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The tumour microenvironment of the
upper and lower gastrointestinal tract
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Abstract

Background:Only 10–30% of oesophageal and rectal adenocarcinoma patients treated with neoadjuvant
chemoradiotherapy have a complete pathological response. Inflammatory and angiogenic mediators in the tumour
microenvironment (TME) may enable evasion of anti-tumour immune responses.

Methods: The TME influence on infiltrating dendritic cells (DCs) was modelled by treating immature monocyte-derived
DCs with Tumour Conditioned Media (TCM) from distinct gastrointestinal sites, prior to LPS-induced maturation.

Results:Cell line conditioned media from gastrointestinal cell lines inhibited LPS-induced DC markers and TNF-�
secretion. TCM generated from human tumour biopsies from oesophageal, rectal and colonic adenocarcinoma induced
different effects on LPS-induced DC markers - CD54, CD80, HLA-DR, CD86 and CD83 were enhanced by oesophageal
cancer; CD80, CD86 and CD83 were enhanced by rectal cancer, whereas CD54, HLA-DR, CD86, CD83 and PD-L1 were
inhibited by colonic cancer. Notably, TCM from all GI cancer types inhibited TNF-� secretion. Additionally, TCM from
irradiated biopsies inhibited DC markers. Profiling the TCM showed that IL-2 levelspositively correlated with maturation
marker CD54, while Ang-2 and bFGF levels negatively correlated with CD54.

Conclusion:This study identifies that there are differences in DCmaturational capacity induced by the TME of distinct
gastrointestinal cancers. This could potentially have implications for anti-tumour immunity and response to radiotherapy.

Keywords:Gastrointestinal cancer, Dendritic cell inhibition, Tumour conditioned media, Tumour microenvironment,
Radiotherapy, TNF-�

Background
The 5-year overall survival rates across gastrointestinal
(GI) cancer types vary, with oesophageal adenocarcinoma
(OAC) low at 18–19%, whereas colonic and rectal adeno-
carcinoma rates stand at 58–59% according to the

National Cancer Registry Ireland [1]. OAC rates have in-
creased by almost half in recent years in Western coun-
tries, mirroring the increase in obesity [2]. Colorectal
cancer (CRC) is the third most common cancer worldwide
with rectal cancer accounting for approximately 35% of
CRC cases. Typically, epidemiological and scientific stud-
ies group colon and rectal cancer together, despite their
different standard treatment regimens [3, 4]. Standard
treatment for oesophageal and rectal adenocarcinoma
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involves neoadjuvant chemoradiotherapy (CRT) to shrink
the tumour prior to surgical resection, whereas for colonic
adenocarcinoma the standard treatment involves surgical
resection followed by adjuvant targeted therapies [5–7].
Response to CRT is highly variable with just 10–30% of
patients achieving a complete pathological response,
which is linked with higher 5-year survival rates, for both
oesophageal and rectal cancer [8–13]. Tumours have dif-
ferent levels of radiosensitivity and a number of cellular
processes and immune mechanisms have been implicated
in radioresponse phenotypes [14–16]. Understanding the
key components of the immune system which are modu-
lated by the tumour microenvironment (TME) may offer
insights into ways to improve the clinical outcome for pa-
tients with GI cancers by identifying either prognostic bio-
markers or novel therapeutic strategies.

Dendritic cells (DCs) are professional antigen-
presentation cells responsible for activation of T cells and
thus orchestration of the adaptive immune response [17].
Immature DCs recognise and capture antigens and are
characterised by low expression of maturation and co-
stimulatory markers such as CD83, CD54, CD80, CD86;
HLA-DR for antigen presentation and other immunoinhi-
bitory markers such as PD-L1 [18, 19]. DC maturation, a
crucial factor for efficient T cell activation, is triggered in
response to various inflammatory mediators and TLR-
dependent activation, such as bacterial LPS via TLR4, lead-
ing to the increased expression of several cell surface
markers by DCs, migration to lymph nodes and presenta-
tion of antigens via MHC class I and II molecules to acti-
vate CD4+ and CD8+ T cells [20]. Factors such as IL-10
and VEGF in the TME influence DC function and these
can inhibit IL-12p70 and TNF-� production from DCs
[21, 22]. DCs which secrete high levels of IL-12p70 induce
anti-tumour immunity, as they have increased capacity to
enhance natural killer cell activity, skew T cell responses
to T helper (Th)-1 type and prime tumour antigen specific
T cells [23, 24]. Decreased IL-12p70 expression is associ-
ated with suppressed endocytic activity and antigen-
presentation machinery, and also decreased motility of
anti-tumour immune cells to the tumour site [25]. TNF-�
released by immunostimulatory DCs can also act to en-
hance T cell stimulatory capacity, while increasing IL-12
production from DCs and decreasing production of the
immunosuppressive cytokine IL-10 [26, 27].

Known risk factors for the development of GI cancers
include inflammatory disorders, specifically Barrett’s
oesophagus for OAC and inflammatory bowel disease
for CRC [28–30]. Not only is inflammation a hallmark
of cancer, it plays a pivotal role in modulating radiation
responsiveness of tumours [31]. Radiation can elicit the
systemic release of the TLR ligands, damage-associated
molecular patterns (DAMPs), after oesophageal irradi-
ation or locally after targeted tumour irradiation, such as

treatment for CRC [32–37]. TLR-dependent activation
of DCs after irradiation supports the use of low dose
hypofractionated radiotherapy as an adjuvant to im-
munotherapy to enhance its effect, however either very
low or high levels may be immunosuppressive [32]. Dir-
ect immunomodulatory effects of irradiation on immune
cells have been reported, such as altered IL-12 produc-
tion from DCs [33, 34]. It is important to understand
the immunosuppressive nature of the TME for tumour-
infiltrating DCs, which may limit the success of different
treatments, e.g. immunotherapies, including DC vaccines
[38].

We have previously described the immunosuppressive
effect of the colonic TME which inhibits LPS-induced
DC maturation [18, 20, 39–41]. Using a similar experi-
mental outline as we described previously, in this study
we investigated the effects on DC maturational capacity
across different human GI cancers, using conditioned
media from cell lines (in vitro conditioned media) and
treatment-naïve tumour biopsies (ex vivo TCM) (Sup-
plementary Fig.1 A). While in vitro conditioned media
represents the secretome from cancer epithelial cells,
ex vivo conditioned media is a more complex model
containing the soluble contributions from many different
cells within the tumour microenvironment [18, 20, 39–
41]. Due to our interest in understanding the tumour
microenvironment in both upper and lower GI tract
cancers; oesophageal, rectal and colonic adenocarcinoma
were investigated. This study describes for the first time
that there were unexpected differences induced by the
TCM on maturation of monocyte-derived DCs. Here,
oesophageal cancer induced the highest level of DC mat-
uration markers, rectal cancer induced moderate levels
of DC maturation markers and colonic cancer signifi-
cantly inhibited DC maturation markers. Interestingly
for all GI cancer types examined here, in vitro and
ex vivo TCM significantly inhibited TNF-� secretion
from DCs. In addition, we modelled radiotherapy of
oesophageal and rectal biopsies and found that TCM
from 2Gy-irradiated tumours inhibited LPS-induced DC
markers. Differential levels of specific inflammatory and
angiogenic mediators were detectable in ex vivo TCM of
GI cancers that correlated with DC maturation.

Methods
Cell culture and irradiation
Human oesophageal adenocarcinoma cell lines - isogenic
OE33 parental (OE33 P) and radioresistant (OE33 R)
lines [42], and commercially available colorectal adeno-
carcinoma - SW480 and SW620 lines, were maintained
in RPMI-1640 medium (Invitrogen) supplemented with
10% v/v FBS and 1% v/v penicillin/streptomycin in a hu-
midified atmosphere with 5% CO2 at 37 °C. 3 × 105 cells
in 2 ml media were seeded in 6-well plates, allowed
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adhere overnight and were 0Gy- (mock) or 2Gy-
irradiated at 70% confluence using an X-Ray generator
(RS 225 system, using X-rays from a Tungsten target at
a rate of 3.25 Gy/min) (Gulmay Medical, UK). Following
24-h culture, the supernatant was harvested and frozen
as in vitro conditioned media from three independent
biological replicates.

Human ex vivo tumour explant culture and irradiation
All tissue was obtained with prior written informed con-
sent from each patient, and ethical approval was granted
by the Adelaide and Meath Hospital (AMNCH), Tal-
laght, Dublin Research Ethics Committee. All biopsy
samples used were treatment-naïve (Supplementary
Table 1). Patient-matched tumour biopsies taken from
patients with oesophageal or rectal adenocarcinoma
were either 0Gy- (mock) or 2Gy-irradiated using an X-
Ray generator (RS 225 system, using X-rays from a
Tungsten target at a rate of 3.25 Gy/min) (Gulmay Med-
ical, UK). For oesophageal adenocarcinoma, fresh tissue
was cultured for 24 h in complete M199 (cM199)–
M199 media (Invitrogen) media supplemented with 10%
v/v FBS, 1% v/v penicillin/streptomycin and 1� g/ml in-
sulin (Sigma-Aldrich UK). For rectal adenocarcinoma
samples, fresh tissue was washed and cultured for 48 h
in complete RPMI (cRPMI) - RPMI-1640 (Invitrogen)
media supplemented with 10% FBS, 1% penicillin/
streptomycin, 1% fungizone and 50� g/ml gentamicin.
For colonic adenocarcinoma, the tissue was cultured for
72 h in cRPMI - RPMI-1640 media (Invitrogen) supple-
mented with 10% FBS, 1% penicillin/streptomycin and
1% fungizone. Culturing was performed in a humidified
atmosphere with 5% CO2 at 37 °C. Ex vivo TCM was
harvested and frozen at� 80 °C.

DC isolation and culture
Human monocyte-derived immature DCs were generated
from peripheral blood mononuclear cells (PBMCs) ob-
tained from buffy coat preparations (National Blood
Centre, St. James’s Hospital, Dublin) by density gradient
centrifugation (Lymphoprep) as we previously described
(Supplementary Fig.1 A) [18, 43]. Briefly, monocytes were
isolated by positive selection using anti-CD14 magnetic
microbeads as described by the manufacturer (Miltenyi
Biotec) and seeded at a density of 1 × 106 cells/mL in 6-
well plates in 3 mL of RPMI-1640 medium containing
10% defined HyClone FBS (Thermo Scientific), 1% penicil-
lin/streptomycin, 1% fungizone, human granulocyte
macrophage colony-stimulating factor (50 ng/mL; Immu-
notools), and human IL-4 (70 ng/mL; Immunotools) in a
humidified atmosphere with 5% CO2 at 37 °C. Cells were
fed at day 3 by replacing half the medium made up with
fresh cytokines as above. At day 6, CD11c+ cells exhibited

an immature DC phenotype capable of upregulating cell
surface markers following LPS activation.

Stimulation of monocyte-derived DCs
Freshly generated DCs were plated in 96-well plates at 2 ×
105 cells in 200� L RPMI-1640 media supplemented with
10% defined Hyclone FBS (Thermo Fisher Scientific) and
stimulated with a 1:2 dilution of conditioned media, or
matched background media controls, for 4–5 h before ex-
posure to 10� g ml-1 of ultrapure TLR4 agonistEscherichia
coli lipopolysaccharide (LPS-EB; Invivogen) overnight. Su-
pernatants were harvested and frozen for ELISA analysis,
and cells were assessed for expression of surface markers
by flow cytometry as we described previously (Supplemen-
tary Fig.1 A) [18, 20, 39–41].

Flow cytometry
DCs were stained with the following antibody panel: phyco-
erythrin (PE)- anti-CD80 (2D10), PerCP-Cy5.5- anti-CD86
(IT2.2), Pe-Cy7- anti-CD83 (HB15), Brilliant Violet 421-
anti-PD-L1 (29E.2A3), Brilliant Violet 510- anti-CD11c
(3.9), allophycocyanin (APC)- anti-CD54 (HA58), and
APC-Cy7- anti-HLA-DR (L243) (Biolegend). DC prepara-
tions were acquired on DAKO CyAn ADP flow cytometer
(Beckman Coulter) with compensation performed with
positive and negative antibody capture beads (BD Biosci-
ences). Gating on and analysis of CD11c + cells was per-
formed using FlowJo software (Tree Star Inc.) to determine
Mean Fluorescence Intensity (MFI). The gating strategy
and Fluorescence Minus One (FMO) staining controls are
shown (Supplementary Fig.1 B-C) and representative histo-
grams are graphed (Supplementary Fig.2).

Elisa
Levels of IL-12p70 and TNF-� in DC supernatant were
quantified by DuoSet sandwich Enzyme-Linked Im-
munosorbent Assay (ELISA) kits according to the manu-
facturer’s protocol (R&D Systems). Multiplex ELISA was
performed to simultaneously assess levels of ten inflam-
matory markers (IL-2, MMP2, MMP9, CCL2, IL-6,
CCL20, TNF-� , IL-1� and IL-10) or seven angiogenic
markers (ICAM-1, VCAM-1, bFGF, VEGF, PAI1 and
Ang-2) in ex vivo TCM, according to the manufacturer’s
protocol (Meso Scale Diagnostics) [44].

Data analysis
Data displayed in graphs is from one healthy PBMC
donor for in vitro TCM (n = 3). Data displayed in graphs
is from one healthy PBMC donor per cancer type for
ex vivo TCM with n = 7–14 tumour samples as indi-
cated in the legends. Statistical analyses were carried out
using GraphPad Prism v5 for Windows (GraphPad soft-
ware). Paired or unpaired t-test, or ANOVA with post
hoc Dunnett’s t-tests were used to compare groups as
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indicated. A p value of less than 0.05 was considered to
be significant in all of the analyses where *p � 0.05; **
p � 0.01 and ***p � 0.001 for t-tests.

Results
Differential DC maturation induced by conditioned media
from OAC and CRC cell lines, while both inhibited TNF-α
secretion
We investigated if the maturational capacity of DCs
could be influenced by conditioned media harvested
from cell lines from upper and lower GI tract cancers.
We found that in vitro conditioned media from three in-
dependent biological replicates of OAC and CRC cell
lines modulated LPS-induced DC maturation (Fig.1).
TCM from the OE33 Radioresistant (OE33 R) cells sig-
nificantly reduced HLA-DR expression following LPS-
treatment. Whereas the TCM from both CRC lines -
SW480 and SW620 inhibited multiple DC surface
markers relative to LPS in background media (+) (Fig.
1a). In vitro conditioned media from both SW480 and
SW620 lines inhibited HLA-DR, CD86 and CD83 and
additionally, SW480 inhibited CD80 and SW620 inhib-
ited CD54. The effect of in vitro conditioned media on
IL-12p70 and TNF-� production by DCs was also exam-
ined relative to levels induced by LPS in background
media (+) (Fig.1b-c). The conditioned media of both
OAC and CRC lines significantly inhibited LPS-induced
TNF-� in DC supernatants (Fig.1b). No significant
changes were observed for LPS-induced IL-12p70 in DC
supernatants (Fig.1c).

In summary, the TCM from OAC cell lines inhibited
only HLA-DR on DCs and it inhibited levels of soluble
TNF-� , whereas the TCM from CRC cell lines inhibited
five DC surface markers in addition to soluble TNF-� .

TCM from human tumour biopsies induced different
effects on DC maturation based on cancer type
We investigated if the maturational capacity of DCs is
influenced by three distinct GI tract cancers. We found
that ex vivo TCM from treatment-naïve oesophageal, rec-
tal and colonic adenocarcinoma tissues modulated LPS-
induced DC maturation (Fig.2, Supplementary Fig.2).
TCM from oesophageal adenocarcinoma significantly en-
hanced CD54 (p < 0.001), CD80 (p < 0.001), HLA-DR
(p = 0.001), CD86 (p < 0.001) and CD83 (p < 0.001) com-
pared to LPS-induction in background media alone,
cM199 (+) (Fig. 2a). Moreover, the TCM from rectal
adenocarcinoma significantly enhanced CD80 (p = 0.028),
CD86 (p = 0.016) and CD83 (p = 0.002) compared to LPS-
induction in background media alone, cRPMI (+) (Fig.2a).
Whereas, the TCM from colonic adenocarcinoma signifi-
cantly inhibited CD54 (p = 0.011), HLA-DR (p = 0.013),
CD86 (p = 0.021), CD83 (p = 0.018) and PD-L1 (p = 0.006)
compared to LPS-induction in background media alone,

cRPMI (+). Similar findings were observed in the unstimu-
lated setting, without LPS, where with both oesophageal
and rectal TCM, all DC markers were enhanced relative
to unstimulated DCs, whereas with colonic TCM, DC
markers were at a similar level to unstimulated DCs (Sup-
plementary Fig.3).

The effect of ex vivo TCM on LPS-induced levels of
IL-12p70 and TNF-� in DC supernatants were also ex-
amined (Fig.2b-c). The TCM of oesophageal, rectal and
colonic adenocarcinoma significantly inhibited levels of
TNF-� in DC supernatants (p = 0.004,p = 0.013 andp =
0.026 respectively) (Fig.2b). Whereas for IL-12p70,
while oesophageal TCM had no effect on LPS-induced
levels, rectal TCM significantly enhanced IL-12p70 levels
(p = 0.017) and colonic TCM significantly inhibited IL-
12 p70 levels (p = 0.001) compared to LPS-induced
levels (Fig.2c).

Despite some inter-individual variability, ex vivo TCM
from oesophageal, rectal and colonic adenocarcinoma
differentially primed immature DCs to respond to subse-
quent LPS stimulation. There were no significant corre-
lations with clinicopathological parameters examined
(Supplementary Table1).

TCM of 2Gy-irradiated TME from GI cancers significantly
inhibited LPS-induced DC markers
As the standard-of-care treatment for oesophageal and
rectal cancer includes radiotherapy which influences the
immune system through unclear mechanisms, we inves-
tigated if the maturational capacity of DCs is influenced
by irradiated GI tract cancers. We found that condi-
tioned media harvested from irradiated OAC lines fur-
ther inhibited LPS-induced DC maturational capacity.
While only HLA-DR was significantly inhibited by con-
ditioned media from 0Gy-irradiated OE33 R line com-
pared to LPS-induced levels, CD86, CD80 and PD-L1
were also inhibited by conditioned media from 2Gy-
irradiated OAC lines (Fig.1, Supplementary Fig.4).
While most DC markers were significantly inhibited by
in vitro conditioned media of 0Gy-irradiated CRC lines,
no additional effect was induced by the 2Gy-irradiated
CRC lines (Fig.1, Supplementary Fig.4).

Similarly, we found that ex vivo TCM generated from
biopsies of oesophageal or rectal adenocarcinoma, that
received 0Gy- (mock) or 2Gy-irradiation, differentially
altered DC maturational capacity (Fig.3, Supplementary
Fig.5). In the LPS-stimulated setting, TCM from 2Gy ir-
radiated oesophageal adenocarcinoma biopsies inhibited
levels of CD54, compared to 0Gy patient-matched biop-
sies (p = 0.024), whereas, the levels of CD80, HLA-DR,
CD86 and PD-L1 were not differentially altered (Fig.3a).
TCM from 2Gy irradiated rectal adenocarcinoma signifi-
cantly inhibited LPS-induced DC maturation, compared
to 0Gy patient-matched biopsies for CD54 (p = 0.003),
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HLA-DR (p = 0.007), CD86 (p = 0.050) and PD-L1
(p = 0.036) (Fig.3a). There were no differences in
LPS-induced levels of TNF-� or IL-12p70 in DC su-
pernatants between 0Gy- and 2Gy-irradiated biopsies
for either oesophageal or rectal adenocarcinoma (Fig.
3b-c).

Differential levels of inflammatory and angiogenic
mediators in the ex vivo TCM of oesophageal, rectal and
colonic adenocarcinoma biopsies correlated with DC
maturation marker CD54
As inflammatory and angiogenic mediators influence
DCs, we investigated if levels of specific inflammatory

Fig. 1 in vitro conditioned media from gastrointestinal cell lines influenced DC maturation.a-cData from DC surface flow cytometry (a) and ELISA of DC
supernatants (b-c) was produced from one healthy PBMC donor pre-treated with supernatants of three independent biological replicates of conditioned
media harvested from OAC cell lines (green circles) and CRC cell lines (red squares).a HLA-DR was inhibited by conditioned media from the OAC cell line,
OE33 Radioresistant, relative to LPS-induced levels (+, grey diamonds), whereas there was inhibition of five DC markers (CD54, CD80, HLA-DR, CD86 and
CD83) by conditioned media from one or both of the CRC cell lines.b-c LPS-induced levels of TNF-� was inhibited by OAC and CRC conditioned media (b),
though no significant differences were observed for IL-12 p70 (c). DC maturation levels are shown relative to LPS-induced levels in background media (+, grey
diamonds) and statistical comparison of in vitro conditioned media+LPS (n = 3) is performed relative to LPS-induction alone (+, n = 3–6). Statistically significant
(ANOVA with Dunnett’s Multiple Comparison Test) inhibition of DC maturation relative to the LPS-induced levels (+, grey diamonds) is indicated by asterisks
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Fig. 2 ex vivo TCM from distinct gastrointestinal adenocarcinoma types induced differential effects on DC maturation.a-c Data from DC surface
flow cytometry (a) and ELISA of DC supernatants (b-c) was produced from one healthy PBMC donor per cancer type pre-treated with
conditioned media from treatment-naïve biopsies of oesophageal (green squares,n = 14), rectal (orange circles,n = 10) and colonic (red triangles,
n = 7) adenocarcinoma.a Oesophageal TCM enhanced five markers (CD54, CD80, HLA-DR, CD86 and CD83), rectal TCM enhanced three markers
(CD80, CD86 and CD83) and colonic TCM inhibited five markers (CD54, HLA-DR, CD86, CD83 and PD-L1) over LPS-induced levels (+, where grey
diamonds, circles and triangles indicate LPS-induced levels in appropriate background media for oesophageal, rectal and colonic adenocarcinoma
TCM respectively).b-c There was inhibition of TNF-� (b) by conditioning with oesophageal, rectal or colonic TCM, whereas only colonic TCM
inhibited IL-12 p70 (C). DC maturation levels are shown relative to LPS-induced maturation (+, grey bar) and statistical comparison of ex vivo
TCM + LPS (n = 3) is performed relative to LPS-induction alone (+). Statistically significant (unpaired t-test) modulation of DC maturation relativeto
LPS control (+, grey bars to the left of each cancer type) is indicated by asterisks, where green asterisks indicate significant enhancement and red
asterisks indicates significant inhibition and *p ≤ 0.05; **p ≤ 0.01 and ***p ≤ 0.001
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When considering the implications for the findings here, it
should be noted that this study is based on a model reflect-
ing only a part of a complex system, specifically it is a
model of the humoral components of the TME. These find-
ings support conducting a larger study to determine if a
negative correlation exists with outcomes, such as radiore-
sponse and 5-year survival, across GI cancers. A larger
study is also required to address some important experi-
mental limitations of this study– in particular that DCs
from multiple healthy donors should be employed, add-
itional treatment-naïve tumour samples and non-cancerous
matching GI tissues and /or cells as controls.

In this study, 2Gy-irradiation of cell lines and tumour
explants was performed to correspond with the physio-
logical effects of radiotherapy treatment at the tissue
level as is performed clinically for oesophageal and rectal
adenocarcinoma [42]. We found an inhibitory effect of
irradiation on DC maturation through conditioned
media from both in vitro and ex vivo models. Whether
this finding, that TCM from 2Gy-irradiated TME inhib-
ited DC maturation, has relevance to tumour response
to radiotherapy warrants further investigation as men-
tioned above. However, no significant effect was ob-
served with the clinical outcome of tumour regression
grade on this small oesophageal and rectal adenocarcin-
oma patient cohort in this study (n = 14 and 10 respect-
ively, data not shown). We propose that irradiation of
the TME alters release of unknown soluble factors that
are discernible to DCs, which fits with a mechanism of
the radiation-induced bystander effect via altered levels
of inflammatory cytokines produced by the TME [58–
62]. However, the irradiated TCMs had no effect on DC
secretion levels of TNF-� or IL-12p70, therefore the
functional significance of the effect on DC markers is
difficult to decipher in terms of the ability of DCs to po-
tentiate any immunomodulatory message to other by-
stander cells. Inflammation and angiogenesis are closely
related and may underlie immune inhibition and radiore-
sponse [20]. Unfortunately, profiling the ex vivo TCM for
inflammatory and angiogenic factors did not identify differ-
ences in levels of any of the mediators between 0Gy- and
2Gy-irradiated patient-matched biopsies. Radiotherapy has
been described as both immunostimulatory and immuno-
suppressive with radiation dose proposed to be a key influ-
encer in this, where low dose radiation, such as 2Gy, may
be immunosuppressive [32, 37, 63]. This data could sug-
gest that radiotherapy of the GI TME may further reduce
DC maturation, which we speculate could be beneficial in
improving outcome in a setting where DCs may only have
the capacity to sub-optimally mature, such as oesophageal
adenocarcinoma.

As tumour biopsies contain tumour epithelial cells in
addition to other cell types, ex vivo TCM contains many
different tumour associated soluble factors, and therefore

closely mimics the inflammatory milieu of the tumour in
situ. Several cytokines and chemokines have been de-
scribed to be present at high levels in the colonic TME
compared to normal tissues, such as CXCL1 and CXCL5
(which function to attract and activate neutrophils) and
CCL2 (a chemoattractant for monocytes, memory T cells
and DCs) [20]. We do not yet know the mechanistic path-
ways or secreted factors that induce the DC phenotypes
we observed. Although NF-� B would be a candidate path-
way given its reported roles in both LPS-induced DC mat-
uration that ultimately results in the activation of NF-� B
and the production of proinflammatory cytokines and in
radiation-triggered TNF-� - NF-� B cross-signalling [62,
64, 65]. In this study, levels of specific inflammatory and
angiogenic mediators in ex vivo TCM of oesophageal, rec-
tal and colonic adenocarcinoma were correlated with DC
maturation marker - CD54. Thus it is possible that low
levels of the cytokine IL-2 and high levels of angiogenic
mediators - Ang-2 and bFGF, in TCM of tumour biopsies
may confer a more DC inhibitory environment and this
fits with some expected roles for these mediators. As
CD54 (also known as intercellular adhesion molecule 1,
ICAM-1) promotes DC-T cell binding, this indicates pos-
sible negative effects on the capacity of DCs to activate T
cells in order to induce an adaptive immune response in
GI tumours with lower levels of IL-2 and higher levels of
Ang-2 and bFGF. IL-2 has key functions in the immune
system, tolerance and immunity, primarily via direct ef-
fects on T cells, both effector and regulatory type. Inter-
estingly, a role has been proposed for DC maturation as a
mediator of systemic IL-2 effects [66]. DCs can differenti-
ate into endothelial-like cells when cultured in the pres-
ence of angiogenic growth factors– bFGF, VEGF and
IGF-1, and these altered DCs have a reduced functional
potency [67]. We have previously shown that levels of
tumour vasculature maturity or DC inhibition negatively
correlate with survival of colonic adenocarcinoma patients
on anti-angiogenic treatment [40, 68]. We have previously
identified that multiple mediators influence DC inhibition
in colonic TCM - increasing levels of CXCL1, CXCL5,
CCL2 and VEGF in the TCM correlated with inhibition of
IL-12p70 secretion from DCs, however these isolated fac-
tors were not sufficient to induce all aspects of the exten-
sive DC inhibition as observed for colonic TCM [20]. The
data from this study further supports the concept that it
may be the cumulative effect of many mediators in the
TME that may influence DCs. In particular, the levels of
TGF-beta may be relevant due to its pivotal role in indu-
cing immunological tolerance in DCs in colonic tissue [69,
70]. While the effects of distinct ex vivo TCMs on DCs
are described relative to their corresponding background
media, profiling the levels of mediators may not be repre-
sentative of the in vivo setting due to differences in cultur-
ing conditions. In future studies, healthy tissue controls
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and cells will be examined in conjunction with cancerous
samples. GI cancers are well known to be molecularly het-
erogeneous with, for example, a substantial proportion of
tumours (15% of CRC) displaying microsatellite instability
phenotype and these tumours are commonly highly im-
munogenic, densely infiltrated with activated T cells and
respond well to immune checkpoint blockade therapy
[71]. Therefore it would be interesting to examine if this
subset of CRC tumours are not able to inhibit DC matur-
ation to the same extent as observed in this study for
which we do not know the MSI phenotype of the tumour
biopsies.

Conclusions
In conclusion, this study demonstrates for the first time
that there are differences in the levels of DC matur-
ational capacity across distinct human GI adenocarcin-
omas (Fig.5). The consistent and significant inhibition
of DC TNF-� across oesophageal, rectal and colonic
adenocarcinoma may be the key way in which DC mat-
uration is dysregulated by GI cancers. In addition,
radiotherapy-mimicked TCM further inhibited DC mat-
urational capacity at the maturation marker level. Differ-
ential levels of secreted mediators of inflammation (IL-2)
and angiogenesis (Ang2 and bFGF) in the TME may

underlie variation in DC responsiveness. This in turn
may reduce the capacity of localised DCs to induce an
anti-tumour immune response and may have implica-
tions for response to radiotherapy. As the oesophageal
TME appears to be less inhibitory compared to colonic
adenocarcinoma, this may have implications for inform-
ing immunotherapy, such as DC vaccines, and PD-1/PD-
L1 or TNF-� blockade [56, 72, 73]. Indeed, LPS-induced
levels of PD-L1 on TME-conditioned DCs was only
inhibited by colonic adenocarcinoma, but not
oesophageal or rectal adenocarcinoma. This study war-
rants further functional and in vivo investigations as it
may have implications for how localised DCs are inhib-
ited from inducing anti-tumour immunity in GI cancer
and may also influence response to radiotherapy.
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inhibiting most markers. In addition, 2Gy-irradiation of the TME inhibited LPS-induced levels of DC markers. Differential levels of angiogenic and
inflammatory mediators in ex vivo TMEs correlated with effects on DC surface markers, with IL-2 positively correlating and with Ang2 and bFGF
negatively correlating with the DC maturation marker CD54. Regardless of the effect on DC surface markers, the TME of all GI tract cancer types
significantly inhibited DC secreted TNF-� levels
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