on
the use of these resources. The RATs were based on
diagnostic prediction models developed using a patient
cohort from the UK [34]. Emery and colleagues (2017)
[56] used the total diagnostic interval (TDI), i.e. the time
from first symptom to cancer diagnosis, as an outcome
measure.

Critical appraisal
The RCT by Emery was found to be at low risk of bias
(see Table 6). Given the observational nature of the
studies by Hamilton and Price [16], there are a number
of concerns regarding their risk of bias.

Study outcomes
Emery and colleagues [56] did not find significant differ-
ences in the median or log-transformed (ln) mean time
to diagnosis at either intervention level (community
intervention vs control, GP intervention vs control) or
when analysed by factorial design, tumour group or sub-
intervals of the TDI.
Hamilton and colleagues (2013) [55] reported on

changes in investigations carried out and rapid referrals
before and after the introduction of the tools. They
found a 26% increase in referrals for colorectal cancer
and a 15% increase in GP requests for colonoscopies
after introduction of the tools. However, only absolute
numbers are reported, without data on total numbers of
patients and GP visits, or the appropriateness of the
referral.
Price and colleagues [16] did not find any differences

in mean 2WW referral rates between practices reporting
access to cancer decision-making tools and those who
did not: mean difference in referral rate of 3.1 per 100,
000 population (95% CI of − 5.5, 11.7). As the study con-
sidered RATs and Qcancer for any suspected cancer and
2WW referral rates for any cancer, the specific impact
of colorectal cancer-relevant RATs or Qcancer tools on
referrals for colorectal cancer cannot be evaluated.
Study results are summarised in Table 7.

Discussion
This review summarised existing evidence on develop-
ment, validation, accuracy and impact of prediction
models developed to help diagnosis of colorectal cancer
in primary care. A large number of prediction models
were identified consisting of one-off models and models
from the RAT and Qcancer series. Validation and im-
pact assessment of these models in appropriate settings
is currently limited, and we found no economic evalua-
tions of any tools.
Currently, most research on developing symptom-based

colorectal cancer risk prediction models is concentrated in

Table 5 Description of tools assessed in the three impact studies

Study ID Prediction tool Country of tool
development

Tool description

Hamilton and
colleagues,
2013 [55]

RAT presented on a mouse mat and desk
top flip chart (for lung and colorectal
cancer)

UK The RAT algorithm is displayed in a table/matrix format, which
allows a risk estimate to be calculated for a single symptom,
pairs of symptoms or repeat attendances with the same symptom.
The values are colour-coded to aid interpretation.

Emery and
colleagues,
2017 [56]

Education resource card containing the
RAT and referral guidelines

UK (RAT),
Australia
(guidelines)

Resource card containing the RAT tables for colorectal, lung and
prostate cancer, as well as the Australian National Breast and
Ovarian Cancer Centre guidelines for investigating new breast
symptoms

Price and
colleagues
2019 [16]

RAT and/or QCancer in any form (e.g.
paper, software etc.) for any cancer

UK Any affirmative GP practice access to RAT and/or QCancer

Abbreviations: ID Identification, RAT(s) Risk assessment tool(s)
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Europe and, in particular, the UK. Qcancer and RAT are
the dominant prediction models, and highlight important
knowledge gaps: the Qcancer models are developed on
higher quality data (cohort data) than the RATs, and have
been externally validated, but lack specific impact assess-
ment. In contrast, the RAT models have more evidence of
impact in practice, but were developed from case-control
studies and have limited external validation. Ideally, this is
an area for further development of the RATs, and the
other models that had not been externally validated. This
lack of evaluation seems consistent with prediction
models in other disease areas [57].
Other systematic reviews have looked at feature-based

cancer diagnostic tools in primary care. Williams and

colleagues (2016) [17] conducted a systematic review of
studies that described, validated or assessed the impact of
colorectal cancer diagnostic tools. They identified reports
on the development and/or validation of 15 models: nine
relevant to primary care and six for secondary care. They
also identified one study looking at referral patterns (for
colorectal cancer RAT [55]). However, they did not iden-
tify any studies that tested whether patients who were di-
agnosed with the aid of the tool fared better than those
who were diagnosed without it. In a similar review, look-
ing at risk prediction models for screening, Usher-Smith
and colleagues (2015) [53] concluded that, even though
some of the colorectal cancer prediction models had po-
tential for clinical application, there remains considerable

Table 7 Results reported by the impact studies

Study ID Prediction tool Country Study
design

Intended purpose Main results for colorectal RAT

Hamilton
2013 [55]

RAT for lung, colorectal
cancer in two formats:
mouse mat and desk
top flip chart

UK Pre-post
study

To compare referrals and investigations
for colorectal and lung cancer before and
after the implementation of RATs

26% increase in 2-week referrals
(1173 before, 1477 after); 15% increase in
colonoscopies (1762 before, 2032 after)
No conclusion possible on the
effectiveness of the intervention

Emery
2017 [56]

Education resource
card including RAT for
colorectal, lung and
prostate cancer

Australia Factorial
cluster RCT

to measure the effect of community-
based symptom awareness and GP-based
educational interventions on the time to
diagnosis (i.e. TDI) for patients presenting
with breast, prostate, colorectal or lung
cancer in rural Western Australia

No significant differences in the
median or ln mean TDI at either
intervention level:
Colorectal cancer:
-GP intervention vs control: median TDI
124 vs 122 days; ln mean difference − 0.03
95% CI − 0.51–0.45 P = 0.42
-community intervention vs control:
median TDI 107 vs 133 days; ln mean
difference − 0.26 95% CI − 0.63–0.11
P = 0.16;

Price
2019 [16]

Access to any RAT
and/or Qcancer tool
in any format

UK Cross-sectional
survey at GP
practice level

To compare the mean 2WW referral rates
between GP practices reporting access to
RAT and/or Qcancer and those who
reported no access to these tools

No statistically significant difference
between mean referral rates between
practices reporting access or no access
to RAT and/or Qcancer: mean difference
of 3.1 referrals per 100,000 population
(95% CI − 5.5, 11.7, p-value 0.48)

Abbreviations: ANOVA Analysis of variance, GP General practitioner, NHS National Health Service, OR Odds ratio, RAT(s) Risk assessment tool(s), RCT Randomised
controlled trial, SR1 Systematic review 1, TDI Total diagnostic interval, UK United Kingdom

Table 6 Risk of bias assessment for the three impact studies

Random
sequence
generation

Allocation
concealment

Baseline
outcome
measurements
similar

Baseline
characteristics
similar

Incomplete
outcome
data

Knowledge of
the allocated
interventions
adequately
prevented
during the study

Protection
against
contamination

Selective
outcome
reporting

Other risks
of bias

Randomised controlled trials

Emery 2017 [56] ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓

Pre-post study

Hamilton
2013 [55]

N/A N/A N/A N/A ? N/A N/A ? x

Cross-sectional survey

Price and
colleagues
2019 [16]

N/A N/A N/A ? ? ✓ N/A ✓ x

Abbreviations: N/A Not applicable. Key: ✓, low risk; x, high risk; ?, unclear risk
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uncertainty about their clinical utility. Similarly, Schmidt-
Hansen and colleagues (2017) [58] conducted a review of
lung cancer tools and found limited evidence to support
the recommendation of any of the identified risk predic-
tion tools, due to lack of external validation or cost impact
assessment.
Our systematic review identified two impact studies,

published after the review by Williams et al. [17], both
of which indicating little evidence of an impact from
using these tools in primary care. However, it is still dif-
ficult to conclude whether these tools have any impact
on patient outcomes. For instance, concerns on the
quality of the studies makes it unclear whether the lack
of effect was due to poor implementation of the tools in
practice, insufficient uptake by the GPs or limited mar-
ginal contribution of the tools in assessing the risk of
cancer. The best quality study (Emery and colleagues
2017 [56]) failed to show a significant effect; however,
the composite intervention used, combining older ver-
sions of several instruments (developed on populations
from a different country), could have limited the effect-
iveness of the diagnostic tools. Thus, there is still a need
for good quality studies to examine the impact of using
prediction model based tools to help colorectal cancer
diagnosis in primary care.
Only prediction models were included in our system-

atic review. Other aids, such as algorithms or guidelines
may be useful, but were excluded from this review.
However, the systematic review by Elias et al. [27] had a
much broader inclusion criteria for “model”. The review
found a previous version of the NICE guidelines to be
the best performing (when validated against the CEDAR
dataset). Importantly, this review did not include any of
the Qcancer models, which are associated with AUCs
greater than those reported for the NICE guidelines.
The systematic review followed a pre-specified proto-

col, and the team conducting the review are independent
and experienced in systematic review methodology.
Our findings are limited by the quality of the studies

included in the systematic review, in particular, among
the limitations of the impact studies were lack of ran-
domisation, lack of patient-related outcomes and use of
tools on populations they were not developed for (e.g.
use of a UK-developed tool on an Australian popula-
tion). The outcome measures used by some of the im-
pact studies make it difficult to interpret reports of an
increase in referral rate without including reasonable as-
sessment of the appropriateness of the referral or subse-
quent impact on cancer vs non-cancer diagnosis.

Conclusion
Current evaluations provide limited evidence of the im-
pact on patient outcomes of using feature-based cancer
diagnostic tools in primary care. The lack of robust

effectiveness data is also likely to be a major limiting fac-
tor in assessing their cost-effectiveness. More research is
needed to externally validate prediction models that
could be used as tools, as well as more research on the
impact of using these tools in clinical practice. However,
choice of study design and outcomes for future evalua-
tions of the impact of tools, may not be straightforward.
Practical reasons may highlight the potential need for a
cluster and pragmatic trial design. Arguably, by compar-
ing average times to diagnosis, patients not prioritised
for quick referrals are less at risk of being missed. The
debate, however, is ongoing on the most appropriate
outcomes for evaluating interventions to improve cancer
diagnosis and referral.
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