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Abstract

Background: An increasing number of studies have identified spatial differences in colorectal cancer survival.
However, little is known about the spatially varying effects of predictors in survival prediction modeling studies of
colorectal cancer that have focused on estimating the absolute survival risk for patients from a wide range of populations.
This study aimed to demonstrate the spatially varying effects of predictors of survival for nonmetastatic colorectal cancer
patients.

Methods: Patients diagnosed with nonmetastatic colorectal cancer from 2004 to 2013 who were followed up
through the end of 2013 were extracted from the Surveillance Epidemiology End Results registry (Patients:
128061). The log-rank test and the restricted mean survival time were used to evaluate survival outcome
differences among spatial clusters corresponding to a widely used clinical predictor: stage determined by AJCC
7th edition staging system. The heterogeneity test, which is used in meta-analyses, revealed the spatially varying
effects of single predictors. Then, considering the above predictors in a standard survival prediction model based
on spatially clustered data, the spatially varying coefficients of these models revealed that some covariate effects
may not be constant across the geographic regions of the study. Then, two types of survival prediction models (a
statistical model and a machine learning model) were built; these models considered the predictors and enabled
survival prediction for patients from a wide range of geographic regions.

Results: Based on univariate and multivariate analysis, some prognostic factors, such as “TNM stage”, “tumor
size” and “age at diagnosis,” have significant spatially varying effects among different regions. When
considering these spatially varying effects, machine learning models have fewer assumption constraints (such
as proportional hazard assumptions) and better predictive performance compared with statistical models.
Upon comparing the concordance indexes of these two models, the machine learning model was found to
be more accurate (0.898[0.895,0.902]) than the statistical model (0.732 [0.726, 0.738]).

Conclusions: Based on this study, it’s recommended that the spatially varying effect of predictors should be
considered when building survival prediction models involving large-scale and multicenter research data.
Machine learning models that are not limited by the requirement of a statistical hypothesis are promising
alternative models.
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Background
Colorectal cancer (CRC) is the most common gastro-
intestinal malignant tumor worldwide [1]. Although
the overall mortality rate is low, the mortality rate is
higher in developing countries, and significant differ-
ences in mortality have been observed among coun-
tries and regions [2].
An increasing number of studies, especially

large-scale, multicenter population studies, have iden-
tified spatial differences in the survival of colorectal
and other cancer patients [3–8]. Douaiher et al. noted
significant differences in survival outcomes between
developed and developing countries [9, 10]. Mokdad
et al. [11] found significant differences in the mortal-
ity rate of CRC patients between different regions and
counties in the United States, with the highest mor-
tality rate in Union County, Florida (58.4/100000
people; 95% Confidence Interval: 52.0–65.2), and the
lowest mortality rate in Summit County, Colorado
(8.1/100000 people; 95% CI: 7.0–9.3). The decrease in
mortality from 1980 to 2014 also varies among coun-
ties, with the largest decreases found in Howard
County, Maryland (62.2%; 95% UI: 60.7–67.4%) and
Nassau County, New York (62.3%; 95% UI: 60.1%,
64.3%) [11]. Michael et al. also reported regional dif-
ferences in the management and outcomes of CRC
patients in Australia [12].
In studies of survival prediction modeling for CRC

based on large-scale and multicenter data aggregated
from a wide range of geographic regions, little atten-
tion has been paid to the spatially varying effects of
predictors [13–18]. Many studies have assumed that
aggregated data are homogeneous and directly used
statistical models, such as the Cox proportional haz-
ard model, which assumes that all patients are inde-
pendent, regardless of origin [19–22]. Some studies
suggested that patients from the same geographic re-
gion were likely to have correlated outcomes, thus
violating the assumption of independent observations.
Therefore, researchers should consider a multilevel
survival model for survival prediction, including a sin-
gle random effect that considers similarities within
spatial clusters [23–26]. All the regression coefficients
of these models are assumed to have a constant im-
pact across the entire study region, meaning that the
impact of the patients’ characteristics remain constant
among different geographic regions. However, recent
research has shown that there are spatially varying
effects of predictors in breast cancer survival predic-
tion, indicating that the impact of patient characteris-
tics on breast cancer survival varies by location [27].
This study aims to detect and interpret the spatially

varying effect of predictors using population-based
CRC survival data aggregated from a wide range of

geographic regions. The studied predictors included
the following widely used clinical predictors: tumor,
node, metastasis (TNM) tumor stage; demographic
factors; tumor differentiation grade; histological type;
tumor location; tumor size; and number of positive
regional lymph nodes. Overall survival was considered
the outcome of interest. A machine learning model
(random survival forest, RSF) was then developed.
The model requires no statistical restrictions or as-
sumptions to build a survival prediction model and
can be used as an alternative survival prediction
model to statistical models for multilevel survival
when dealing with spatially varying effects of
predictors.

Methods
Patients
This study obtained CRC patient data from the Sur-
veillance, Epidemiology and End Results (SEER) pro-
gram of the National Cancer Institute (NCI), which
includes 18 population-based registries [28]. We
regarded these registries as spatial clusters of patients
and explored the spatially varying effect of predictors
among these registries. Patient information, including
demographics, diagnoses and survival, are routinely
collected, and this information is publicly available as
deidentified data.
In this study, the analysis was limited to patients

who were diagnosed with primary nonmetastatic
CRC (SEER primary site recodes C180-C189, C199
or C209 without distant metastasis) as their only
malignant tumor and were actively followed up from
January 2004 through December 2013. We excluded
individuals if their cancer status was obtained from a
nursing home, hospice, autopsy report or death cer-
tificate; if their survival time was less than 1 month;
if their tumor size was not reported as an exact
value; or if the number of cancer-positive regional
lymph nodes was not noted. In addition, patients
with unknown key predictor variables were excluded
(Fig. 1).

Univariate analysis
First, the spatial varying effect was detected for a
widely used clinical predictor: the TNM staging
system. In the TNM staging system, T represents the
depth of primary tumor penetration, N represents
the number of regional nodes involved in the tumor,
and M represents distant metastasis. Based on these
parameters, patients were divided into 7 groups that
correspond to different prognoses: stage I, stage IIA,
stage IIB, stage IIC, stage IIIA, stage IIIB and stage
IIIC. The TNM staging system can be used as an
independent criterion for distinguishing patients

Tian et al. BMC Cancer         (2018) 18:1084 Page 2 of 14



based on survival outcomes. Based on these criteria
of the tumor stage, each patient was assigned a
TNM staging label. Then, log-rank tests (the survdiff
function in the “survival” R package [29]) were used
to evaluate differences in the Kaplan-Meier survival
curves among spatial clusters. A quantitative com-
parison based on the restricted mean survival time
(RMST) (the rmst2 function in the “survRM2” R
package [30]) was performed, which intuitively re-
flects the spatially varying effects of the TNM sta-
ging system.
Second, the heterogeneity test from the

meta-analysis was adopted to reveal the spatially
varying effects of the patient characteristics. First,
univariate associations between overall survival and

predictors in each spatial cluster were examined
using a Cox regression model, from which log haz-
ard ratios were obtained with 95% confidence inter-
vals. Then, Cochran’s heterogeneity [31] statistic Q
value and the inconsistency index I2 [32] were used
to examine the heterogeneity of the predictors across
the entire study region, revealing the spatially vary-
ing effects of the predictors.

Multivariate analysis
The predictors listed in Table 1 were fitted using
Cox regression models [33] based on the patient
data from different spatial clusters, and regression
coefficients were thereby obtained for predictors
from different spatial clusters. For comparison and

Fig. 1 Details of the patient data screening procedure. For all SEER research data reported from 1973 to 2013, we first considered patients who
were diagnosed with primary colorectal cancer after 2004 and who were actively followed-up with case reports from hospital inpatient
departments, radiation treatment centers, laboratories, and physicians’ offices and for whom survival times were longer than 1 month; these
criteria yielded 249,665 patients. We then excluded patients whose tumor grading and differentiation codes were of undetermined cell types or
were not stable or not treated, reducing the number of patients to 211,292. We next excluded patients whose tumor size, lymph nodes, positive
regional nodes and examined regional nodes were either NA or unknown, further reducing the sample to 164,331 patients. Finally, we excluded
patients with metastases and patients for whom the exact tumor size and number of positive regional nodes were unknown. We ultimately
obtained 128,061 patients from 18 SEER registries as our study cohort
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Table 1 Demographic and Clinical Characteristics of SEER Nonmetastatic CRC Patients from 2004 to 2013

Characteristic Levels/IQR a Number (%) Overall death (%)

Age at diagnosis < 55 26,838 (20.96) 3763 (10.88)

55–64 28,485 (22.24) 4917 (14.21)

65–74 31,580 (24.66) 7474 (21.60)

≥75 41,158 (32.14) 18,445 (53.31)

IQR 67 [56,77]

Gender Male 63,617 (49.68) 17,089 (49.39)

Female 64,444 (50.32) 17,510 (50.61)

Grade Well differentiated 11,309 (8.83) 2435 (7.04)

Moderately differentiated 92,992 (72.62) 23,472 (67.84)

Poorly differentiated 21,189 (16.55) 7802 (22.55)

Undifferentiated 2571 (2.01) 890 (2.57)

Histology Adenocarcinoma 94,972 (74.16) 26,063 (75.33)

Mucinous adenocarcinoma 11,523 (9.00) 3829 (11.07)

Papillary adenocarcinoma 11,697 (9.13) 2366 (6.84)

Adenoma. In Adenoma. Polyp 6525 (5.10) 1097 (3.17)

Signet ring cell carcinoma 1071 (0.84) 516 (1.49)

Other 2273 (1.77) 728 (2.10)

Tumor locationb Right colon 60,432 (47.19) 17,735 (51.26)

Left colon 37,763 (29.49) 9471 (27.37)

Rectum 29,866 (23.32) 7393 (21.37)

T stage (AJCC7) T1 13,178 (10.29) 1843 (5.33)

T2 23,017 (17.97) 4538 (13.11)

T3 76,464 (59.71) 21,734 (62.82)

T4a 8783 (6.86) 3411 (9.86)

T4b 6619 (5.17) 3073 (8.88)

N stage (AJCC7) N0 76,716 (59.91) 16,867 (48.75)

N1a 15,089 (11.78) 4285 (12.38)

N1b 15,027 (11.73) 4842 (13.99)

N1c 787 (0.61) 110 (0.32)

N1nos 2857 (2.23) 777 (2.25)

N2a 9686 (7.56) 3778 (10.92)

N2b 7872 (6.15) 3937 (11.38)

N2nos 27 (0.02) 3 (0.01)

Tumor size IQR 40 mm [30,60]

EOD10_PN c IQR 0 [0,2]

Registry San Francisco-Oakland SMSA 6825 (5.33) 1738 (5.02)

Connecticut 6116 (4.78) 1709 (4.94)

Metropolitan Detroit 6542 (5.11) 1965 (5.68)

Hawaii 2773 (2.17) 690 (2.00)

Iowa 4053 (3.16) 839 (2.42)

New Mexico 2759 (2.15) 725 (2.10)

Seattle (Puget Sound) 4093 (3.20) 662 (1.91)

Utah 2604 (2.03) 649 (1.88)

Metropolitan Atlanta 4135 (3.23) 1013 (2.93)
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interpretation, we used “Age at diagnosis” as a cat-
egory variable and defined the following groups:
Group 1: less than 55 years old; Group 2: between
55 and 64 years old; Group 3: between 65 and
74 years old; and Group 4: older than 75 years. We
compared the variance of the regression coefficient
for each predictor among the spatial clusters, reveal-
ing the impact of predictors across the entire study
region.

Survival prediction based on the statistical model and the
machine learning model
In this paper, we apply a machine learning model
(RSF [34]) to make full use of large-scale, multicenter
clinical research data without violating the statistical
assumptions requiring all patients to be independent
of one another and requiring the impact of predictors
to remain constant across the entire study region.
The performances of the machine learning model and
the statistical model (Cox proportional hazards model
with mixed effects Cox, Accelerated Failure Time
Model AFT) were then evaluated and compared based
on testing data aggregated from multiple geographic
regions. We used the concordance index (C-index)
[35] and prediction error curves [36] as measures of
the model’s prediction performance. The C-index is
one of the most commonly used performance mea-
sures of survival models. It can be interpreted as the
fraction of all pairs of subjects whose predicted sur-
vival times are correctly ordered among all subjects
who can actually be ordered. To reflect the perform-
ance variance of both models among different spatial
clusters, we compared the variance of the C-index for
each model among the different spatial clusters. Pre-
diction error curves can be used to show model

calibration performance via an expected
time-dependent Brier score. For correctly censored
data, the squared residual (observed status-predicted
status)2 of a subject at each particular time point t is
weighted using the inverse probability of the censor-
ing weights [37], which can yield the calibration abil-
ity of the prediction model within a certain follow-up
period.
The modeling construction process is outlined in

Additional file 1: Figure S1. First, we divided the
selected SEER data based on region codes and then
divided the data of each regional dataset into a train-
ing set (80%) and a test set (20%). Second, we fit all
the training data to models based on the machine
learning approach and the statistical approach and
tested the prediction performance of both models
using the test datasets for the different regions. The
deduction process, including setting the model param-
eters and inputting the factors, is described in the
Additional file 1.
All analyses were performed using R version 3.4.0.

Results
Patient demographics and characteristics
A total of 128,061 patients met the inclusion criteria
and were included in the analysis. The overall per-
centage of excluded patients was 86.42%. The patient
demographics and characteristics are listed in Table
1. The median follow-up time was 40 months (range,
1–119 months). Overall deaths were recorded for
34,599 (27.02%) patients. The median age at diagno-
sis was 67 years. Patients were categorized into age
groups of less than 55 years, 55 to 64 years, 65 to
74 years and greater than 74 years. We considered
age at diagnosis as a categorical factor in the

Table 1 Demographic and Clinical Characteristics of SEER Nonmetastatic CRC Patients from 2004 to 2013 (Continued)

Characteristic Levels/IQR a Number (%) Overall death (%)

Alaska 252 (0.20) 61 (0.18)

San Jose-Monterey 3255 (2.54) 745 (2.15)

Los Angeles 13,604 (10.62) 3718 (10.75)

Rural Georgia 299 (0.23) 91 (0.26)

Greater California 28,557 (22.30) 7703 (22.26)

Kentucky 8704 (6.80) 2488 (7.19)

Louisiana 8131 (6.35) 2296 (6.64)

New Jersey 15,152 (11.83) 4696 (13.57)

Greater Georgia 10,207 (7.97) 2811 (8.12)
aIQR: Interquartile range and medians [1st Qu, 3rd Qu] were used to describe continuous variables
bTumor location, the right colon comprised the cecum, appendix, ascending colon, and hepatic flexure; the left colon comprised the splenic flexure, descending
colon, sigmoid colon, large intestine, and NOS; and the rectum comprised the rectosigmoid junction and the rectum
cEOD10_PN: Number of positive regional lymph nodes

Tian et al. BMC Cancer         (2018) 18:1084 Page 5 of 14



multivariate analysis for comparison and interpret-
ation purposes. However, we used age as a continu-
ous variable in both the statistical and machine
learning prediction models. Therefore, this parameter
had both levels and interquartile range values. The
median tumor size was 40 mm (interquartile range,
30 to 60; maximum, 975). The median number of
positive regional lymph nodes was 0 (interquartile
range, 0 to 2; maximum, 73). The probability of
all-cause death varied across different geographic re-
gions (Fig. 2). As mentioned in a previous study, the
survival outcome of patients with CRC exhibits
spatial cluster effects, which may impact the choice
of methodology in building a survival prediction
model.

Spatially varying effects of the predictors according to
univariate analysis
For the widely used clinical predictor, the TNM
tumor stage, we first compared the differences in
survival outcomes for patients within the same TNM
staging group among different spatial clusters. Be-
cause the “Alaska” and “Rural Georgia” clusters in-
cluded too few patients [252 patients in Alaska (0.2%
of the total population) and 299 patients in Rural
Georgia (0.23% of the total population)], we drew
Kaplan-Meier survival curves for all spatial clusters except
these two clusters. As shown by the Kaplan-Meier survival
curves (Fig. 3), the survival outcomes of patients within
the same TNM staging group significantly differed across

different spatial clusters. Except for the stage IIC group,
there were significant spatially varying effects (P value <
0.05) for patients assigned to the same staging groups.
Second, using the San Francisco-Oakland SMSA registry
as a reference, we performed a quantitative comparison of
patient survival outcomes within the same staging group
among spatial clusters based on the RMST. As shown in
Table 2, in most staging groups, the RMSTs of the spatial
clusters significantly differed. For stage IIB, the maximum
difference in RMST was approximately 15.66% of the en-
tire assessment period, which means that for the same sta-
ging group, patients in different spatial clusters showed
different survival outcomes.
For other predictors that are usually considered in

studies of survival prediction, we first analyzed the
univariate associations between overall survival and
the predictors in each spatial cluster using a Cox re-
gression model from which log hazard ratios were
obtained with 95% confidence intervals. Then, using
Cochran’s heterogeneity statistic Q and the inconsist-
ency index I2 as measurements, we obtained the het-
erogeneity of the impact of predictors on survival
outcomes among different spatial clusters. As shown
in Table 3, the effects of “tumor size,” “number of
positive regional lymph nodes” and “age at diagnosis”
on survival outcomes were substantially heteroge-
neous among the different spatial clusters, which in-
dicated that the impact of the patients’
characteristics may not be consistent among different
geographic regions. A forest plot was used to

Fig. 2 Mortality distribution across all study regions. Similar to previous findings, differences in survival outcomes across geographic areas were
found in this study. The urban mortality rate was lower than the suburban mortality rate, and the mortality rate in areas with high levels of
economic activity was lower than that in areas with low levels of economic activity
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Fig. 3 Kaplan-Meier survival curves of patients within the same TNM staging group across different spatial clusters. The log-rank test was used to
test differences across different spatial clusters. Except for the stage IIC group, there were significant spatially varying effects (P value < 0.05) of
patients within the same staging groups
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intuitively display the spatially varying effects for
“tumor size” and “age at diagnosis” (Fig. 4).

The spatially varying effect of the regression coefficient
on the multivariate analysis
Considering the regression coefficients of the predic-
tors combined through multivariate Cox regression
models among the different spatial cluster datasets,
we found strong spatially varying effects of the re-
gression coefficient. We considered male patients, age
at diagnosis less than 55 years, well-differentiated
tumor, adenocarcinoma histology type, right colon

tumor location, T1 T stage and N0 N stage as the
baseline hazard. As shown in Fig. 5, the pattern of
the spatial variation of the regression coefficient dif-
fered among predictors; the spatially varying effect of
“age at diagnosis” was large, but spatially varying ef-
fects for “tumor size” and “number of positive re-
gional lymph nodes” were relatively small. The
pattern of spatially varying effects also differed among
the subgroups of one predictor. For the predictor
“histological type,” the regression coefficients of the
subgroups of “mucinous adenocarcinoma” and “signet
ring cell carcinoma” among the different spatial clus-
ters were more stable than those of the other sub-
groups of “histological type.” As shown in more detail
in Fig. 6, the impact of the same predictors (e.g., “age
at diagnosis”) on different geographic regions also
varied, and the hazard ratio (the exponential trans-
formation of the regression coefficient of the pre-
dictor) of “Hawaii” remained higher than that of
“Greater Georgia” and “New Mexico” within all the
subgroups. However, for other registries, these pat-
terns may not exist. For example, the hazard ratio of
“Detroit” for the subgroup of patients with age at
diagnosis = 55–64 years was similar to that of “Ha-
waii” for the same subgroup but lower than that of
“Hawaii” for the age at diagnosis = 65–74 years sub-
group and much higher than that of “Hawaii” for the
age at diagnosis > 74 years subgroup.
In summary, we found that the predictors com-

monly used in survival prediction models have sig-
nificant spatially varying effects and that the impact
of patient characteristics may not remain constant
across large-scale, multicenter clinical research data
that have been aggregated from a wide range of geo-
graphic regions.

Model evaluation and comparison
The predictive accuracies of the machine learning
model and the statistical model were measured using

Table 2 RMST of Different Clusters for Patients within the Same AJCC7 Stage Group

AJCC7 Stage group RMST
Max

RMST
Min

RMSTSDa Spatial Cluster
[Max, Min] b

Max-Diff Max-Diff/Tauc

Stage I 88.49 82.22 2.00 [Seattle (Puget Sound), Kentucky] 6.28 6.28%

Stage IIA 68.96 64.48 1.29 [San Jose-Monterey, Metropolitan Detroit] 4.48 5.60%

Stage IIB 58.81 47.69 3.02 [Hawaii, New Jersey] 11.12 15.66%

Stage IIC 55.32 46.51 2.47 [New Mexico, Connecticut] 8.80 12.40%

Stage IIIA 71.92 63.56 2.15 [San Jose-Monterey, Greater Georgia] 8.36 10.86%

Stage IIIB 62.51 55.97 1.72 [Seattle (Puget Sound), Metropolitan Detroit] 6.54 8.61%

Stage IIIC 47.69 40.69 2.19 [Hawaii, Kentucky] 7.00 9.34%
aSD, standard deviation
bSpatial Cluster[Max, Min] indicates the registry with the maximum or minimum RMST
cMax-Diff/Tau indicates the proportion of the maximum difference in RMST among clusters within the entire assessment period (Tau)

Table 3 Heterogeneity Test for Predictors among Spatial
Clusters

Covariate Description Qa I2 b

Age Age at diagnosis 73.74 79.66%

Gender Male set to 0 as baseline hazard

Female 21.35 29.75%

Grade Well-differentiated set to 0 as baseline hazard

Moderately differentiated 28.29 46.97%

Poorly differentiated 42.21 64.47%

Undifferentiated 25.96 42.23%

Histology Adenocarcinoma set to 0 as baseline hazard

Mucinous adenocarcinoma 14.61 0.00%

Papillary adenocarcinoma 17.13 12.42%

Adenoma. In Adenoma. Polyp 22.32 32.81%

Signet ring cell carcinoma 17.88 16.12%

Other 14.28 0.00%

Tumor location Right colon set to 0 as baseline hazard

Left colon 29.26 48.74%

Rectum 20.01 25.05%

Tumor size The size of the tumor 105.16 85.74%

EOD10_PNc Number of positive lymph nodes 84.56 82.26%
aQ: Cochran’s heterogeneity statistic
bI2: Inconsistency index
cEOD10_PN: Number of positive regional lymph nodes
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the C-index. The stability of both models for differ-
ent spatial cluster datasets was evaluated based on
the standard deviation and the difference between
the maximum and minimum of the C-index for dif-
ferent spatial cluster datasets. As shown in Table 4,
the machine learning model exhibited better predic-
tion performance for the test dataset than the statis-
tical model. As shown in Additional file 1: Table S5,
the proportional hazard assumption for the Cox
model was violated and may affect the reliability of
the model; therefore, we consider the AFT model as
an alternative strategy for the analysis of
time-to-event data. The AFT model can even be
suitable when hazards are not proportional. The
C-index for the machine learning model (0.898, 95%
CI: [0.895, 0.902]) was higher than that for the AFT
model (0.732, 95% CI: [0.726, 0.738]). Although there
were no significant differences (P = 1) in the model’s
prediction stability for different spatial cluster data-
sets, the RSF model had a lower standard deviation
and lower maximum and minimum differences of
the C-index. As shown in Fig. 7, the prediction
accuracy of both models for different spatial cluster
datasets also varied, especially for regions that
contained fewer patients. The RSF model yielded a
higher prediction accuracy with a narrower error bar
for the C-index (95% confidence interval) than the
AFT model, indicating that the RSF model was more
accurate and stable for different spatial cluster data-
sets that contained a different number of patients
and predictors with spatially varying effects. As
shown in Fig. 8, the prediction error of both models
was tested using an aggregate test dataset, and the
reference model was a nonparametric Kaplan-Meier
curve. The RSF model consistently had a lower
prediction error than the statistical model and,
therefore, had better model calibration capability
than the statistical model. In addition, the statistical
model had lower prediction error than the nonpara-
metric method.

Discussion
In this study, we used population-based data from the
SEER database to detect and interpret the spatially
varying effects of patients’ clinicopathological and
demographic characteristics, which are commonly
used in CRC survival prediction. The study period
was between 2004 and 2013, a period during which
patients benefited from modern therapies with im-
proved survival probability. A new population-based
survival prediction model is needed to predict CRC
patient survival probabilities, as the impact of patient
characteristics may not remain constant across entire
study regions, especially for large-scale, multicenter
clinical research, for which data are collected from a
wide range of geographic regions. Strong spatially
varying effects were identified for commonly used
CRC predictors. To our knowledge, this study is the
first to explore the spatially varying effects of the
predictors used in a CRC survival prediction model
with a population-based dataset. The machine
learning model, which considered the varying impact
of patient characteristics on different spatial clusters,
achieved more accurate prediction than the statistical
model, which considered only the random effects of
spatial clustering and that the impact of patient char-
acteristics remained constant across different spatial
clusters of patients diagnosed with primary nonmeta-
static CRC.
The spatially varying effects of predictors for CRC

survival prediction were detected, while many previ-
ous studies have ignored these effects. TNM tumor
staging, which is widely used worldwide for predicting
cancer prognosis, assumes that patients in different
geographic regions should have the same or similar
survival outcomes based on the same pathological cri-
teria. However, in our study, all stage groups except
stage IIC exhibited significant variance in survival
outcomes (P < 0.05). Therefore, using the TNM sta-
ging system to predict survival may potentially reveal
deviations between different regions. Moreover, age at

Fig. 4 Forest plot displaying the spatially varying effects of “tumor size” and “age at diagnosis”
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diagnosis also has spatially varying effects that are
typically not considered. Using heterogeneity testing
and multivariable regression analysis, we observed
that age at diagnosis had large spatially varying ef-
fects. Compared with patients in Hawaii, patients
from Utah had lower hazard ratios in subgroups for
which the patients’ age at diagnosis ranged from 55
to 64 and from 65 to 74, but these hazard ratios were
higher in the subgroup for which the patients’ age at
diagnosis was greater than 74. However, for patients
from Greater Georgia and New Mexico, the hazard
ratios were consistently lower than those of patients
in Hawaii for all subgroups related to age at
diagnosis.
The spatially varying effects of the predictors imply

that the impact of patients’ characteristics may not re-
main constant across entire study regions. The rea-
sons for these effects should be studied further.
However, many studies that have constructed survival
prediction models using large-scale, multicenter clin-
ical research data aggregated from a wide range of
geographic regions did not consider these effects. Be-
cause these models assume that the impact of patient
characteristics remains constant across different
spatial clusters and consider only random effects re-
garding the spatial nature of the data, the use of
these models may have over- or underestimated sur-
vival prediction. We achieved better performance
using a machine learning model (RSF) that considered
the spatially varying effect of predictors than when
we used a statistical model.
In combination with our previous research results

[38], the present study demonstrates that the RSF
model can be used to study complex relationships
(such as nonlinear or time-dependent relationships)
regarding the problem of prognosis in nonmetastatic
CRC; this topic warrants continued in-depth study.
Using the proposed machine learning model frame-
work, one can establish a global survival prediction

Fig. 5 Spatially varying effects of the regression coefficients of
predictors on the multivariable analysis. The predictors included a)
age at diagnosis between 55 and 64 years; b) age at diagnosis
between 65 and 74 years; c) age at diagnosis greater than or equal
to 75 years; d) female; e) moderately differentiated tumor grade; f)
poorly differentiated tumor grade; g) undifferentiated tumor grade;
h) mucinous adenocarcinoma histology type; i) papillary
adenocarcinoma histology type; j) adenoma. In adenoma, polyp
histology type; k) signet ring cell carcinoma histology type; l) other
histology type; m) left colon; n) rectum; o) T stage T2; p) T stage T3;
q) T stage T4a; r) T stage T4b; s) N stage N1a; t) N stage N1b; u) N
stage N1c; v) N stage N1nos; w) N stage N2a; x) N stage N2b; y) N
stage N2nos; z) tumor size; and AA) number of positive regional
lymph nodes
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Fig. 6 Hazard ratios according to “age at diagnosis” group and registry. a) Subgroup 1: age at diagnosis between 55 and 64 years, b) Subgroup 2:
age at diagnosis between 65 and 74 years, c) Subgroup 3: age at diagnosis greater than or equal to 75 years. d) The varying effects of hazard
ratio on different subgroups of registries, including Detroit, Greater Georgia, Hawaii, New Mexico and Utah

Table 4 Performance Comparison of the Statistical Model and the Machine Learning Model

Performance
measurement

Model Random survival
forestCox regression model with mixed effects AFT model

C-index on global dataset

Test dataset 0.731 [0.725, 0.737] 0.732 [0.726, 0.738] 0.898 [0.895, 0.902]

C-index among different spatial clusters

Standard deviation 0.037 0.035 0.017

Max-Min difference 0.187 0.172 0.062

Reduced SDa reference −5.41% −54.05%

Reduced Max-Minb reference −8.02% −66.84%
aReduced SD: Reduction in the standard deviation of the C-index for the machine learning model compared with the statistical model
bReduced Max-Min: Reduction in the Max-Min difference of the machine learning model compared with the statistical model
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model based on large-scale, multicenter clinical data
that considers the spatially varying effects of predic-
tors among different clusters. Once the model is fi-
nalized, patients from different regions will be able
to obtain more personalized survival predictions by
entering their individual characteristics. Both doctors
and patients will benefit from such a model. Doctors
will be able to provide more precise and generalized
survival predictions and chose more appropriate
treatment options, and patients will be able to better
understand the progression of their disease, thus en-
hancing patient compliance.

However, we did not include therapeutic and mo-
lecular data, which might have further improved the
predictive accuracy of the model. Moreover, we as-
sumed that all patient treatments and clinical visits
were confined to the same region because migration
and cross-regional clinical visits were outside the
scope of this study. Another limitation of this study
is that the longest follow-up in the SEER database
was only 119 months, and the median follow-up was
40 months; these follow-up times are relatively short
considering a population with a potentially curable
condition. Therefore, the results should be verified

Fig. 7 Model evaluation and comparison between the machine learning model and the statistical model. a) C-indexes of both models among
different spatial clusters sorted by decreasing C-indexes. b) Boxplot of C-indexes of both models among different spatial clusters using the
Wilcoxon test (nonparametric) to compare the mean C-indexes of the models. c) The C-indexes of both models among different spatial clusters.
d) Comparison of the standard deviations of the C-indexes of both models among different spatial clusters using the Wilcoxon test
(nonparametric). The machine learning model exhibited better prediction performance than the statistical model
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using other databases containing long-term follow-up
data.

Conclusions
We conclude that the widely used clinical TNM
tumor staging system is limited by spatially varying
effects for predicting survival. The impact of age at
diagnosis, tumor grade, histology and tumor location
may not be consistent across study regions.
Constructing survival prediction models based on
population-based data collected from a wide range of
geographic regions without considering these spatially
varying effects may produce deviations across differ-
ent regions. Machine learning models that consider
these spatially varying effects are likely to produce
more accurate and robust survival prediction models.
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