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Abstract

Background: Infiltrating immune and stromal cells are vital components of the bladder cancer (BC)
microenvironment, which can significantly affect BC progression and outcome. However, the contribution of each
subset of tumour-infiltrating immune cells is unclear. The objective of this study was to perform cell phenotyping
and transcriptional profiling of the tumour immune microenvironment and analyse the association of distinct cell
subsets and genes with BC prognosis.

Methods: Clinical data of 412 patients with BC and 433 transcription files for normal and cancer tissues were
downloaded from The Cancer Genome Atlas. The CIBERSORT algorithm was used to determine the relative
abundance of 22 immune cell types in each sample and the ESTIMATE algorithm was used to identify differentially
expressed genes within the tumour microenvironment of BC, which were subjected to functional enrichment and
protein-protein interaction (PPI) analyses. The association of cell subsets and differentially expressed genes with
patient survival and clinical parameters was examined by Cox regression analysis and the Kaplan-Meier method.

Results: Resting natural killer cells and activated memory CD4+ and CD8+ T cells were associated with favourable
patient outcome, whereas resting memory CD4+ T cells were associated with poor outcome. Differential expression
analysis revealed 1334 genes influencing both immune and stromal cell scores; of them, 97 were predictive of
overall survival in patients with BC. Among the top 10 statistically significant hub genes in the PPI network, CXCL12,
FN1, LCK, and CXCR4 were found to be associated with BC prognosis.

Conclusion: Tumour-infiltrating immune cells and cancer microenvironment-related genes can affect the outcomes
of patients and are likely to be important determinants of both prognosis and response to immunotherapy in BC.
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Background
Bladder cancer (BC) is a complex disease characterized
by high morbidity and mortality; thus, 81,190 newly di-
agnosed cases and 17,240 deaths were reported in the
USA in 2018 [1]. Among the patients with BC, approxi-
mately 25% have muscle-invasive cancer or metastatic
disease and 75% have non-muscle invasive cancer
(NMIBC) [2]. Although the proportion of NMIBC is

relatively high, the key clinical concerns for these pa-
tients are a high recurrence rate (70%) in those with
low- and intermediate-risk disease and a relatively high
rate of progression to muscle-invasive cancer (30%) in
those with high-risk disease [3–5].
The tumour microenvironment (TME) surrounding

cancer cells originally consists of tumour stromal cells,
the extracellular matrix, and soluble molecules. Once
the TME is formed, many immune cells such as T cells,
medullary inhibitory cells, and macrophages, infiltrate
the TME through chemotaxis, further contributing to its
composition. Thus, the two main non-tumour compo-
nents of the TME are immune cells and stromal cells.
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Increasing evidence indicates that the tumour phenotype
is shaped not only by the intrinsic properties of cancer
cells, but also by the activity of immune cells in the
TME [6]. Furthermore, immune infiltration into the
tumour site has been associated with both overall sur-
vival (OS) and treatment response in such types of can-
cer as colorectal cancer, breast cancer, and liver cancer
[7–9].
Despite significant advances in understanding cancer

biology, including the functional role of the TME, the
treatment of patients with BC still remains challenging.
As migration of immune cells into the tumour site is
closely related to clinical results and disease outcome,
these cells could be used as drug targets to improve sur-
vival of patients with BC [10–12]. However, immuno-
phenotyping in cancer could be problematic as the
existing experimental methods such as immunochemis-
try require multiple biomarkers and can miss certain cell
populations. In this respect, high-throughput approaches
to cell typing and gene expression profiling may offer a
solution because they enable analysis of multiple data in-
dependent of collection time or site, or performance of
biomarkers.
CIBERSORT is a versatile computational method for

quantifying cell fractions from bulk tissue gene expression
datasets based on immune cell signatures. By combining
an approach called support vector regression with the
knowledge of expression profiles of 22 human haemato-
poietic cell subsets comprising ~ 500 marker genes,
CIBERSORT could quantify the relative proportion of
each cell type [13, 14]. The ESTIMATE (Estimation of
STromal and Immune cells in MAlignant Tumour tissues
using Expression data) method integrates publicly avail-
able datasets such as The Cancer Genome Atlas (TCGA)
and can be applied to predict general fractions of immune
and stromal cells in a tumour as well as tumour purity in
a sample based on cell genetic signatures [15–17].
In this study, we used the ESTIMATE and CIBER-

SORT analytical methods to determine individual im-
mune cell profiles in the TME of BC samples according
to specific characteristics of each cell subset. The know-
ledge regarding the infiltration of immune cells into tu-
mours could be used in personalized medicine to reveal
individual drug targets, which should improve the sur-
vival of patients with BC.

Methods
Data mining using TCGA cohort
The data from TCGA (https://tcga-data.nci.nih.gov/tcga/)
downloaded in April 2019 included a total of 433 transcrip-
tion files (19 normal tissues and 414 BC samples) and clin-
ical characteristics of 412 patients with BC. Only patients
diagnosed with BC, for whom clinicopathological data and
survival information were available, were included. The

following demographic and clinical data were extracted:
sex, age, survival status, topography, and lymph node and
metastasis (TNM) stage based on the American Joint Com-
mittee on Cancer (AJCC). Patients with missing or insuffi-
cient data were excluded from subsequent analysis.
The TME was assessed in 414 BC samples using the ES-

TIMATE package in R (version 3.5.2, https://www.r-pro-
ject.org). Gene expression datasets were prepared using
standard annotation files and uploaded to the CIBER-
SORT web portal (http://cibersort.stanford.edu/), with the
algorithm based on the default signature matrix at 1000
permutations. After converting the gene expression matrix
into the immune cell matrix (433 transcription files) and
applying the filtering criteria for gene transcription (P <
0.05) in CIBERSORT (Perm = 1000), 162 samples (5 nor-
mal tissues and 157 tumours) were selected to visualize
the matrix of 22 immune cell fractions.

Visual display of 22 immune cell types
The matrices of 22 immune cell subsets, their correlations,
and gene expression profiles were presented as barplots,
heat maps, and violin maps using R packages pheatmap,
corrplot, and vioplot (https://www.r-project.org).

Evaluation of BC-infiltrating immune cells and the TME
ESTIMATE is a tool for predicting tumour purity and the
presence of infiltrating stromal/immune cells in the TME
based on gene expression data. The ESTIMATE algorithm
is based on single-sample Gene Set Enrichment Analysis
(ssGSEA) and generates three scores: stromal cell scores,
immune cell scores, and ESTIMATE scores (which have
higher correlation with tumour purity compared with
stromal-only and immune-only scores). CIBERSORT is a
deconvolution algorithm that can estimate the cellular
composition of complex tissues based on standardized
gene expression data and quantify the abundance of spe-
cific cell types. CIBERSORT derives a P value for the de-
convolution of each sample using Monte Carlo sampling,
thus providing a measure of confidence in the results of
the inferred immune cell fractions; therefore, only samples
with a CIBERSORT P < 0.05 were considered eligible for
further analysis. The proportions of immune cells were
predicted separately for each gene expression series; the
sum of different immune cell fractions in each sample
equalled 1.

Identification of differentially expressed genes (DEGs)
The samples were divided according to the scores of
stromal and immune cells: those with scores below the
median value were assigned to a low-score group,
whereas those with scores equal or above the median
were assigned to a high-score group. Data analysis was
performed using the R limma package. Fold change
(FC) > 1 and false discovery rate (FDR) < 0.05 were set as
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the cut-off criteria to screen for DEGs. The heatmap of
the DEGs was drawn using the R pheatmap package;
DEGs with the same signatures were clustered together,
indicating their specificity.

Gene ontology (GO) and Kyoto encyclopedia of genes
and genomes (KEGG) enrichment analysis
GO analysis was applied to explore functions of the
identified DEGs by organizing genes into hierarchical
categories of biological process, molecular function, and
cellular component. KEGG pathway analysis was per-
formed to reveal the functions and interactions among
the DEGs based on the enrichment ratio of the se-
quenced gene to all annotated genes in the pathway.
Data analysis was performed using stringi and ggplot2
packages in R (https://www.r-project.org). P < 0.05 was
set as the cut-off criterion indicating significant enrich-
ment of functional GO terms and KEGG pathways.

Identification of protein-protein interactions (PPIs) of
DEGs
Identification of protein complexes and functional mod-
ules was performed by constructing PPI networks using
an online database resource Search Tool for the Re-
trieval of Interacting Genes (STRING; https:// string-db.
org), which provides comprehensive coverage of experi-
mental and predicted protein interactions with the confi-
dence of custom value > 0.96. The obtained PPI
networks were visualized using Cytoscape version 3.6
(https://cytoscape.org).

Association of patient OS with immune cell fractions and
DEGs
Cases with a CIBERSORT P-value of < 0.05 were in-
cluded in survival analysis. Median values of the propor-
tions of each cell subset were computed and used to
determine the correlation between immune cell types
and patient outcome by Cox regression analysis. Kaplan-
Meier curves were generated to reveal the correlation
between patients’ OS and DEG levels, which was exam-
ined by log-rank test.

Expression of immunomodulatory factors
Expression levels of several key immunomodulatory fac-
tors such as lymphocyte-activation gene 3 (LAG-3), hepa-
titis A virus cellular receptor 2 (HAVCR2), cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), interferon-γ
(IFN-γ), inducible T-cell costimulator (ICOS), Intercellu-
lar Adhesion Molecule 1 (ICAM-1), T cell immunorecep-
tor with Ig and ITIM domains (TIGIT), programmed cell
death protein 1 (PDCD1/PD-1), programmed death-
ligand 1 (PDL-1/CD274), NKG2-C type II integral mem-
brane protein (KLRC1), and V-set immunoregulatory re-
ceptor (VSIR) were quantified in normal bladder tissues

and BC tissues. Differences in gene expression between
normal and BC tissues and between high-score and low-
score groups were analysed by t-test.

Results
Performance of ESTIMATE and CIBERSORT
We downloaded 433 transcription files, including 19 for
normal tissues and 414 for BC tissues, and clinical infor-
mation of 412 patients from TCGA database. The 414
tumour files were graded by ESTIMATE, and stromal
cell scores, immune cell scores, and ESTIMATE scores
were computed. The gene expression matrix (433 files)
was converted into the immune cell matrix and com-
bined with the composition and percentages of immune
cells using CIBERSORT. Based on the screening cut-off
criterion of P < 0.05, we obtained 162 (5 normal and 157
tumour) statistically significant immune cell matrices
and visualized them using barplot, heat maps, correl-
ation heat maps, and violin diagrams. Analysis of cellular
characteristics showed that tumour-related macrophages
were the most abundant TME-infiltrating cells, followed
by CD4-positive T cells, and plasma cells. Macrophages
of MO, M1, and M2 states showed low presence in nor-
mal tissues and high presence in cancer tissues (Fig. 1a,
b). The correlation heat map revealed that CD8+ T cells
and activated memory CD4+ T cells were negatively cor-
related with resting memory CD4+ T cells, whereas acti-
vated memory CD4+ T cells were positively correlated
with CD8+ T cells and resting natural killer (NK) cells
(Fig. 1c). The violin map showed that there were more
intuitively resting memory CD4+ T cells, CD8+ T cells,
and macrophages in cancer than in normal tissues (Fig.
1d), accounting for their increased proportions. M0 and
M1 macrophages and resting NK cells showed high
abundance in tumours but low abundance in normal tis-
sues; in contrast, naive B cells and resting mast cells
showed high abundance in normal tissues and low abun-
dance in cancerous tissues.

Gene expression profiling in BC samples depending on
immune and stromal cell scores
To reveal the correlation of gene expression profiles with
immune and stromal cell scores, the samples were di-
vided into low- and high-score groups. Comparison of
the two stromal score groups revealed 1827 DEGs corre-
sponding to the cut-off criteria (log FC > 1, P < 0.05);
among them, 1519 and 308 were significantly upregu-
lated and downregulated, respectively, in the high-score
group. Comparison of the two immune score groups re-
vealed 1371 upregulated and 457 downregulated DEGs.
The heat map constructed using unsupervised hierarch-
ical clustering analysis showed that the DEGs in the
low- and high-score groups could be clearly separated
(Fig. 2a, b). The Venn diagram revealed 1125 and 209
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DEGs commonly upregulated and downregulated, re-
spectively, in samples with high scores for immune and
stromal cells (Fig. 2c).

Functional characteristics of the identified DEGs
To predict the functions of the 1334 DEGs identified in
high-score BC samples, we performed GO enrichment
and KEGG pathway analyses. The top 10 GO categories
associated with the DEGs were: T cell activation,
leukocyte migration, and negative regulation of the im-
mune system (biological processes), extracellular matrix
(cellular components), and receptor-ligand activity, cyto-
kine activity, and glycosaminoglycan binding (molecular
functions) (Fig. 2d). Among the KEGG pathways, the
DEGs were enriched in cytokine-cytokine receptor inter-
action, PI3K/AKT signalling pathway, and chemokine
signalling pathway (Fig. 2e).

PPI network of common DEGs
To better understand the interplay among the identified
DEGs, we constructed the PPI network using STRING,
which revealed that the DEGs were densely intercon-
nected. The top 10 hub genes in the PPI network were
CXCL10, CXCL12, IL10, CCL5, FN1, ITGAM, CXCL11,
ITGB2, CCL4, and LCK (Fig. 3).

Association of imm Une cell subsets and DEGs with BC
outcomes
Next, we matched the immune cell matrix with the clin-
ical survival time and cancer stage. The results indicated
that OS of patients with BC was significantly negatively
associated with resting memory CD4+ T cells and posi-
tively associated with resting NK cells, activated memory
CD4+ T cells, and CD8+ T (Fig. 4a–d). There was no sta-
tistically significant association of OS with the immune
cell score (P = 0.471) or stromal cell score (P = 0.118), al-
though the latter showed a tendency to correlate with
shorter OS (Fig. 4e, f).
Survival correlation analysis of the 1334 DEGs revealed

that 97 genes were significantly associated with patient OS
(P < 0.01). The top 10 DEGs were: GPR25 (P = 7.97E-06),
CYP4F12 (P = 3.60E-05), MAP 1A (P = 4.22E-05), HOXB3
(P = 7.11E-05), SMAD6 (P = 0.00012), EPHB6 (P =
0.00013), CPA4 (P = 0.00014), CASQ2 (P = 0.00015),
HSPB6 (P = 0.00016), and LRRC32 (P = 0.0002).
Among the top 10 hub genes in the PPI network, the

genes encoding fibronectin 1 (FN1), C-X-C motif ligand
12 (CXCL12), lymphocyte-specific protein tyrosine kin-
ase (LCK), and C-X-C chemokine receptor type 4
(CXCR4) were significantly associated with patient OS
(Fig. 4g–j).

Fig. 1 Immune cell subsets in BC analysed using CIBERSOST. a A bar chart displaying proportions of immune cell subsets. The X-axis shows
sample names and the Y-axis shows percentages of 22 immune cell types, which were predicted separately for each gene expression series. b A
heat map of the proportions of 22 immune cell types. Sample names and classification are shown below, sample clustering is shown on the left,
and 22 immune cell types are indicated on the right. c Correlation matrix of 22 immune cell types. Variables were organized by average linkage
clustering. Red and blue colours indicate positive and negative correlation, respectively; colour intensity corresponds to the degree of correlation.
d A violin map of 22 immune cell types. The X-axis shows cell types and the Y-axis indicates fractions; blue and red colours represent normal and
cancer tissues, respectively
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Fig. 2 Analysis of DEGs in samples with high and low stromal and immune cell scores. Patient samples were divided into low- and high-score
groups. Heatmaps of the DEGs depending on the stromal (a) and immune (b) cell scores. DEGs commonly downregulated and upregulated in
the high-score groups (c). Top 10 GO terms (d) and top 30 KEGG terms (e) of the 1334 commonly regulated DEGs. The spot size indicates the
number of DEGs enriched and the spot colour indicates the level of significance

Fig. 3 Analysis of the PPI network. a The PPI diagram; node colour reflects the log FC of gene expression and node size indicates the number of
interacting proteins. b A histogram showing numbers of top-ranked connection nodes for the indicated genes
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The stromal cell score and the ESTIMATE score were
positively correlated with the BC stage (Fig. 5a, b), indi-
cating that the purity of tumour cells decreased with
cancer progression. We also observed that the levels of
activated memory CD4+ and CD8+ T cells decreased
with the BC stage (Fig. 5c, d) and that CD8+ T cells and
plasma cells showed a statistically significant reduction
in the N3 stage (Fig. 6a, b).
Univariate Cox regression analysis revealed that resting

memory CD4+ T cells were significantly associated with
better outcome (hazard ratio [HR] = 0.562, 95% confi-
dence interval [CI] = 0.343–0.922; P = 0.023), whereas
CD8+ T cells (HR = 1.634, 95% CI = 0.999–2.672; P =
0.05), activated memory CD4+ T cells (HR = 1.704, 95%
CI = 1.039–2.795; P = 0.035), and resting NK cells (HR =
1.749, 95% CI = 1.047–2.921; P = 0.033) showed associ-
ation with poor outcome (Additional file 1).

Expression profile of immunomodulatory genes
CD274, HAVCR2, and IFNG were significantly upregu-
lated in BC samples compared with normal tissues
(Fig. 7a). The expression of 11 genes encoding immuno-
modulatory factors (LAG3, HAVCR2, CTLA4, IFNG,
ICOS, ICAM1, TIGIT, PDCD1, CD274, KLRC1, and
VSIR) was significantly increased in the groups with high

stromal and immune cell scores (Fig. 7b, c). Analysis of
the prognostic value of these genes indicated that pa-
tients with high expression of LAG3, CTLA4, IFNG,
ICOS, TIGIT, PDCD1, and KLRC1 and low expression of
ICAM1 had longer OS (Fig. 7d).

Discussion
To improve the prognosis of BC, it is essential that pa-
tients should be regularly checked for cancer recurrence
or progression, which may depend on the infiltration of
immune cells into the tumour site. However, the im-
mune mechanisms involved in the occurrence and pro-
gression of BC are not fully elucidated and it is unclear
which immune cells or factors are the most prognostic-
ally significant.
In this study, we performed TCGA data mining to re-

veal the correlation between the infiltration pattern of im-
mune cells into the TME and clinical characteristics of
patients with BC. CIBERSORT was used to calculate the
proportions of 22 immune cell subsets in the tumour tran-
scriptome, and ESTIMATE was applied to evaluate the
fractions of immune and stromal cells, which were then
analysed for correlation with cancer advancement and pa-
tient survival. Our results showed that stromal cell scores
were positively correlated with cancer stage, indicating

Fig. 4 Association of immune cell subsets and DEGs with patient survival. Kaplan-Meier survival curves were generated by dividing patients into
groups with high (red lines) and low (blue lines) abundance of immune cell types or expression of DEGs from the PPI network. Graphs show OS
according to the presence of CD4+ resting memory T cells (a), resting NK cells (b), activated memory CD4+ T cells (c), and CD8+ T cells (d),
immune cell scores (e) and stromal cell scores (f), and the expression of FN1 (g), CXCL12 (h), LCK (i), and CXCR4 (j)
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that stromal components in the TME may play an import-
ant role in BC progression, which is consistent with the
findings of a previous study [18]. Indeed, the tumour stro-
mal components are known to contributes to cancer bud-
ding, epithelial-mesenchymal transformation, and lymph
node metastasis [19, 20], which may account for their as-
sociation with cancer progression.
Although we did not observe a direct correlation be-

tween the stromal/immune cell scores and patient sur-
vival, different subsets of immune cells showed significant
association with the BC outcome. Thus, the increase in

resting memory CD4+ T cells was significantly associated
with better outcome, whereas that in CD8+ T cells, acti-
vated memory CD4+ T cells, and resting NK cells was cor-
related with poorer outcome. A previous study showed
that a significant reduction in the number of CD4+ and
CD8+ tumour-infiltrating lymphocytes (TILs) during non-
classical differentiation in advanced BC may be associated
with lower tumour immunogenicity and immune toler-
ance towards cancer and that a decrease in CD4+ TILs
was indicative of poor prognosis [21]. Similarly, patients
with advanced urothelial carcinoma (pT2, pT3, or pT4)

Fig. 6 Association of the number of metastatic lymph nodes (N) with CD8+ T cells (a) and plasma cells (b)

Fig. 5 Correlation of BC clinical stages with stromal (a) and ESTIMATE (b) scores and with the abundance of activated memory CD4+ T cells (c)
and CD8+ T cells (d)
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who had higher numbers of CD8+ TILs (> 8), showed lon-
ger disease-free survival (P < 0.001) and OS (P < 0.018)
compared to those who had fewer CD8+ TILs [22]. These
findings indicate that in advanced BC, the levels of CD4+

and CD8+ cells decrease, negatively affecting disease prog-
nosis, which is consistent with our observations that acti-
vated memory CD4+ cells, CD8+ T cells, and plasma cells
decreased with the increase of cancer stage and lymph
node metastasis. However, it was difficult to detect a trend
for clinical improvement, because among the 412 samples
analysed only two had BC stage 1 and there were no
matching transcription files. Nevertheless, this fact did not
affect our prognostic results, which support the notion
that only certain subsets of tumour-infiltrating immune
cells have a potential to predict clinical outcomes. Thus,
the CD4+ cell population as a whole cannot be considered
for BC prognosis, because its subsets showed the opposite
trends: activated memory CD4+ T cells were associated
with better outcome, whereas resting memory CD4+ T
cells – with poorer outcome.
We also identified DEGs in samples with different stro-

mal/immune cell scores and analyzed their potential func-
tional activity, PPI, and association with patient prognosis.
The 1334 common genes differentially expressed in both
stromal and immune cell high-score groups were enriched
in such GO categories as T cell activation, leukocyte mi-
gration, negative regulation of immune system, and the
extracellular matrix. Pathway analysis revealed enrichment

of DEGs in KEGG pathways of cytokine-cytokine receptor
interaction, and PI3K/AKT and chemokine signalling.
Consistent with these results, previous studies have dem-
onstrated that immune system functions are critical for
the formation of a complex BC microenvironment [23,
24], which may explain our finding that 97 DEGs were sig-
nificantly associated with patient survival.
PPI analysis revealed that the top 10 hub genes in the

BC microenvironment were related to cytokines, chemo-
kines, and their receptors, which is in agreement with
the role of cytokines and chemokines in shaping the
TME [25, 26]. Four of the hub genes, CXCL12, LCK,
FN1, and CXCR4, were found to be associated with pa-
tient survival. As CXCL12 is the second highest inter-
connected node in the PPI network negatively associated
with OS, it deserves more attention. CXCL12, which be-
longs to the C-X-C family, binds to CXCR4 and triggers
various immunological effects, including stimulation of
monocyte, NK, and T cell migration and changes in pro-
tein expression. CXCL12 can potentially serve as a prog-
nostic factor for gastrointestinal malignancies, including
hepatocellular carcinoma and pancreatic cancer [27–29].
CXCR4, which is upregulated during BC progression, in-
teracts with CXCL12 in cancer cells to mediate tumour
chemotaxis and invasion through connective tissue, sug-
gesting that CXCR4 may be a potential target for attenu-
ation of BC metastasis [30]. Our results indicate that
CXCR4 and its ligand CXCL12 may not only serve as

Fig. 7 Expression levels of immunomodulatory genes and their association with patient survival. Differences in gene expression between normal
and BC tissues (a) and between samples with low and high immune cell scores (b) and stromal cell scores (c). Kaplan-Meier curves showing
correlation of OS with expression levels of 11 immunomodulatory genes (d)
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prognostic indicators in BC but may also play a role in
the PPI network involved in cancer progression. Chemo-
kines and their receptors control cancer development
through regulation of leukocyte infiltration, tumour-
related angiogenesis, tumour-specific host immune re-
sponses, and cancer cell proliferation and migration [31].
Although the molecular mechanisms underlying cancer
metastasis remain to be fully elucidated, accumulating
evidence points on a significant role of CXCL12/CXCR4
in the process [32–35], suggesting that the CXCL12/
CXCR4 axis may be a potential therapeutic target in BC.
FN1 is an extracellular matrix component involved in

a variety of cellular processes, including carcinogenesis
[36, 37]. Several studies have reported that FN1 modu-
lates cell behaviour through interaction with integrin
ITGA5 and activation of PI3K/AKT signalling [38, 39],
which results in the suppression of apoptosis and in-
crease in the viability, invasion, and migration of colo-
rectal cancer cells. It was suggested that FN1 could be a
prognostic factor and a potential therapeutic target in
colorectal cancer [40] and could also serve as a bio-
marker significantly associated with OS in certain can-
cers, including BC [41, 42]. In our study, FN1 was
identified as a hub gene interacting with ITGB3 and
ITGA5 in the PPI network, which is consistent with the
study of Bi et all [43]., who found that FN1 was a com-
mon hub gene in different stages (T1–T4) and grades
(G1–G3) of BC. KEGG analysis indicated that FN1 was
enriched in the PI3K/AKT and focal adhesion pathways,
which is in agreement with previous findings that FN1
regulated colorectal cancer spread through PI3K signal-
ling. According to our PPI network, FN1 is predicted to
play a role in BC through its interaction with ITGB3 and
ITGA5.
Among the top 10 hub genes, LCK was found to be as-

sociated with Th1, Th2, and Th17 cell differentiation, T
cell receptor (TCR) signalling, and the NF-kappa B path-
way, and was closely related to CD4 in the PPI network.
LCK is a tyrosine kinase essential for initiating TCR sig-
nalling, which can also be involved in signalling through
other immune cell receptors [44]. However, the role of the
LCK-CD4 axis in BC is unclear. Given that high LCK ex-
pression was positively correlated with the survival rate
and that the abundance of T cells decreased with the in-
crease of the clinical grade, LCK effects on patient out-
come may be associated with its binding to T cells.
Furthermore, we found that 11 immunomodulatory

genes known to be involved in cancer immune escape
mechanisms were upregulated in tumour samples with
high immune/stromal cell scores. Among these genes, 8
showed prognostic potential: 7 (LAG-3, CTLA-4, IFN-γ,
ICOS, TIGIT, PDCD1, and KLRC1) were positively and
one (ICAM-1) negatively associated with patient survival.
Previous studies have shown that CTLA-4 is a critical

negative regulator of T cell-mediated immune responses
through direct influence on Treg homeostasis [45] and
that LAG-3 is linked to metastasis and prognosis of vari-
ous cancers such as follicular lymphoma, lymphocytic leu-
kaemia, lung cancer, and gastric cancer [46–49].
There are some limitations of this study. First, all pa-

tients’ clinicopathological characteristics were obtained
from TCGA database and a certain bias due to potential
influence of confounding factors such as acute infection,
immune system disorders, and anti-inflammatory drugs
could not be excluded. As all samples were derived from a
retrospective collection, further prospective studies are re-
quired to validate the results. Second, the functions of the
97 prognostic genes in the TME were not confirmed ex-
perimentally and will need to be independently validated
in vitro and in vivo before their use as prognostic indica-
tors in BC. To exclude bias, we plan to address the func-
tional importance of these genes in clinical experiments,
which should determine whether their combinations have
a higher predictive value than any of them alone.

Conclusions
Our evaluation of stromal cells and immune cells in the
BC microenvironment with the ESTIMATE method
provides a new perspective for further understanding of
tumour molecular phenotypes. The results suggest that
stromal cell scores, ESTIMATE scores, and distinct sub-
sets of tumour-infiltrating immune cells are associated
with BC clinical characteristics and outcomes, thus mak-
ing it possible to identify patients who could benefit
from immunotherapy targeting infiltrated immune cells.
These results should contribute to understanding of the
role of the TME in the progression of BC.

Supplementary information
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