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Abstract

Background: To investigate the differences in plasma metabolomic characteristics between pathological complete
response (pCR) and non-pCR patients and identify biomarker candidates for predicting the response to neoadjuvant
chemoradiotherapy (nCRT) in esophageal squamous cell carcinoma (ESCC).

Methods: A total of 46 ESCC patients were included in this study. Gas chromatography time-of- flight mass
spectrometry (GC-TOF/MS) technology was applied to detect the plasma samples collected before nCRT via
untargeted metabolomics analysis.

Results: Five differentially expressed metabolites (out of 109) was found in plasma between pCR and non-pCR
groups. Compared with non-pCR group, isocitric acid (p = 0.0129), linoleic acid (p = 0.0137), citric acid (p = 0.0473)
were upregulated, while L-histidine (p = 0.0155), 3′4 dihydroxyhydrocinnamic acid (p = 0.0339) were downregulated
in the pCR plasma samples. Pathway analyses unveiled that citrate cycle (TCA cycle), glyoxylate and dicarboxylate
metabolic pathway were associated with ESCC chemoradiosensitivity.

Conclusion: The present study provided supporting evidence that GC-TOF/MS based metabolomics approach
allowed identification of metabolite differences between pCR and non-pCR patients in plasma levels, and the
systemic metabolic status of patients may reflect the response of ESCC patient to neoadjuvant chemoradiotherapy.

Keywords: Chemoradiosensitivity, Esophageal squamous cell carcinoma, Metabolomics, Neoadjuvant therapy,
Untargeted metabolomics analysis
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Background
Esophageal cancer (EC) as an aggressive malignant
tumor, is the sixth leading cause of cancer death globally
[1]. Over 50% of all EC-related deaths occur in China
where esophageal squamous cell carcinoma (ESCC) is
the predominant histologic subtype [2]. Surgery is the
primary treatment of esophageal cancer, especially for
patients with early stage [3, 4]. But most esophageal can-
cer cases has progressed to advanced stage before they
are finally diagnosed [5]. Neoadjuvant chemoradiother-
apy (nCRT) has been considered as a promising therapy
strategy for patients with stage II or III esophageal can-
cer. Several studies have shown that neoadjuvant chemo-
radiotherapy plus surgery contributes to improved local
control, progression free survival, and overall survival
compared with surgery alone [6–8]. However, not all the
EC patients could benefit from nCRT and poor re-
sponders have to experience severe toxicity and impaired
quality of life [9, 10]. Moreover, the outcomes of non-
responders were found to be worse than those under-
went primary resection [11]. Hence, it is essential to find
a reliable marker of chemoradiosensitivity in esophageal
cancer to avoid wasting valuable time and obtain a more
favorable prognosis for patients.
Metabolomics have been widely applied in diagnosis

and biomarker screening study on various disease, in-
cluding cancer [12, 13]. Since metabolites represent the
end products of biochemical processes, it is closely
linked to the overall physiopathological status of an indi-
vidual [14]. It has been discovered that alterations of me-
tabolites in the biofluids (serum, plasma, and urine) are
related to prognosis [15], recurrence [16], treatment re-
sponse [17] in cancer patients. So far, metabolomic stud-
ies on EC have been performed to identify differential
metabolite markers between patients and controls [18].
In addition, multiple metabolites have been found to be
strongly associated with the degree of tumor progression
through metabolomics-based methods [19, 20]. As for
the biomarker screening for chemoradiosensitivity in
ESCC, one research with small sample size revealed that
serum levels of several metabolites differed significantly
between the pathological complete response (pCR)
group and non-pCR group [21]. However, no other ex-
ternal validation was provided.
In the present study, we aim to investigate the differ-

ences in plasma metabolomic characteristics between
pCR and non-pCR patients and identify biomarker can-
didates for predicting the response to neoadjuvant che-
moradiotherapy (nCRT) in esophageal squamous cell
carcinoma (ESCC). We used gas chromatography time-
of-flight mass spectrometry (GC-TOF/MS) technology
which is more conducive to the rapid detection of com-
plex samples analysis for untargeted metabolic profiling.
The results showed that five metabolites demonstrated

differences between pCR and non-pCR patients in the
plasma collected before the onset of neoadjuvant ther-
apy. And pathway analyses unveiled that citrate cycle,
glyoxylate and dicarboxylate metabolic pathway were as-
sociated between pCR and non-pCR groups. This study
provided supporting evidence that GC-TOF/MS based
metabolomics approach allowed identification of metab-
olite differences between pCR and non-pCR patients in
plasma levels, and the systemic metabolic status of pa-
tients may reflect the response of ESCC to neoadjuvant
chemoradiotherapy.

Methods
Sample collection
The study included plasma samples from 46 stage II–III
esophageal cancer patients who were prospectively se-
lected at the Anyang Cancer Hospital (Henan, China)
between June 2017 and April 2019. All patients had been
pathologically diagnosed esophageal squamous cell car-
cinoma. The neoadjuvant chemoradiotherapy (nCRT)
consisted of radiotherapy (total radiation dose: 45Gy,
1.8Gy/day, 25 fractions) and concurrent chemotherapy
with paclitaxel (135–150 mg/m2) plus cisplatin (50–75
mg/m2) every 21 days for two cycles. 4–6 weeks after
completion of nCRT, patients underwent surgery. Clin-
ical stages and pathological stages were determined ac-
cording to the eighth edition of the American Joint
Committee on Cancer tumor-node-metastasis (TNM)
staging criteria [22]. All pathology slides were reviewed
by a pathologist to determine the pathologic response.
pCR was defined as no evidence of viable tumor cells in
all specimens, including the primary site and lymph
nodes [23]. Samples were collected just before the onset
of neoadjuvant therapy and kept frozen and stored at −
80 °C for further analysis. This study was approved by
the Ethics Committee of Anyang Cancer Hospital.

Sample preparation for metabolomic analysis
The untargeted metabolomics profiling was imple-
mented on XploreMET platform (Metabo-Profile,
Shanghai, China). The sample preparation was con-
ducted as their published methods with minor modifica-
tions [24, 25]. In brief, the plasma samples were
centrifuged at 3000×g and 4 °C for 5 min (Microfuge
20R, Beckman Coulter, Inc., Indianapolis, IN, USA) after
thawing to separate debris or a lipid layer. Metabolites
were extracted from plasma samples (50 μL) with 10 μL
of internal standard (0.5 mM 4-Chlorophenylalanine)
and 175 μL of pre-chilled methanol: chloroform (3:1)
followed by centrifugation at 14, 000×g for 20 min at
4 °C. Then each 200 μL of the supernatant was
transferred into an autosampler vial (Agilent Technolo-
gies, Foster City, CA, USA). The resting supernatant
from each sample was pooled to prepare quality control
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samples. Following solvent evaporation and lyophilization,
the dried samples were derivatized with 50 μL of
methoxyamine (20mg/ml in pyridine) for 2 h, followed by
silylanization with 50 μL of MSTFA (1% TMCS) for 1 h
prior to injection. Above two steps were performed by a
robotic multipurpose sample MPS2 with dual heads
(Gerstel, Muehlheim, Germany).

Metabolomic analysis
The GC-TOF/MS analysis was performed using a time-
of-flight mass spectrometry (GC-TOF/MS) system
(Pegasus HT, Leco Corp., St. Joseph, MO,USA),which
consists of an Agilent 7890B gas chromatography and a
Gerstel multipurpose sample MPS2 with dual heads
(Gerstel, Muehlheim, Germany). As described previously
[26], DB-5MS GC column (30 m × 250 μm i.d., 0.25-μm
film thickness; Restek corporation, Bellefonte, PA, USA)
was chosen for separation. Helium was used as the car-
rier gas at a steady flow rate of 1.0 mL/min. The
temperature of transfer interface and injection were both
270 °C. The source temperature was set as 220 °C. The
measurements were taken using electron impact
ionization (70 eV) in the full scan mode (m/z 50–500).

Data processing
XploreMET (v3.0, Metabo-Profile, Shanghai, China) was
used to process the raw data generated by GC-TOF/MS.
The data processing includes baseline denosing and
smoothing, peak picking and deconvultion, creating ref-
erence database from the pooled QC samples, metabolite
signal alignment, missing value correction and imput-
ation, and QC correction as previously reported [27].
Metabolites were identified by comparing both retention
index and mass spectral data with JiaLibTM metabolite
database. Each data set was converted into comparable
data vectors for statistical analysis. The metabolites with
t test or U test P <0.05 by unidimensional analysis were
considered as differentially expressed between pCR and
non-pCR groups.

Pathway analyses
To further investigate the metabolic pathways involved
in the chemoradiosensitivity in ESCC, the differential
metabolites were annotated with Kyoto Encyclopedia of
Genes and Genomes (KEGG, http://www.genome.jp/
kegg/) and Human Metabolome Database (HMDB,
http://www.hmdb.ca/). MetaboAnalyst 4.0 (http://www.
metaboanalyst.ca/MetaboAnalyst/) were then applied to
analyze the data by R software (v3.4.3, GitHub). The
iPath 3.0 (http://pathways.embl.de/) was used to show
the metabolic network of the differential metabolites and
altered metabolic pathways in KEGG general metabolic
pathway.

Statistical analysis
All measurements were mean-centered and scaled by
the standard deviation of the observed measurements.
Fisher’s exact probability test, the Student’s t-test, or the
Mann–Whitney U-test was used to evaluate the statis-
tical significance of differences. The Mann–Whitney U
test was utilized for non-normal distribution data and
the Student’s t-test was applied for normal distribution
data. Fisher’s exact tests for categorical variables. The
area under the receiver operating characteristic (ROC)
curve (AUC) was performed to assess the feasibility of
using the plasma levels of particular metabolites as
predictive biomarkers. The data was randomly split into
a training set (data from 36 patients) and a test set (data
from 10 patients). Predictions were made on the test set
based on the Gaussian Naive Bayes model trained in the
training set. P < 0.05 was considered statistically
significant.

Results
Patients & treatment outcomes
A total of 46 patients were included in this study. The
age of all subjects ranged from 50 to 84 years, including
30 men and 16 women. According to the American Joint
Committee on Cancer tumor-node-metastasis (TNM)

Table 1 Clinical characteristics of the patients

Clinical
characteristics

Case Histological response P values

n = 46 non-pCR
(n = 23)

pCR
(n = 23)

Gender 0.758

Male 30 16 14

Female 16 7 9

Age 1.000

<65 19 9 10

≥ 65 27 14 13

Tumor location 0.041*

Cervical 2 2 0

Lt 7 5 2

Mt 23 13 10

Ut 14 3 11

TNM stage 0.028*

II 4 0 4

III 42 23 19

Smoking 0.136

Yes 20 13 7

No 26 10 16

Drinking 1.000

Yes 16 8 8

No 30 15 15

*p< 0.05
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staging criteria (the eighth edition), the pre-treatment
clinical stages of these 46 subjects were II (n = 4) and III
(n = 42), respectively. After nCRT, 23 patients achieved
pCR through the examination of surgical pathology spe-
cimen, while the remaining 23 patients were identified
into non-pCR group. The baseline characteristics of the
ESCC patients and treatment outcomes are shown in
Table 1. According to Fisher’s exact probability test,
tumor location and clinical stage are significantly differ-
ent between the pCR and non-pCR groups. There were

no significant differences in gender, age, smoking and al-
cohol consumption between the two groups.

Altered metabolites in plasma among pCR and non- pCR
patients
A total of 109 metabolites of different classes (Amino
Acids, Organic Acids, Carbohydrates, Phosphates, Fatty
Acids, Indoles) were detected in the plasma samples
from 46 subjects using untargeted metabolomics analysis
(Fig. 1a and Supplementary List 1). To further determine

Fig. 1 Altered metabolites in plasma among pCR and non-pCR patients. a Pie chart illustrating the abundance ratio of different classes of
metabolites detected by untargeted metabolic profiling in plasma samples from ESCC patients. b-f Five identified metabolites that differed
significantly between pCR and non-pCR groups using unidimensional analysis. g Hierarchical clustering of significantly different metabolites. The
tree structure on the left side represents the clustering relationships of each metabolite, and the tree structure at the top represents the
clustering relationships of each sample
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whether the metabolite footprints in plasma differed be-
tween pCR and non-pCR subjects, unidimensional ana-
lysis was used (Student’s t-test or Mann–Whitney U test
was selected according to the data) to obtain the differ-
ential metabolites between the two groups. We found
five differentially expressed metabolites (out of 109) in
plasma levels between pCR and non-pCR groups. Com-
pared with non-pCR group, isocitric acid, linoleic acid,
citric acid were upregulated (p = 0.0129, 0.0137 and
0.0473, respectively), and L-histidine, 3′4-Dihydroxyhy-
drocinnamic acid were downregulated (p = 0. 0.0155 and
0.0339, respectively) in the pCR plasma samples (Fig.
1b-f). In order to display the relationships among
samples and differences in expression patterns more
intuitively, we also conducted the bidirectional clustering
analysis of each samples and the significantly different
metabolites. As the results showed that the samples in
two groups can be distinguished, and metabolites
between two groups existed difference (Fig. 1g).
Furthermore, ROC analysis was applied to explore

whether the five differential metabolites could be con-
verted into an approach for predicting nCRT response.
As the ROC curve performed by Gaussian Naive Bayes
model showed that the area under the curve (AUC)
value was 0.76 (Fig. 2), which implied a good ability in
predicting the response of pCR and non-pCR of esopha-
geal cancer patients by these five metabolites.

Metabolic pathway analysis
To further explore the metabolic pathways related to
above ESCC chemoradiosensitivity-associated metabo-
lites, MetaboAnalyst was used to indicate the metabolic
pathways connected with these five metabolites.
Through pathway analysis based on KEGG database, two
pathways namely citrate cycle (TCA cycle), glyoxylate

and dicarboxylate metabolism were altered in pCR pa-
tients (Fig. 3 and Table 2). The overall metabolic net-
work of the altered metabolites and metabolic pathways
is shown in Supplementary Figure 1.

Discussion
Although the benefit of nCRT has been demonstrated in
multiple trials, only approximately 20–25% of EC
patients showed complete response, and some even de-
veloped resistance to currently used therapy [28].
Chemoradiotherapy resistance is a considerable obstacle
to the effective treatment of esophageal cancer. Unfortu-
nately, we have not yet identified specific biomarkers in
blood which would reliably and accurately predict re-
sponse to nCRT.
Metabolism alterations in cancer are well-documented.

Metabolomics as a new high throughput technology pro-
vides a broad field for finding metabolites as potential
biomarkers in body fluids for diagnosis, treatment and
prognosis of cancer. Gas chromatography time-of-flight
mass spectrometry (GC-TOF-MS) with its pivotal char-
acteristics, including higher selectivity, resolution, sensi-
tivity and accuracy is well-suited for the identification
and quantitation of low molecular weight metabolites
[29, 30]. In the present study, GC-TOF/MS-based untar-
geted metabonomics approach was utilized to profile
metabolites in ESCC plasma samples from the pCR and
non-pCR patients.
The major findings of this study were summarized as

follows: i) A total of five key metabolites associated with
ESCC chemoradiosensitivity were identified; ii) Among
the five differential metabolites, isocitric acid, linoleic
acid and citric acid were upregulated, while L-histidine,
3′4 dihydroxyhydrocinnamic acid were downregulated
(Fig. 1b-f); iii) Multiple metabolic pathways, especially

Fig. 2 Evaluation of the five differential metabolites in predictive precision. a ROC curve based on the five differentially expressed plasma
metabolites. b Confusion matrix showing classification results (80% overall correct assignment)
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citrate cycle (TCA cycle), glyoxylate and dicarboxylate
metabolism were significantly altered between pCR and
non-pCR (Fig. 3 and Table 2).
In the previous study, altered metabolic profile was

found between the pCR and non-pCR ESCC patients in
the serum level detected by gas chromatography mass
spectrometry (GC/MS) analysis and liquid

chromatography mass spectrometry (LC/MS) analysis
[21]. But only three differential metabolites (arabitol,
uracil and 3-aminoglutaric acid) were detected by GC/
MS analysis. While in the present research, five differen-
tial metabolites, including citric acid and isocitric acid
were identified as plasma biomarker candidates for che-
moradiosensitivity applied by GC-TOF/MS analysis.

Fig. 3 Pathway analysis of the differential metabolites between the pCR and non-pCR groups. The altered pathway of ESCC
chemoradiosensitivity-associated metabolites. The color and size of each circle is based on P value and pathway impact value respectively

Table 2 Pathway analysis of metabolite changes

Total In Pathway Hits p Value Impact Enriched
Compounds

Citrate cycle (TCA cycle) 20 2 0.00038978 0.125 Citric acid
Isocitric acid

Glyoxylate and dicarboxylate metabolism 50 2 0.0024713 0.0606 Citric acid
Isocitric acid

Linoleic acid metabolism 15 1 0.024711 0.61538 Linoleic acid

beta-Alanine metabolism 28 1 0.045753 0 L-Histidine

Nitrogen metabolism 39 1 0.063291 0.01923 L-Histidine

Histidine metabolism 44 1 0.071183 0.12 L-Histidine

Aminoacyl-tRNA biosynthesis 75 1 0.119 0.01613 L-Histidine
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There is no evidence that plasma or serum was superior
to be applied in clinical metabolomic study. However,
there are indeed differential distributions of specific me-
tabolites between plasma and serum. For instance, eryth-
ritol, glycerophosphocholines, glutamine, creatinine, and
hexadecanoic acid in plasma, but not in serum, were
shown to link with life expectancy for small-cell lung
cancer patients [31]. In addition, another reason includ-
ing chemical diversity and pretreatment of sample may
also have impact on the disparate results. For example,
citrate and citrate cycle metabolites were found in rela-
tive lower value in serum, partially because citrate in
serum forms divalent cation complexes, which will pre-
cipitate by methanol extraction method [32]. Our study
provided another dimension in investigation of the me-
tabolites associated with nCRT respondence in the
plasma level.
In the present study, L-histidine was found down-

regulated in the pCR patients. Previous study showed
that increasing serum level of histidine was observed
in breast cancer patient and strongly related with dis-
ease relapse [33]. Moreover, histidine degradation was
found to be able to enhance the sensitivity to cancer
therapy [34]. Meanwhile, recent study reported that
high expression of FAM83A predicted a poor progno-
sis in lung adenocarcinoma patients, and histidine
metabolism pathway was found significantly activated
in FAM83A high expressed lung adenocarcinoma
sample [35]. It is considered that the marked gain of
histidine may enhance the total antioxidant and
metal-binding capacity of the proteome of the cancer
cell and thus potentially serve as a nonspecific com-
pensatory mechanism to relieve consequences of the
cancer-related aggravation of oxidative stress [36].
Furthermore, according to the pathway analysis, the
tricarboxylic acid (TCA) cycle and the glyoxylate and
dicarboxylate metabolism were found significantly re-
lated to ESCC chemoradiosensitivity. The TCA cycle
is a key process for energy generation, which con-
sumes oxygen and generates high amounts of ATP
through oxidative phosphorylation. While for cancer
cells, glycolysis is the primary pathway for energy
production even if oxygen is available. Glycolytic
pyruvate prefers to be converted into lactate, rather
than enter into the mitochondrial TCA cycle. This
phenomenon is called aerobic glycolysis or the War-
burg effect. This kind of aberration has been proved
to afford biosynthetic precursors for rapid macromol-
ecule synthesis, and to keep cellular redox homeosta-
sis for better survival [37, 38]. Mounting studies have
demonstrated that there is a relationship between aer-
obic glycolysis and the occurrence of tumor drug re-
sistance. And several key proteins in the glycolytic
pathway have been discovered as promising targets

for overcoming chemoresistance [39–41]. It was re-
ported that suppressing glycolytic enzymes by inhibit-
ing RAC1 showed reduced cisplatin resistance in
esophageal squamous cell carcinoma [42]. Meanwhile,
pretreatment whole-body total lesion glycolysis was
uncovered as an independent predictor of outcomes
in patients with esophageal cancer treated with defini-
tive chemoradiotherapy [43]. In addition, altered
glyoxylate and dicarboxylate metabolic pathway have
been reported in various cancer. Evidence showed
that glyoxylate and dicarboxylate metabolism was as-
sociated with the loss of tumor cell differentiation in
lung adenocarcinomas [44]. Current study suggested
that glyoxylate and dicarboxylate metabolism com-
bined with other pathways could distinguish tumor
from normal tissues in colorectal cancer [45]. In gas-
tric cancer, glyoxylate and dicarboxylate metabolism
were observed in the chromosomal instability type
alone [46]. While previous study demonstrated that
chromosomal instability is a favorable predictor of re-
sponse to cisplatin-based neoadjuvant chemotherapy
in patients [47]. In combination with the findings in
this study, citric acid and isocitric acid, as the inter-
mediates of the TCA cycle and the glyoxylate and
dicarboxylate metabolic pathway, were up-regulated in
the pCR patients. It is suggested that the energy me-
tabolism was involved in the regulatory mechanism of
sensitivity to neoadjuvant therapy for esophageal
cancer.
There also exist some limitations in this study. The

primary limitation is that this is a single–center study
with relatively small number of subjects, making the data
less conclusive. In addition, due to the restriction of the
conditions, we only applied one metabolomics method
to identify the potential changed metabolites. Further-
more, the predictive precision of those differential me-
tabolites needed external validation. Larger samples and
a combination of research methods may help us better
understand the mechanism of ESCC chemoradiotherapy
resistance.

Conclusion
Overall, we found that significant alteration of metab-
olites between the responders and non-responders
ESCC patients who received neoadjuvant chemoradio-
therapy. The pCR group exhibited higher level of iso-
citric acid, linoleic acid, citric acid, and lower level of
L-histidine, 3′4 dihydroxyhydrocinnamic acid than the
non-pCR group. Changes in plasma metabolic signa-
ture may reflect reprogramming of the aforemen-
tioned metabolic pathways. Further study is needed to
validate these findings using larger samples and to ex-
plore the underlying mechanism of ESCC chemora-
diotherapy resistance.
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Additional file 1.

Additional file 2: Supplementary Figure 1. Metabolic network of the
changed metabolites and altered metabolic pathways in KEGG general
metabolic pathway map. Red dots represent the increased metabolites in
pCR group; Blue dots represent the specifically decreased metabolites in
pCR group.
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