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Abstract

Background: Various efforts to understand the relationship between biological information and disease have been
done using many different types of highthroughput data such as genomics and metabolomics. However, information
obtained from previous studies was not satisfactory, implying that new direction of studies is in need. Thus, we have
tried profiling intracellular free amino acids in normal and cancerous cells to extract some information about such
relationship by way of the change in IFAA levels in response to the treatment of three kinase inhibitors. We define two
measures such as relative susceptibility (RS) and relative efficacy (RE) to numerically quantify susceptibility of cell line
to treatment and efficacy of treatment on cell line, respectively.

Methods: We applied principal component analysis (PCA) to the intracellular free amino acids (IFAAs) of isogenic
breast cells with oncogenic mutation in K-Ras or PI3K genes to investigate the change in IFAA levels in response to the
treatment of three kinase inhibitors. Two-dimensional plot, which was graphically represented by using the first two
principal components (PCs), enabled us to evaluate the treatment efficacy in cancerous cells in terms of the
quantitative distance of two IFAA profiles from cancerous and normal cells with the same treatment condition.

Results: The biggest change in metabolic states in K-Ras mutant cell was caused by REGO for both treatment time
(RS=2.31 (24 h) and 1.64 (48 h)). Regarding RE, REGO was the most effective on K-Ras/PI3K mutant cell line for
treatment time 24h (RE=1.28) while PI3K inhibitor had good effect on K-Ras mutant cell line for 48h (RE=1.1).

Conclusions: Numerical study on the link between amino acid profile and cancer has been done in two different
dimensions. We then summarized such link in terms of two new metrics such as RS and RE, which we first define in
this work. Although our study based on those metrics seems to work, we think that the usefulness of the metrics in
cancer study of this kind need to be further investigated.
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Background
The reprogrammed metabolism observed in many types
of cancer cells is known as an emerging hallmark of can-
cer. Altered metabolic pathways or oncometaboilites are
to meet bioenergetics and biosynthetic demands of prolif-
erating tumor cells [1–4]. Thus, cancer is recently viewed
as a metabolic disease with altered metabolism, which
drives many studies to analyze the change in the level
of carbohydrate-, protein-, lipid-, or nucleic acid-based
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metabolites in cancer cells compared to normal cells [5].
Many genomic and proteomic studies have explored the
change in the expression level of oncogenes as well as their
mutation patterns in cancer cells. Although these onco-
genes give rise to the change in metabolic pathways, few
works on the experimental analysis of oncogene-specific
profiles of intracellular metabolites, especially intracellu-
lar free amino acids (IFAAs) have been reported.
Among the numerous metabolites, amino acids have

been considered as potential disease biomarker because
they serve as not only building blocks for protein syn-
thesis but also metabolic intermediators or regulators [6].
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Thus, many studies have focused on revealing the inter-
play or link between the levels of amino acids and cancer.
With plasma free amino acid (PFAA) profiles, some stud-
ies investigated the tumor-associated metabolism in can-
cer patients, being a potential biomarker of malignancy
[7, 8]. Bi and Henry provided an excellent review on var-
ious methods which address the molecular and clinical
associations between PFAA alterations and cancers [9].
However, it was also mentioned that the metabolic path-
ways leading to cancers is yet completely understood, i.e,
still remains elusive.
The intracellular free amino acid (IFAA) profile can

also indicate the altered metabolism due to the expres-
sion of oncogenic genes or treatment of small chem-
ical inhibitors. We thus make use of the intracellular
free amino acid (IFAA) profile as another route to the
understanding of such interplay. We previously measured
IFAA levels from the MCF-10A-derived cells with onco-
genic mutations in K-Ras or PI3K genes [10]. The wild
type (WT) MCF-10A cell was transformed to tumor-
mimicking cells by the knock-in of mutant K-Ras and
K-Ras/PI3K as oncogenes via the targeted knock-in
method [11]. The IFAA profiles of the breast cancer-
mimicking cells with or without the treatment of three
types of inhibitors targeting multiple kinases, PI3K, and
MEK, were also obtained to examine the inhibitor effect
on the transformed cells.
The objectives of this work are to analyze the effect

of oncogene expression on IFAA profiles and to evalu-
ate the chemical intervention to the oncogene in terms of
the similarity of IFAAs under treatment of three different
kinase inhibitors. We investigate such link by way of two
measures such as relative susceptibility (RS) and relative
efficacy (RE). However, in high dimension, it is not easy to
graphically represent the results. To avoid such difficulty,
we employ principal component analysis (PCA), which
summarize the high-dimensional information into low-
dimensional one (especially 2D), i.e., dimension reduction.
More specifically, we apply the PCA to the IFAA pro-
files and determine the effect of kinase inhibitors on the
human breast cancer cells.

Methods
Biological experiment
The quantitative level of 19 IFAAs in the four types
of MCF-10A cell lines was obtained after each cell
line was treated with one of three kinds of kinase
inhibitors as detailed in our previous work [10]. Briefly,
the cells with knock-in mutation of K-Ras(G12V) and
K-Ras(G12V)/PI3Ka(E545K) were named K-Ras and
K-Ras/PI3K, respectively, compared to their wild type
(WT) cells (Horizon Discovery, Cambridge, UK). These
cells were cultured in DMEM:F12 (1:1) medium supple-
mented with 5% horse serum, 20 ng/ml epidermal growth

factor (EGF), 10 μg/ml insulin, 0.5 μg/ml hydrocorti-
sone, 0.1 μg/ml cholera toxin, 100 U/ml penicillin, and
100 μg/ml streptomycin. Cells were maintained at 37 ◦C
with 5% CO2 in a humidified chamber. The three kinase
inhibitors including REGO (i.e. Regorafenib or StivargaTM
approved by US FDA in 2012), PI3K-i (Bayer, Berlin, Ger-
many) and MEK-i (Bayer) were treated to cells up to for
48 h in order to interfere multiple kinases, PI3K, and
MEK, respectively (Fig. 1a). The chemical formula, struc-
ture, and dose of three inhibitors were listed in Additional
file 1 (Table S1). Non-treated (NT) cells were used as
controls. IFAAs were extracted from the pellet of 107
cells according to the methanol extraction protocol [12].
Ortho-phthalaldehyde was used to label the extracted
IFAAs with fluorophores excited and emitted at 345 nm
and 455 nm, respectively. The fluorophore-labeled IFAAs
were separated via reverse-phase HPLC (Applied Biosys-
tems, Thermo Fisher, Waltham, USA) with Gemini-NX
5 μm C18 100 Å column (Phenomenex, Torrance, USA)
followed by quantification of peaks for assigned amino
acids using standard curves (Fig. 1b). Experimental data
are available in Additional file 2.

Statistical measures
The following 19 amino acids among the 20 genetically-
encoded amino acids were analyzed: alanine (Ala),
arginine (Arg), asparagine (Asn), aspartic acid (Asp), cys-
teine (Cys); glutamine (Gln), glutamic acid (Glu), histidine
(His), isoleucine (Ile), leucine (Leu); lysine (Lys), methion-
ine (Met), phenylalanine (Phe), proline (Pro), serine (Ser),
threonine (Thr), tryptophan (Trp), tyrosine (Tyr), and
valine (Val). Since proline has no free amino group to
be chemically labeled, it was excluded from our analy-
sis. For the 24 conditions combining three cell types, four
treatments, and two treatment times (24 h and 48 h), the
triplicate IFAA profiles for each condition were repre-
sented as three 19-by-1 vectors with providing 72 vectors
in total. Each condition was identified in the format of cell
type inhibitor time (e.g. WT REGO 24 h is for the condi-
tion ofWT cell treated with REGO for 24 h). Note that the
original 19 dimensional space is called original space and
principal component space is called PC space.
We measured two different statistics which measure the

degree of reaction of each cell line to the treatment and the
efficacy of treatment on cancerous cell. Such statistics are
represented as the Euclidean distance with reference to
WT or NT, respectively. The distance between two IFAA
profiles is calculated:

d(a, b) =
√
√
√
√

I
∑

i=1
(ai − bi)2

where both a and b are vector representing each condition
and I is the dimension of the vector. For example, a and
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Fig. 1 Overview of profiling free amino acids in cells. a Treatment of inhibitors to cells. The three types of isogenic MCF-10A cells including WT,
K-Ras, and K-Ras/PI3K were treated for 24 or 48 h with three different kinase inhibitors: multiple kinase inhibitor (REGO), PI3K inhibitor (PI3K-i), and
MEK inhibitor (MEK-i). Non-treated (NT) cells were used as controls. b Quantification of amino aicd levels. The IFAAs were extracted, chemically
labeled, and separated to generate the amino acid profile in triplicate for 24 different conditions. The qunatified AA levels from each profile were
represented into a 19-by-1 vector for the subsequent analysis. Note that unassigned peaks in an HPLC chromatogram were marked with *

b could be the 2-dimensional PCs, each consisting of the
first two principal components in PC space.
The susceptibility of cancerous cell (Cell) to each treat-

ment (Trt) is defined:

s(Cell,Trt|WT) = d(Cell Trt, WT Trt).

As an example, the susceptibility of cancerous cell
(K-Ras) to inhibitor (REGO) is

s(K-Ras,REGO|WT) = d(K-Ras REGO, WT REGO).

This means the susceptibility of K-Ras mutant cell
to REGO with respect to WT, i.e., Euclidean distance
between K-Ras mutant cell line and WT under the same
experimental condition i.e., the same treatment and the
same treatment time.
With reference to WT, the relative susceptibility (RS) of

cancerous cell to treatment (Trt) is defined:

rs(Cell, Trt) = s(Cell, Trt|NT)

s(WT , Trt|NT)
= d(Cell Trt, Cell NT)

d(WT Trt, WT NT)

(1)

where s is the susceptibility of cell line to the same
inhibitor with respect to NT. For example, the relative
susceptibility of K-Ras to REGO is the ratio of two suscep-
tibilities

rs(K-Ras, REGO)

= d(K-Ras REGO, K-Ras NT)/d(WT REGO,WT NT),
(2)

meaning the ratio of transition of K-Ras mutant cell to
that ofWT under the same condition with/without REGO
treatment (Fig. 2a).
As another measure, we define the relative efficacy (RE)

of treatment on cancerous cell:

re(Trt, Cell) = d(Cell NT , WT NT)

d(Cell Trt, WT Trt)

(

= d1
d2

)

where the numerator and denominator are the distance
between two cell lines before and after treatment, respec-
tively (Fig. 2a). If the distance between two cell lines after
treatment (d2) is relatively small compared to the dis-
tance before treatment (d1), it can be interpreted that
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Fig. 2 Two statistical measures. a Graphical representation of relative susceptibility and relative efficacy. b Plot of RE against RS for both incubation
time (24h in blue and 48h in red). In the case that PI3K inhibitor is applied to K-Ras mutant cell, we observed big vertical change between two
treatment time, more than twice increase in RE (the big circle in green). This means that we can expect some positive progress toward better
situation after 48 h incubation time. In contrast, it is clear that there is little change in metabolic states 24 h after applying MEK inhibitor to K-Ras
mutant cell line (the small circle in green)

the treatment has a positive effect on the mutant cell
line. Equivalently, RE greater than 1 implies that inhibitor
produces positive effect on the cancerous cell.
Note that the software R (available at https://www.r-

project.org, ver. 3.2.3) was employed for all statistical
analysis here.

Results
A global view: pattern in original space
We calculated two measures: relative susceptibility and
relative efficacy. Those measures for the two treatment
times are listed in Table 1 (graphically in Fig. 2b). For
the treatment time of 24 h, the K-Ras mutant cell is the
most susceptible to the REGO. That is, compared to other
inhibitors, REGO perturbs the metabolic status most in
K-Ras mutant cell line and PI3K inhibitor produces the
least perturbation in the same cell. But, for K-Ras/PI3K
mutant cell line, different pattern is observed. PI3K inhibitor
produces the biggest move in the K-Ras/PI3K mutant
cell line.

Table 1 Relative susceptibility (RS) and relative efficacy (RE)

Condition RS(24) RE(24) RS(48) RE(48)

(K-Ras, REGO) 2.31 0.23 1.64 0.31

(K-Ras, PI3K-i) 0.59 0.53 0.52 1.10

(K-Ras, MEK-i) 1.22 0.51 1.27 0.48

(K-Ras/PI3K, REGO) 0.77 1.28 1.05 1.06

(K-Ras/PI3K, PI3K-i) 1.38 0.35 0.88 0.93

(K-Ras/PI3K, MEK-i) 0.99 0.70 1.25 0.77

Two measures are calculated in the original space for two different times following
treatment

Regarding relative efficacy, only one case (for the treat-
ment time 24h) has meaningful value, i.e., greater than 1.
More specifically, after REGO treatment, the cancerous
cell (K-Ras/PI3K) moves closely toward the WT, show-
ing an effective output. Similar patterns for all cases are
observed for the treatment time of 48 h as well. How-
ever, in case of K-Ras cell treated with PI3K inhibitor,
RE for that case changes from 0.53 to 1.1 as time goes,
meaning that the K-Ras mutant cell gets closer to the WT
after 24 h.
Ideally, we not only expect treatment to perturb the

metabolic states as much as possible in cancerous cell, but
also expect cancerous cell to move toward WT. In other
words, it was expected that we observe some points with
high RS as well as high RE (i.e., top right part of Fig. 2b).
However, we observed some points with RE greater than
1 or RS greater than 1. Most interestingly, in the case
that PI3K inhibitor is applied to K-Ras mutant cell, we
observed big vertical change between two treatment time,
more than twice increase in RE (the big circle in green
in Fig. 2b). This means that we can expect some positive
progress toward better situation after 48 h of treatment
time. In contrast, it is clear that there is little change
in metabolic states 24 h after applying MEK inhibitor
to K-Ras mutant cell line (the small circle in green in
Fig. 2b). More analysis results are given in Additional file 1
(Tables S2 and S3).

PCA-based view: pattern in 2D-PC space
To investigate the validity of dimension reduction by PCA,
we calculated the Euclidian distance between a given
condition and the baseline condition (i.e., WT NT 24 h)

https://www.r-project.org
https://www.r-project.org
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in two different spaces: Data space and PC space
(Additional file 1: Table S4). As seen in the table, the
two sets of distances from two different spaces are highly
correlated (R2 = 0.99), implying the distance in PC
space conserves the distance in the 19-dimensional origi-
nal space very well. Clearly, the degree of change in IFAA
profile can be appropriately translated and evaluated in
the 2D-PC space. To graphically provide an overview
of the global change of IFAA profiles for the 24 dif-
ferent conditions of oncogenic mutations and inhibitor
treatments, we applied PCA to 24 averaged 19-by-1
vectors which were to be individually visualized into
single points in two-dimensional principal component
(2D-PC) space.
Following the application of PCA, the variance

explained by the first 9 PCs are summarized in Table 2.
As seen in the table, since the first two principal compo-
nents explain 85.6 percent of the total variance (PC1 and
PC2 accounts for 65.8% and 19.8% of the total variance,
respectively), we can comment on the relationship using
the first two principal components without loss of gen-
erality (i.e., with probability of 0.86). The original PCA
plot was separated into four plots, each representing the
change in IFAA profiles under the four treatment types:
No treatment (NT), REGO, PI3K-i, and MEK-i. In Fig. 3,
relative transition of each inhibitor with respect to NT
is represented. For example, Fig. 3b shows the transition
made by inhibitor REGO in two different colors (24 h in
blue and 48 h in red). As a reference, the results under no
treatment are represented in grey. Two points obtained
from a given treatment and NT under the same condition
(the same mutant and the treatment) are connected by
arrow in grey, implying susceptibility of each cancerous
cell to each treatment. In practice, the length of the arrow
implies the amount of relative effect of each inhibitor with
respect to NT, i.e., distance between two situations. For all
cases, the longest transition w.r.t NT is observed in Fig. 3d
corresponding to MEK inhibitor. Clearly, we noticed that

Table 2 PCA results on averaged vectors

Principal
Component

Variance Percentage of
variance

Cumulative
percentage

PC1 92.5 65.8 65.8

PC2 27.9 19.8 85.6

PC3 15.1 10.8 96.4

PC4 3.6 2.5 98.9

PC5 0.8 0.6 99.5

PC6 0.2 0.2 99.7

PC7 0.2 0.1 99.8

PC8 0.1 0.1 99.9

PC9 < 0.1 < 0.1 > 99.9

Variance explained by each principal components

the treatment MEK-i perturb the metabolic status most
significantly in all mutant cell lines. For reference, the
results obtained by applying PCA to individual vectors
first and then taking average of translated points are
provided in Additional file 1 (Figure S2, Tables S5 and S6).
For the non-treated cell, the distance of each cell line

to WT is provided in Fig. 3a and Table 3. For 24 h cul-
ture time, the distance between K-Ras and WT (1.5) is
about a third of that between K-Ras/PI3K and WT (4.4).
As the culture time was increased, the IFAA profiles of
the mutant cells were evenmore deviated fromWTwhich
showed a marginal deviation, suggesting that the higher
number of oncogenic mutations and the longer culture
time induce the more significant change in the IFAA
profile.
The treatment of kinase inhibitors to cells resulted in

further deviations of IFAA profiles, which was found to
be dependent on the oncogenic mutation (Fig. 3b to d).
The inhibitor-treated WTs (denoted by o) showed more
distant IFAA profiles for the two incubation times in com-
parison to the non-treated WT. The treatment of kinase
inhibitors to WT led IFAA profiles to be placed into the
three different spots, indicating that each inhibitor have
different actions in cell metabolism or signaling. In each
treatment of inhibitors, the two IFAA profile of WT from
24 and 48 h treatments kept relatively short distances
compared to the two IFAA profiles of mutant cells. That
is, each cell line mainly react to an inhibitor within the 24
h after treatment, but not much after that. Notably, the
treatment of REGO and PI3K-i to K-Ras and K-Ras/PI3K,
respectively, shortened the distance of IFAA profiles for
the two treatment times compared to their own non-
treated profiles. In terms of deviation directions of IFAA
profiles of mutant cells, REGO andMEK-i developed sim-
ilar directions: right upward deviation in K-Ras and right
or right downward in K-Ras/PI3K while PI3K-i induced
upward and right upward in K-Ras and K-Ras/PI3K,
respectively.
We also employed the clustering method to reveal the

hierarchical clustering of IFAA profiles from 24 condi-
tions. The non-standardized and standardized clustering
could pair the two closest conditions with no quantita-
tive distance (Additional file 1: Figure S3). However, the
non-standardized clustering showed the closest pair for
MEK-i treatment: WTMEK-i 24 h and K-Ras MEK-i 24 h
(depicted with r′M in Fig. 3d). The standardized clustering
provided the same pair for three types of kinases as the
PCA approach.

Discussion
This work focused on the numerical analysis of IFAA pro-
files to assess the effect of chemical inhibitors on the
metabolism ofmutant cells, monitoring the chemical redi-
rection of the metabolism of cancer cells into that of
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Fig. 3 Global patterns of amino acids in response to oncogenic mutation and kinase inhibitors. The original PCA plot was divided into four graphs
for each treatment. a NT (the numeric value is the distance between two IFAA profiles), b REGO, c PI3K-i and dMEK-i. For the treatment reference,
the loci for the non-treated cells shown in a were depicted in gray in the other three plots. Each symbol (O: WT, �: K-Ras, and�: K-Ras/PI3K) colored
in blue and red represents the IFAA of cells at 24 and 48 h, respectively. Dashed arrows were drawn to trace the temporal deviation of amino acid
profiles in K-Ras and K-Ras/PI3K treated with each inhibitor. The three circles with radii, rR, rP, and rM indicated a pair of cells (i.e. an inhibitor-treated
WT and a mutant cell) with the most similar IFAA profile when treated REGO, PI3K-i, and MEK-i, respectively. r′M is the distance for the second
nearest pair of cells

normal cells. Our evaluation criteria for the efficacy of the
inhibitor is this similarity of metabolite profiles between
the cancer and normal cells, not the significant difference
in the number of dead cells when both cells treated with
chemical inhibitors.

Table 3 Euclidean distance in 2D-PC space

Tretment Condition 24h 48h

NT (K-Ras, WT) 1.5147 4.6979

NT (K-Ras/PI3K, WT) 4.4387 13.8712

REGO (K-Ras, WT) 15.3728 16.3767

REGO (K-Ras/PI3K, WT) 1.7250 16.1222

PI3K-i (K-Ras, WT) 5.8236 3.4196

PI3K-i (K-Ras/PI3K, WT) 16.2723 15.8265

MEK-i (K-Ras, WT) 6.9794 10.5205

MEK-i (K-Ras/PI3K, WT) 5.7649 17.3562

We analyzed the IFAA profile of cells with oncogenic
aberration in K-Ras or PI3K genes compared to normal
cells. The three different inhibitors were treated to normal
and oncogenic cells to interfere the cellular metabolism,
resulting in the change in IFAA profiles. Thus, these 24
profiles from the combination of three cell types, four
treatment conditions, and two time points can represent
the metabolic states of WT, K-Ras, and K-Ras/PI3K sub-
jected to the treatment of REGO, PI3K-i, orMEK-i for 24 h
and 48 h compared to the non-treated cells. Each profile
contains quantitative levels of free 19 AAs out of 20 AAs
building up proteins, which was represented into a single
point in two different spaces: original (or 19-dimensional)
and 2D-PC space. For the evaluation of the efficacy of the
chemical inhibitors treated to normal and oncogenic cells,
this work calculated the Euclidean distance of two points
of interest. If the drug-perturbed IFAA profiles of normal
and oncogenic cells are similar, the Euclidian distance of
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these two profiles with the same treatment time will be
short. That is, the treatment condition in close vicinity to
the perturbed normal cell can be determined as the most
effective strategy to regulate the metabolism of oncogenic
cells.
In the original space, we introduced two different mea-

sures such as relative susceptibility and relative efficacy,
both of which are the ratio of two different Euclidean dis-
tances. However, in two-dimensional PC space, we used
just Euclidean distance between two conditions. Themain
reason for the difference is that we lose some informa-
tion when reducing dimension from 19 to 2. Furthermore,
the amount of information lost depends on the posi-
tion in the original space. In other words, the distance
between two conditions in the original space is trans-
formed to that in 2D space with some distortion depend-
ing on the position in the original space. Even though it
is shown that the order of absolute distances is almost
kept by way of pearson correlation coefficient, there is
no guarantee that the ratio of distorted distances is kept.
Therefore, we used different distance-based measures in
each space.
In terms of the distance-based drug efficacy, the 24 h-

long treatment of REGO to K-Ras/PI3K cells was found to
be most effective in perturbing IFAA levels, finally induc-
ing them to have a similar IFAA profile in comparison
to WT cells with the same treatment condition. Its RE
value and Euclidian distance (rR) in 2D-PC space were
1.28 and 1.7 (Tables 1 and 3, and Fig. 3b), respectively.
Although the efficacy of MEK-i treated to K-Ras/PI3K
cells (RE =0.70 to 0.77) was slightly higher than its treat-
ment to K-Ras cells (RE = 0.51 to 0.48), both efficacy
measures were much smaller than the REGO treatment of
K-Ras/PI3K cells. It is known that the constitutively active
form of K-Ras and PI3K mutant genes play key roles in
development and progression of a wide range of human
tumors. As a member of the Ras family, K-Ras stimulates
multiple downstream signaling pathways such as PI3K-
Akt and Raf-MEK-ERK [13]. Since most effectors of K-Ras
are kinase porteins that promote cell proliferation, growth
and cell survival [14], the action of mutant K-Ras and
PI3K genesmight synergistically give themutant cell more
cancer-like features in our in vitro culture [10] showing
the colony-formed cell division compared to the typical
(i.e. monolayer-formed) cell growth of WT. Thus, it can
be speculated that a multi-kinase inhibitor, REGO sup-
presses the action of some kinases in the K-RAS or PI3K-
downstreamed signaling cascades although its target is
not a specific kinase such as PI3K and MEK. However,
the treatment of REGO to K-Ras mutant cells could not
bring the equivalent efficacy (RE =0.23 to 0.31, rR =15.4) as
did its treatment to K-Ras/PI3K cells. Further exploration
on how the mutant genes individually or synergisti-
cally contribute to metabolic reprogramming through

Ras-mediated pathways will be required to understand
this discrepancy.
The nearest profile pair under PI3K-i was K-Ras and

WT (rP = 3.4 in Fig. 3c and Table 3) when both treated for
48 h while its RE value was 1.10. The inhibition of MEK
with the treatment of MEK-i was found to be unsuccessful
in inducing them to have the most similar IFAA profiles.
We had expected that MEK-i also could allow remark-
able efficacy on the assumption that both PI3K-Akt and
Raf-MEK-ERK pathways be almost equivalent under the
mutant K-Ras. The efficacy of the 24 h-long treatment
of PI3K-i (RE =0.53, rP = 5.8) was smaller than its 48 h
treatment. These results suggest that the 48 h-long treat-
ment of PI3K-i to K-Ras mutant cells is the most effective
inhibitor compared to other treatment conditions. Thus,
the treatment time should be also optimized to achieve
better efficacy for a given set of an inhibitor and mutant
cells.

Conclusion
A number of works have made efforts to profile metabo-
lites of cells to assess their metabolic states, especially to
define caner-associated metabolites as cancer biomarkers.
Our work allowed taking a step forward in understand-
ing the change of intercellular metabolite due to oncogene
expressions, which will offer another insight into tumori-
genesis when combined with tumor-associated genomic
or proteomic alterations in cells. Although the IFAA pro-
file is a part of the whole list of metabolites, it can be
proposed that the change pattern of the IFAA profile
be used as an indicator of the drug efficacy. When it is
assumed that an inhibitor affects both cancer and its adja-
cent normal cells in the body for the cancer control, one
of the therapeutic aims is to lead the metabolic states of
the cancerous cell to be close to those of the normal cell
under the same inhibitor. Since cancer cells reprogram
their metabolism to be deviated from the normal cell, the
similar metabolic states of cancer and normal cells may
indicate that cancer cells are exposed to a fatal situation
due to the drug interference. In this respect, we defined
two different measures and partly observed weak, yet pos-
itive signal in the cancerous cell line after treatment. How-
ever, our proposal for IFAA-based drug efficacy requires
further preclinical or experimental validation. Especially,
if there are multiple treatment conditions of cancer cells
which are almost the same distance away from the normal
cell, the issue of which treatment is to be selected should
be resolved later.
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