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Abstract

Background: Codrituzumab, a humanized monoclonal antibody against Glypican-3 (GPC3), which is expressed in
hepatocellular carcinoma (HCC), was tested in a randomized phase II trial in advanced HCC patients who had failed
prior systemic therapy. Biomarker analysis was performed to identify a responder population that benefits from
treatment.

Methods: A novel statistical method based on the Indian buffet process (IBP) was used to identify biomarkers
predictive of response to treatment with Codrituzumab. The IBP is a novel method that allows flexibility in analysis
design, and which is sensitive to slight, but meaningful between-group differences in biomarkers in very complex
datasets

Results: The IBP model identified several subpopulations of patients having defined biomarker values. Tumor necrosis
and viable cell content in the tumor were identified as prognostic markers of disease progression, as were the well-
known HCC prognostic markers of disease progression, alpha-fetoprotein and Glypican-3 expression. Predictive markers
of treatment response included natural killer (NK) cell surface markers and parameters influencing NK cell activity, all
related to the mechanism of action of this drug

Conclusions: The Indian buffet process can be effectively used to detect statistically significant signals with
high sensitivity in complex and noisy biological data

Trial registration: NCT01507168, January 6, 2012

Keywords: Codrituzumab, Indian buffet process, Natural killer cells

Background
The cell surface heparan sulfate proteoglycan Glypican-3
(GPC3) is a serological and histochemical marker of hepa-
tocellular carcinoma (HCC), due to its high and specific ex-
pression in HCC [1]. GPC3 promotes the growth of HCC
by stimulating Wnt signaling [2], and GPC3 suppression in-
hibits growth of HCC cells via upregulation of TGF-β2 [3].
The anti-human GPC3 humanized monoclonal anti-

body Codrituzumab binds to GPC3 with high affinity [4]
and interacts with CD16/FcγRIIIa, a receptor in Natural
Killer (NK) cells to trigger antibody-dependent cytotox-
icity (ADCC) [5]. Phase I studies in the US [6] and Japan
[7] showed that Codrituzumab was well tolerated up to

20mg/kg/wk. without dose limiting toxicity. These re-
sults led to a Phase II study to determine efficacy, in
which Codrituzumab was well tolerated but did not
meet pre-specified efficacy endpoints [8]. However, sec-
ondary analyses of data from the study found longer
overall survival in patients with higher levels of
Glypican-3 or CD16, indicating that a patient stratifica-
tion strategy might improve outcomes.
In order to identify patients who might best respond

to Codrituzumab, we conducted a retrospective analysis
of biomarker data from the Phase II study, including
demographic information, tumor histology, as well as
serum and blood biomarkers. Variable drug exposure,
observed in the treatment arm, confounded standard
statistical approaches such as regression models [8].
Therefore, a novel probabilistic approach for clinical
data analysis, the case-control Indian Buffet Process
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(C-IBP), was used. This method relies on the general la-
tent feature model recently introduced in the machine
learning literature [9].
The C-IBP identifies statistically significant bio-

markers, both at a global and subpopulation level, by
discovering a number of correlation patterns (referred to
hereafter as latent features) among the observations,
which might be present or absent for each patient indi-
vidually. The method returns a list of representative sub-
populations by grouping those patients that share the
same set of latent features. Compared to other ap-
proaches, the number of correlation patterns and patient
subpopulations does not need to be specified beforehand
but is automatically learned from the data. This method
also provides measures of uncertainty associated with
each latent feature and subpopulation (e.g., a patient
might stand between two subpopulations), as well as a
method to isolate drug-related correlations from natural
response patterns. The latent features provide a useful
abstraction of the main properties of the data, which can
be directly interpreted and analyzed by experts in the
field, as shown in the subsequent analysis.

Methods
Study design and patients
Adult patients with unresectable advanced or metastatic
HCC, previously treated with at least one line of sys-
temic agent and with progressive disease, were enrolled
in a randomized, placebo-controlled, double-blind, mul-
ticenter phase II trial (NCT01507168). Patients received
either intravenous (IV) Codrituzumab at 1600 mg every
two weeks (Q2W) or placebo (with a patient ratio of
treatment:placebo of 2:1) until disease progression and
were followed for overall survival. Details of study design
have been previously described [8]. The study was ap-
proved by institutional review boards of participating
centers and was conducted in accordance with the Dec-
laration of Helsinki and Good Clinical Practice guide-
lines. NCT01507168 trial was approved by the
institutional IRBs from all participating centers, and all
patients received informed consent; it has already been
published with a previous study in [8].

GPC3 expression in tumor
All patients enrolled in the study provided a tumor tis-
sue sample. Centrally reviewed immunohistochemistry
(IHC) was used to determine the level of GPC3 expres-
sion in the tumor sample prior to study entry. IHC was
performed on four 4 μm thick slides which were freshly
cut from a formalin-fixed, paraffin-embedded block of
the primary tumor (or the metastatic site) which had
been obtained within approximately 12 months prior to
informed consent. If no archival material was available, a
pre-treatment core needle biopsy (using an 18-gauge or

larger needle) was obtained and the sample fixed in for-
malin, embedded in paraffin and prepared as above. The
IHC staining was done on BenchMark XT (Ventana
Medical Systems, Inc. or VMSI, catalog number 750–
700) or ULTRA (VSMI, catalog number 750–600) plat-
forms. Each patient was assigned a GPC3 IHC score
with ordered categorical values 0, 1+, 2+, and 3+, corre-
sponding to increasing levels of GPC3 expression, with
scores 0 and 3+ indicating the lowest and highest levels
of GPC3 expression, respectively.

Flow cytometry
Surface cell markers from circulating blood cells were
measured by flow cytometry. Lymphocyte subsets were
assayed using Trucount tubes (Becton, Dickinson and
Company or BD, catalog number 340334). The expres-
sion level of CD16 on NK cells was measured by flow
cytometry analysis of the pre-treatment peripheral blood
mononuclear cells using a CD16-specific monoclonal
antibody. Measurement was done on FACSCantoTM II
(BD, catalog number 657338). CD16 expression level, or
fluorescence intensity in units of Molecules of Equiva-
lent Soluble Fluorochrome (MESF), denoted by CD16
MESF, was calculated by converting fluorescence mea-
surements of the NK cell population to an MESF value
based on an MESF calibration curve generated using the
fluorescence intensity of calibration beads (QuantumTM
MESF bead standard, manufactured by Bang Laborator-
ies, IN, USA) [10].

Soluble protein measurements
Monoclonal antibodies against soluble GPC3 protein were
generated as previously described [11]. Five anti-N-ter-
minal fragment mAbs (designated GT30, GT95, GT114,
GT165 and GT607), and two anti-C-terminal fragment
mAbs (designated GT57 and M3C11), were used in com-
bination in four different assays (sGPC3 114/165, sGPC3
30/57, sGPC3 30/607, sGPC3 11/96) to detect full length
GPC3 protein, or any possible cleavage fragments contain-
ing N- or C-terminus. The protocol for sandwich ELISA
assay has been described [11].

DNA polymorphisms
Genomic DNA was extracted from blood samples with a
QiAmp Blood Mini Kit (Qiagen, Germany). DNA con-
centrations were measured with NanoDrop ND-1000
(Thermo Fisher Scientific, Wilmington, DE, USA), and
DNA samples were diluted in nuclease free water to get
a final concentration of 1 ng/μl. TaqMan technology on
Applied Biosystems (AB) 7500 Fast Real-Time PCR sys-
tem (Applied Biosystems Inc., CA, USA) was used to
genotype patients for two different Fc gamma receptor
polymorphisms, FcgRIIa-H131R and FcgRIIIa-V158F.
We used probes and primers (TaqMan SNP Assays for
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rs1801274 and rs396991) from Applied Biosystems.
Genotyping was performed following the manufacturer’s
instructions.

Statistical analysis
The Case-Control Indian Buffet Process (C-IBP) is an
unsupervised approach to discover patient subgroups
and common correlation patterns among the biomarker
values. In particular, C-IBP finds a meaningful represen-
tation of patients by decomposing the data matrix X into
the product of two matrices that are learned from data:
a dictionary matrix B and a binary feature-activation
matrix Z. Matrix B corresponds to the correlation pat-
terns (also called latent features) that are most present
in the data. Matrix Z indicates which features are active
or absent for each patient individually.
In order to deal with the small sample-size scenario

typical from clinical trials, C-IBP shares information be-
tween patients in the placebo and treatment arm. More
particularly, C-IBP allows for two types of latent fea-
tures: global features and treatment-specific features.
Global features are learned from patients in the placebo
arm, and can be active for any patient, capturing general
patterns in the patient population, regardless of any
treatment. In contrast, drug-specific features are learned
from treated patients, and can only be active for patients
in the treatment arm, capturing correlations linked to
the effect of the drug.
The C-IBP approach was first used to identify subpop-

ulations of patients having similar correlation patterns of
biomarker values. The model describes each subpopula-
tion using a specific signature of latent features that can
be either present or absent. Progression Free Survival
(PFS) for each subpopulation was monitored and groups
with better survival outcome were identified. PFS was
the clinical endpoint of the clinical trial. A biomarker
analysis for each subgroup was conducted to identify
statistically significantly associated biomarkers. Assess-
ment of statistical significance for each biomarker was
performed using the Mann Whitney test for continuous
variables and the Fisher test for discrete variables. In
order to account for multiple hypothesis testing we
followed the Benjamini and Hochberg procedure to esti-
mate False Discovery Rate and adjust statistical signifi-
cance levels [12]. An illustration of the whole pipeline
and further details can be found in the Additional file 1.

Results
180 patients (120 in the treatment arm, 60 in the pla-
cebo arm) with HCC were enrolled in a randomized,
placebo-controlled, double-blind, multicenter phase II
trial of Codrituzumab. The primary efficacy endpoint
was not met, and when a population pharmacokinetic
(PK) analysis was performed, a highly varied range of

drug exposure in the treatment arm was observed,
resulting in only half of the patients receiving appropri-
ate drug exposure [8]. In order to identify subgroups of
patients benefiting from the drug, we performed a com-
prehensive retrospective biomarker analysis using stand-
ard techniques (list of biomarkers shown in Additional
file 2 and biomarker data in Additional file 3), however,
standard statistical approaches did not find any signifi-
cant biomarkers, probably because of the variable and
heterogeneous nature of the data [8]. Alternatively, the
C-IBP is a novel probabilistic approach to clinical data
analysis which was able to deliver statistically significant
biomarkers.

Latent feature analysis
We used Progression Free Survival (PFS) as a clinical
endpoint in our analysis. As shown in Table 1, the C-IBP
model identified twelve subpopulations from the set of
180 patients, and three latent features (F1, F2, and F3)
which capture correlation patterns of biomarker values.
These features can be either present (=1) or absent (=0)
for each patient individually. A feature is present when
the corresponding pattern contributes to the total bio-
marker values of that patient. A subpopulation is defined
as a group of patients having similar biomarker values,
encoded by the same set of present features. The C-IBP
model is constrained to identify two types of features:
global features, which can be active for any patient (F1
and F2), and drug-specific features, which can only be
active for patients in the treatment arm (F3). The num-
ber of each type of latent feature was not fixed before-
hand but learned from data.
Tables 2, 3, 4 contain the biomarkers that are statisti-

cally significant in relation to each of the three features
(F1-F3). The sign (+ or -) indicates the direction of the
biomarker effect in the case group versus the control
group, such that positive effect means that the bio-
marker has a higher value in the case group versus the
control group. Feature F1 is represented by high levels
of alpha-fetoprotein and GPC3 expression both in
tumor (GPC3 cytoplasmic and membrane IHC staining)
and as soluble protein sGPC3 (as detected by four
serum assays), as shown in Tables 2, 3, 4 and Additional
file 4). Feature F2 is associated with higher levels of in-
flammatory T and NK cells (positively stained for CD3/
CD16) in tumor necrotic tissue and adjacent peri-tu-
moral stroma, and low levels of CD3/CD16 in viable
tumor cells (Table 3 and Additional file 4). The com-
bination of F1 and F2 is associated with better progno-
sis. Feature F3, the feature associated with drug
treatment, is associated with higher levels of T (CD3,
CD45) and NK (CD16, NKp46) cell markers (Table 4
and Additional file 4).
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Analysis of subpopulations
One of the outstanding properties of the C-IBP method
is its flexibility in analyzing complex datasets, allowing a
detailed analysis of subpopulations by using shared fea-
tures to group them. For example, in the placebo arm,
the C-IBP model found (learned from the data) four sub-
populations (groups 1 to 4 in Table 1). Subpopulation 4
has a much higher PFS compared with the other three
subgroups, indicating better prognosis in the absence of
treatment. Out of the 70 variables analyzed simultan-
eously by the C-IBP method, higher levels of inflamma-
tory T and NK cells (CD3/CD16) in tumor necrotic
tissue and adjacent peri-tumoral stroma, and lower
levels in viable cells in tumor (CD3/CD16 staining in
viable tumor cells) correlate with better prognosis
(Table 5).
In the treatment arm (groups 5 to 12 in Table 1), sub-

populations with feature F3 active (6, 8, 10 and 12) have

higher PFS values compared with the similar subpopula-
tion in which F3 is not active. The effect of F3 on pro-
longed survival was found across all subpopulations, as
seen by pairwise comparisons between subpopulations
in the treatment arm with F3 active vs. the ones with F3
inactive (eg. 5 vs 6, 7 vs 8, etc). Table 6 shows that bio-
markers correlating with F3 in the treatment group are
similar to the ones correlating with F3 globally (Table 4),
i.e., higher levels in blood of inflammatory T (CD3,
CD45) and NK (CD16, NKp46) cells.

High drug exposure analysis
Patients received intravenous Codrituzumab at a dose of
1600mg every two weeks (Q2W), however, drug exposure
measurements showed that drug levels varied considerably
among patients. We therefore repeated the biomarker
statistical analysis using biomarker data only from patients
with high Codrituzumab exposure (above median) com-
pared to placebo. Table 7 (to be compared with Table 1)
shows the 12 subpopulations and 3 features found by the

Table 1 Subpopulations discovered by the Case-Control Indian Buffet Process (C-IBP)

Sub-population Drug Identifier F1 F2 F3 Average(*) num. of patients Mean PFS (month) Median PFS (month)

1. 0 0 0 0 33.37 3.06 1.65

2. 0 0 1 0 4.07 2.29 2.24

3. 0 1 0 0 17.84 2.72 1.81

4. 0 1 1 0 4.72 7.05 7.18

5. 1 0 0 0 51.52 3.22 2.55

6. 1 0 0 1 16.77 4.17 3.65

7. 1 0 1 0 8.38 1.74 1.33

8. 1 0 1 1 2.07 2.69 2.65

9. 1 1 0 0 29.88 3.36 2.03

10. 1 1 0 1 4.90 4.44 4.34

11. 1 1 1 0 4.53 6.31 5.31

12. 1 1 1 1 1.94 10.04 10.01

Total 120.0 63.82 25.72 25.69 180 3.44 2.04

Three latent features (F1, F2, F3) describe the population in this study, and each subpopulation can have the feature active (1) or inactive (0). Mean PFS was used
as meaningful clinical endpoint. (*) Average number of patients is reported since the C-IBP is a probabilistic method that allows for soft-clustering of the patients
(each patient belong to a subpopulation with a certain probability)

Table 2 Biomarkers significant for feature F1, ranked by effect
size

Continuous Variables Effect Size p-value

AFP 3.65 1.31e-07

GPC3 membrane 1.30 1.53e-21

GPC3 cytoplasmic 0.69 2.08e-16

sGPC3 11/96 0.47 1.34e-04

sGPC3 30/57 0.40 1.53e-05

sGPC3 30/607 0.34 6.21e-10

sGPC3 114/165 0.32 2.48e-10

AFP, alpha-fetoprotein; GPC3 membrane, GPC3 expression, as measured by H
score in cell membrane; GPC3 cytoplasmic, same as before, but measure in
cell cytoplasm; sGPC3_NN, are the different soluble assays against serum GPC3

Table 3 Biomarkers significant for feature F2, ranked by effect
size

Continuous Variables Effect Size p-value

CD3/CD16 necrotic 3.94 1.29e-17

%Necrotic 3.91 9.39e-18

CD3/CD16 viable −1.27 1.29e-17

%Viable −1.24 9.39e-18

CD3/CD16 necrotic/viable, staining for CD3 and CD16 in the necrotic tissue
and viable cells respectively; %Necrotic/%Viable: percentage of necrotic or
viable cells in tissue; AAT: Alanine Aminotransferase. Note that CD3/CD16
necrotic is the count of CD3 CD16 double positive cells in the necrotic tissue
and stroma tissue counted together

Pradier et al. BMC Cancer          (2019) 19:278 Page 4 of 7



C-IBP approach when excluding patients with low
drug exposure. Features F1, F2 and F3 (Additional
files 5, 6, 7) were characterized by sets of biomarkers
similar to those identified in the all-patient analysis,
indicating that each major group characteristics are
independent of drug exposure, and are intrinsic to
the subjects in each group.
C-IBP deliberately includes all patients in order to

learn a joint meaningful patient representation via latent
features that manifest differently for different patients.
The inclusion of patients that received low drug expos-
ure allows discovering prognostic factors (in latent fea-
ture F1 and F2), as well as drug-specific effects (in latent
feature F3) by sharing information (e.g., occurrence of
correlation signatures) across patients with varying levels
of drug exposure. Table 7 and Additional files 5, 6, 7
confirm the statistical significance of the discovered bio-
markers by performing two-sample tests only on pa-
tients who received high drug exposure (but after having
found a latent projection based on information from all
patients).

Discussion
The identification of biomarkers in complex datasets af-
fected by multiple confounding factors can be challen-
ging. In drug development, clinical trials are powered to
deal with situations of constant drug exposure, and trad-
itional statistical methods have difficulties extracting sig-
nals from data confounded by factors like differential
drug exposure. Therefore, sensitive analytical methods
are needed to deconvolute real signals from biological
and technical variability. We applied the Case-control
Indian Buffet Process (C-IBP) to a phase II clinical study
of Codrituzumab in HCC which had failed to meet the
primary endpoint due to insufficient drug exposure in
the treatment arm [8]. Beyond GPC3 and CD16 expres-
sion, traditional statistical approaches did not render
useful insights into potential biomarkers of response [8].
In contrast, the C-IBP analysis identified several bio-
markers that stratified patient subgroups with statistical
significance, and meaningful biology.
While variable drug exposure confounded previous

statistical approaches such as regression models [8],
C-IBP was able to unravel statistically significant bio-
markers despite of the drug exposure confounder,
which makes it particularly attractive and suitable for
this kind of data. C-IBP learned a meaningful latent
representation of patients by sharing information
from all patients. The learned features were used to
identify homogeneous subgroups of patients for whom
classical statistical analyses were performed. Nonethe-
less, we remark that, although all statistical tests were
independent, we cannot rule out all confounding ef-
fects across subgroups.

Table 4 Biomarkers significant for feature F3, ranked by effect
size

Continuous Variables Effect Size p-value

CD56dimCD16bright 1.27 2.18e-09

NK 1.24 2.13e-10

CD56-CD16+ 0.61 2.19e-06

CD56dimCD16- 0.42 1.04e-05

CD8 NK 0.37 7.13e-08

DN 0.27 3.73e-05

CD16 0.24 6.06e-10

NKP46 0.22 1.14e-09

CD8 0.20 3.44e-09

CD45 0.14 5.09e-11

CD3 0.13 1.49e-08

CD4 0.12 5.06e-06

Feature F3 is represented by NK and T cell subpopulations. Hazard Ratio was
0.75 with 95% confidence interval [0.57; 1.00]. See Additional File 4 for details

Table 5 Biomarkers significant in subpopulation 4, ranked by
effect size

Continuous Variables Effect Size p-value

%Necrotic 2.73 1.86e-04

CD3/CD16 necrotic 2.63 2.85e-04

%Viable −0.86 1.86e-04

CD3/CD16 viable −0.85 2.85e-04

Biomarkers significant for subpopulation 4 (subjects with longer PFS in
placebo group), compared to subpopulations 1, 2 and 3 (subjects with short
PFS in placebo group), ranked by effect size. Biomarkers as in Table 3

Table 6 Biomarkers significant for feature F3 in the treatment
arm, ranked by effect size

Continuous Variables Effect Size p-value

CD56dimCD16bright 1.36 1.76e-09

NK 1.33 9.51e-11

CD56-CD16+ 0.66 1.26e-06

DP 0.59 2.14e-04

CD56dimCD16- 0.44 4.39e-06

CD8 NK 0.39 9.50e-08

DN 0.30 3.58e-05

CD16 0.25 3.36e-10

NKP46 0.25 3.29e-10

B 0.21 2.29e-04

CD8 0.21 2.67e-09

CD45 0.15 3.75e-11

CD3 0.14 1.00e-08

CD4 0.14 1.48e-06

Feature F3 in the treatment group is represented by NK and T cell
subpopulations. See Additional file 4 for details
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The C-IBP model identified two kinds of features: glo-
bal features, which were active for patients regardless of
treatment, and indicated prognostic markers, and
drug-specific features, which were only allowed to be ac-
tive for patients in the treatment arm, and were there-
fore linked to drug response. Global prognostic features
included known prognostic markers in HCC, like
alpha-fetoprotein [13] and GPC3 expression in the
tumor [1]. In addition, global features included levels of
inflammatory T and NK cells in tumor necrotic tissue
and adjacent peri-tumoral stroma. In this regard, pa-
tients with higher levels of T and NK cells (identified by
CD3/CD16 staining) in peri-tumoral stroma and lower
levels in viable tumor cells had better prognosis, which
is consistent with the role of these inflammatory cells in
anti-tumor response [14, 15]. Drug-specific features in-
cluded different NK cell subtypes, which confirms previ-
ous findings of the central role for NK cells in HCC
[16]. Specifically, a reduction of blood CD56dimCD16b-
right NK cells has been correlated with poor prognosis
in HCC [17], and we observed that presence of this sub-
set was the most predictive of positive drug response,
both in the entire study and in the high exposure group
(Tables 4 and 6). These findings are consistent with the
mode of action of Codrituzumab, which requires en-
gagement of the CD16/FcγRIIIa receptor in NK cells to
recruit NK cells to the tumor with subsequent tumor
lysis [5].

Conclusions
In summary, the C-IBP approach applied to a complex
Phase II clinical study in HCC confounded by several
factors was able to identify prognostic and predictive
biomarkers of response to Codrituzumab. The C-IBP
method is flexible, as it automatically infers the required

number of latent features that best explain the observa-
tions. We were able to identify both prognostic and pre-
dictive variables, as well as quantify the direction of
action, effect size and statistical significance for each
biomarker. Our model handles data variability and miss-
ing information naturally. In order to deal with the small
sample-size problem, C-IBP shares information among
patients (by defining global features active for any pa-
tient, or drug-specific features, that are constrained by
model design to eventually activate only for patients hav-
ing taken the drug). By following such approach, there is
a clear separation between drug effects and natural prog-
nostic factors.

Additional files

Additional file 1: Method description. (PDF 335 kb)

Additional file 2: List of biomarkers in this study and abbreviations.
(XLSX 7 kb)

Additional file 3: Biomarker and clinical endpoint data. (CSV 51 kb)

Additional file 4: Relative effect size of biomarkers associated to each
latent feature inferred by the C-IBP model. Significant biomarkers
according to the Mann-Whitney test are marked with red circles. F1
identifies two types of patients with similar prognosis but different
characteristics, F2 and F3 are associated with higher Progression Free
Survival: F2 capture prognostic biomarkers while F3 capture predictive
biomarkers. (PDF 85 kb)

Additional file 5: Biomarkers significant for feature F1 when only
considering patients with high exposure and placebo. (XLSX 6 kb)

Additional file 6: Biomarkers significant for feature F2 when only
considering patients with high exposure and placebo. (XLSX 6 kb)

Additional file 7: Biomarkers significant for feature F3 when only
considering patients with high exposure and placebo. (XLSX 6 kb)

Abbreviations
ADCC: antibody-dependent cytotoxicity (ADCC); C-IBP: Case-control Indian
Buffet Process; GPC3: Glypican-3; HCC: Hepatocellular carcinoma; IBP: Indian

Table 7 Subpopulations discovered by the C-IBP, only considering the high exposure group and placebo group

Sub-population Drug Identifier F1 F2 F3 Average num. of patients Mean PFS (months) Median PFS (months)

1. 0 0 0 0 33.16 3.07 1.65

2. 0 0 1 0 4.17 2.30 2.21

3. 0 1 0 0 17.96 2.70 1.81

4. 0 1 1 0 4.71 7.02 7.15

5. 1 0 0 0 25.67 4.15 3.93

6. 1 0 0 1 6.72 4.64 4.23

7. 1 0 1 0 4.23 2.96 2.29

8. 1 0 1 1 1.37 3.69 3.67

9. 1 1 0 0 14.63 3.62 2.66

10. 1 1 0 1 1.55 5.94 5.93

11. 1 1 1 0 3.86 6.23 5.37

12. 1 1 1 1 1.98 10.63 10.62

Total 60.00 44.69 20.31 11.61 120 3.78 2.76

The values are similar to those in Table 1, corresponding to the analysis performed in the entire cohort
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