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Abstract

Background: In the last decade, several tyrosine kinase inhibitors (TKIs), which disrupt pathways involved in the
proliferation and tumorigenesis of thyroid cancer, have been extensively studied. Two different TKIs, lenvatinib and
sorafenib, were recently approved by both the US FDA and European Medicine Agency. Until date, the duration of
the TKI response is not sufficient and resistance eventually occurs. The goal of this study was to investigate a new
treatment protocol, SoLAT, using sorafenib and lenvatinib alternatively on refractory thyroid cancer.

Methods: Patient-derived aggressive papillary thyroid cancer (PTC) cell lines from patients with biochemical and
histologically proven aggressive RAl-refractory papillary thyroid cancer were exposed to sorafenib and lenvatinib
alternatively. Human thyroid cancer cell xenografts were obtained by injecting patient-derived aggressive PTC cell
lines into the flank of female BALB/c nude mice. Tumor-bearing mice were treated with sorafenib and lenvatinib
alternatively. Cell viability assay, immunofluorescence analysis, confocal imaging, immunoblot analysis, flow
cytometry analysis of cell cycle and a tube formation assay were performed.

Results: SOLAT was more effective for advanced PTC cell lines than individual treatment. Immunoblot analysis
showed that SoLAT markedly increased levels of cell cycle inhibitors (p53 and p21), and pro-apoptotic factors
(Apaf-1 and cleaved caspase 3) and decreased levels of positive cell cycle regulators (cyclin D1, CDK4, CDK6)
and anti-apoptotic factors (p-NFkB, Bcl-2). Increased sub-Go/G; population was observed in the SoLAT group,
leading to apoptosis, cell cycle arrest, and strong inhibition of advanced PTC cell viability. SOLAT reduced the
level of EMT markers such as vimentin, E-cadherin, Snail and Zeb1 by FGFR inhibition. In the xenograft model,
individual treatment with sorafenib or lenvatinib did not markedly suppress patient-derived aggressive PTC
cell xenograft tumors, whereas SolL AT significantly suppressed the proliferation of these tumors.

Conclusions: SolLAT was more effective than individual treatment with sorafenib or lenvatinib in inhibiting
PTC progression by inducing cell cycle arrest. Studies using both in vitro cell culture and an in vivo xenograft
model provided evidence of tumor shrinkage with SoLAT. We suggest that these effects may be due to
reduced EMT-mediated drug resistance in the aggressive PTC model.
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Background

Thyroid cancer accounts for more than 90% of all endo-
crine cancers and is the most common endocrine malig-
nancy, as its incidence has increased over the last three
decades [1]. Thyroid cancer is distinguished into
well-differentiated, poorly differentiated, and anaplastic
thyroid cancer based on cell differentiation characteris-
tics and the ability to maintain follicular cell features.
Differentiated thyroid cancer (DTC) is the most com-
mon thyroid cancer, representing more than 90% of all
thyroid carcinomas. DTC is characterized by papillary
and follicular histological subtypes [2, 3]. However, ad-
vanced cancer subtypes, including anaplastic thyroid
cancer (ATC), have poor prognosis due to resistance to
treatment and aggressive behavior [4], with total median
survival of only few months [5]. Recently, novel targeted
therapies have increased the lifespan of cancer patients.
Kinase inhibitors are recommended for treating radio-
active iodine (RAI)-refractory differentiated thyroid can-
cer (DTC) patients with metastatic, rapidly progressive,
symptomatic, and/or imminently threatening disease
that is not otherwise amenable to local control using al-
ternative approaches [6]. Nevertheless, this has not been
the case for patients with advanced cancer subtypes. Re-
cent studies have revealed molecules and mechanisms
that are closely connected to poor clinical outcomes in
advanced thyroid cancer [7, 8]. Among these mecha-
nisms, we concentrated on the epithelial-mesenchymal
transition (EMT) and EMT-induced drug resistance of
cancer stem cells (CSCs) as one of the probable reasons
for the poor clinical results [9, 10]. EMT of cancer cells
not only induces metastasis, but also contributes to drug
resistance [10-12]. Therefore, it is necessary to deter-
mine the specific molecular changes or mechanisms of
thyroid carcinogenesis to overcome the depressing out-
come associated with advanced thyroid cancer.

Sorafenib was the first tyrosine kinase inhibitor tested
in a phase III trial and was approved for the treatment
of metastatic DTC in 2013. Patients with progressive
RAI-refractory DTC treated with oral sorafenib showed
improved progression-free survival compared to patients
receiving placebo [13]. Lenvatinib was tested in
RAl-refractory DTC patients in a phase III trial and was
approved for use in RAl-resistant metastatic DTC in
2015 [14, 15]. The most important difference between
lenvatinib and other drugs is its ability to inhibit fibro-
blast growth factor receptor 1 (FGFR1), making it an ef-
fective drug for cases with resistance to vascular
endothelial growth factor/receptor (VEGF/R) inhibitors
[16]. In reality, patients who were treated successively
with sorafenib and lenvatinib or vice versa did not have
any further treatment option. In metastatic renal cell
cancer, the sequential use of two tyrosine kinase inhibi-
tors was tested, showing that there was no difference in
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progression-free survival dependent on the sequence of
the two drugs [17, 18]. A protocol of sequential alternat-
ing treatment regimen of tyrosine kinase inhibitor and
chemotherapy was studied in non-small cell lung cancer
[19]. Since there are no other treatment options than so-
rafenib and levatinib led to the hypothesis that alternat-
ing the use of sorafenib or lenvatinib may be a better
and more effective way of treating refractory thyroid
cancer than using one single agent alone.

In this study, we delineated the mechanism of drug re-
sistance of cancer cells by inhibiting FGFR signaling and
EMT in response to current treatments and discussed
how these problems are being addressed.

Methods

Patients/tissue specimens

Fresh tumors were gained from patients with biochemical
and histologically proven aggressive RAl-refractory papil-
lary thyroid cancer who were treated at the Thyroid Cancer
Center, Gangnam Severance Hospital, Yonsei University
College of Medicine, Seoul, Korea. Further protocol and de-
tails are described in our previous articles [20, 21].

Tumor cell isolation and primary culture

After resection, the tumors were transported to the la-
boratory. Normal tissue and fat were eliminated and
rinsed with 1x Hank’s balanced salt solution (HBSS).
Additional protocol and details are indicated in our pre-
vious article [21]. The research protocol was approved
by the Institutional Review Board of the Thyroid Cancer
Center, Gangnam Severance Hospital, Yonsei University
College of Medicine (IRB Protocol: 3-2016-0076).

Cell culture

The patient-derived aggressive papillary thyroid cancer
(PTC) cell lines were grown in RPMI-1640 medium with
10~ 15% FBS. Authentication of the cell lines were car-
ried out by with Cell ID system (Promega, Corporation,
Madison, WI, USA) comparing their profiles with those
published on the DMSZ database. Mycoplasma contam-
ination was invariably checked with the Lookout Myco-
plasma PCR Detection Kit (Sigma-Aldrich; MP0035).

Cell viability assay

Cell proliferation was measured using the 3-(4,
5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium brom-
ide (MTT) assay. Additional protocol is described in our
previous article [20].

SoLAT (Sorafenib Lenvatinib alternating treatment)

In vitro

At first, the combination treatment of the Sorafenib and
Lenvatinib for 5 days, after Sorafenib and Lenvatinib
alternating treatment for 5 days.
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In vivo

At first, the combination treatment of the Sorafenib and
Lenvatinib for 10 days, after Sorafenib and Lenvatinib al-
ternating treatment for 10 days.

Immunofluorescence analysis and confocal imaging
[B-catenin expression was analyzed with immunofluores-
cent staining. Further protocol and data analysis details
are described in our previous article [20].

Immunoblot analysis

Antibodies against Ki-67 (Abcam), cyclin D1 (Santa
Cruz Biotechnology, Dallas, TX, USA), CDK4 (Santa
Cruz Biotechnology), p21 (Santa Cruz Biotechnology),
p53 (Santa Cruz Biotechnology), p-ERK 1/2 (Santa Cruz
Biotechnology), ERK 1/2 (Santa Cruz Biotechnology),
Apaf-1 (Abcam), p-NFkB (Santa Cruz Biotechnology),
Bcl-2 (Santa Cruz Biotechnology), caspase 3 (Santa Cruz
Biotechnology), vimentin (Abcam), E-cadherin (Abcam),
Snail (Abcam), Zebl (Abcam), and B-actin (Santa Cruz
Biotechnology) overnight at 4 °C.

Flow cytometry analysis of the cell cycle

Cells were treated with sorafenib and lenvatinib alone in
an alternating regimen (SoLAT) in RPMI-1640 medium
containing 10% FBS for 40 h, harvested by trypsiniza-
tion, and fixed with 70% ethanol. Further protocol and
data analysis details are described in our previous
articles [20, 21].

Tube formation assay

Human umbilical vein endothelial cells (HUVECs) (7 x
10*) were cultured with growth factor-reduced Matrigel
(BD Biosciences, San Jose, CA, USA) in MV1 for 1 h for
cell attachment, following which the endothelial growth
basal medium-2 (EBM-2) was replaced with conditioned
medium and cell culture was continued for 24 h. Tube
length was quantified after 8 h by measuring the total
cumulative tube length in 3 random microscopic fields
with a computer-assisted microscope using Image J soft-
ware. The original magnification used was x 100.

Human thyroid cancer cell xenografts

The patient-derived aggressive PTC cells (3.5 x 10° cells/
mouse) were cultured in vitro and then injected subcuta-
neously into the upper left flank region of female BALB/c
nude mice. After 11 days, tumor-bearing mice were
grouped randomly (r = 10/group) and 10 mg/kg lenvatinib
(administered p.o.) and 40 mg/kg sorafenib (administered
p.0.), or lenvatinib or sorafenib alone (administered p.o.)
were administered once every two days. Tumor size was
measured on alternative days using calipers.. All experi-
ments were approved by the Animal Experiment Commit-
tee of the Yonsei University.
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Immunohistochemistry

Primary Antibodies against p21 (Santa Cruz Biotechnol-
ogy) and Bcl-2 (Abcam) were diluted with PBS at a ratio
of 1:100 and incubated overnight at 4 °C. All tissue sec-
tions were counterstained with hematoxylin, dehydrated,
and mounted.

Statistical analysis

Statistical analyses were performed using GraphPad
Prism software (GraphPad Software Inc., La Jolla, CA,
USA). Immunohistochemistry results were subjected to
ANOVA followed by a Bonferroni post hoc test. Values
are expressed as the mean + SD. P < 0.05 indicated statis-
tical significance.

Results

Sorafenib and lenvatinib TKIs do not completely inhibit
the proliferation of patient-derived PTC cells

To investigate the anti-cancer effects of the TKIs sorafenib
and lenvatinib on patient-derived PTC cells, we assayed
GSP2 and GSP3 (Fig. 1a) cell proliferation in the presence
of these compounds by the MTT assay (Fig. 1b).
Concentration-dependent inhibition was not complete, al-
though it was sufficient to determine the ICsq of sorafenib
and lenvatinib in GSP2 and GSP3 cells (Fig. 1c).

SoLAT is more effective than individual treatment in
tumor suppression

We investigated the anti-cancer activity of alternating
treatment of sorafenib and lenvatinib (SOLAT) on ad-
vanced PTC. Individual treatments with sorafenib or
lenvatinib did not significantly inhibit advanced PTC.
SoLAT was more effective than the individual treat-
ments (Fig. 2a and d). We performed immunofluores-
cence (Fig. 2b and e) and immunoblot analyses of cell
cycle markers such as Ki-67 to confirm this observa-
tion (Fig. 2c and f). Sorafenib or lenvatinib treatment
alone did not show any significant difference in Ki-67
levels compared to the control group. However,
SoLAT suppressed Ki-67 expression (Fig. 2b and e).
Evaluation of cell cycle-related protein levels by
immunoblot analysis yielded similar results (Fig. 2c
and f). A marked increase in the levels of p53, p21
(well-known inhibitors of the cell cycle), Apaf-1, and
cleaved caspase 3 (pro-apoptotic factors) and decrease
in the levels of cyclin D1, CDK 4, CDK 6 (positive
regulators of the cell cycle), p-NF«B, and Bcl-2 (anti-apop-
totic factors) were observed compared to sorafenib or
lenvatinib treatment alone. These results conclusively
show that cancer cell proliferation was inhibited by
SoLAT.
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Fig. 1 SOLAT (Sorafenib Lenvatinib Alternating Treatment) suppressed proliferation of GSP2 (patient-derived papillary thyroid carcinoma cells).
a Information on the secondary established PTC cell line GSP2 and GSP3. b MTT assay for analysis of cell proliferation presence of sorafenib
and lenvatinib. ¢ Estimation of ICso of the PTC cell line treated with sorafenib and lenvatinib

SoLAT is more efficient than the individual treatments in
inducing cell cycle arrest, although it also increases drug
resistance in advanced PTC

SoLAT increased the sub-Gy/G; population (P < 0.05)
and induced cell death in advanced PTC, GSP2 and
GSP3 (Table 1). Thus, the synergistic effect of sorafenib
and lenvatinib potently induced the sub-Gy/G; popula-
tion, leading to apoptosis, cell cycle arrest, and strong
inhibition of advanced PTC viability. However, a small
increase in the sub-Gy/G; population was observed after
SoLAT, indicating that drug resistance was also induced
by this treatment in advanced PTC.

SoLAT reduces EMT-mediated drug resistance in
advanced PTC

Lenvatinib is well-known for reducing drug resistance-as-
sociated EMT by inhibiting FGFR. However, the
patient-derived advanced PTC cells used in this study
showed high levels of drug resistance. Consequently, no

significant inhibition of drug resistance was achieved by
individual sorafenib and lenvatinib treatments. However,
SoLAT reduced the level of certain EMT markers. Im-
munofluorescence assay confirmed that SOLAT inhibited
nuclear translocation of B-catenin in advanced PTC cells
more potently than either agent alone (Fig. 3a and c). In
addition, the levels of most EMT markers (vimentin,
E-cadherin, Snail, and Zeb1) were reduced by FGFR inhib-
ition (p-ERK 1/2) in the SoLAT group (Fig. 3b and d). This
demonstrates that SOLAT effectively decreased EMT-me-
diated drug resistance via FGFR inhibition in advanced
PTC.

Angiogenesis of aggressive PTC is suppressed by SoLAT

VEGF secretion activates angiogenesis, and SoLAT re-
duced angiogenic activity by suppressing VEGF secretion
compared to the no treatment or individual treatment
groups (Fig. 4a and b). Next, we used the VEGF-induced
tube formation assay with HUVECs to analyze the effect
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(See figure on previous page.)

Fig. 2 SoLAT was more efficiently induced cell cycle arrest and reduced anti-apoptotic factor than each treated groups on GSP2 and GSP3.a and d
Anti-cancer activity of SOLAT on the advanced PTC cell line. Sorafenib Lenvatinib alterating treatment SoLAT was more efficient than the individual
treatments. b and e Immunofluorescence staining for Ki-67. The SOLAT group suppressed Ki-67 expression. ¢ and f Immunoblot analysis of cell-cycle
arrest and apoptotic proteins showed marked increase in the levels of p21, p53, Apaf-1, and cleaved caspase 3, and decrease in the levels of Ki-67,
cyclin D1, CDK 4, p-NFkB, and Bcl-2 in the SOLAT group than in the individual sorafenib or lenvatinib treatment groups

of switching treatment on angiogenesis. HUVECs were
cultured in the conditioned media of advanced PTC
cells. After 16 h of culture, we evaluated the formation
of a tubular structure with sorafenib or lenvatinib treat-
ment alone and with SOLAT. The tube length in the ad-
vanced PTC-conditioned media alone was higher than that
in the drug treatment groups (Fig. 4b). Quantitation of the
tube length revealed that SoLAT in PTC-conditioned
media considerably decreased the tube length compared to
the no-treatment group and individual treatments (Fig. 4b).
This demonstrated that secreted VEGF was inhibited by
SoLAT.

SoLAT induces tumor shrinkage in the xenograft model

Individual treatments with sorafenib or lenvatinib did not
markedly suppress patient-derived aggressive PTC cell
xenograft tumors; however, SOLAT significantly suppressed
the proliferation of these tumors (Fig. 5a and d). No evi-
dence of systemic toxicity or treatment-related death was
observed in any group. Sorafenib or lenvatinib treatment

did not significantly affect the body weight of mice (Fig. 5b
and e). The SoLAT group showed significantly smaller
tumor volumes than the individual sorafenib or lenvatinib
treatment groups (Fig. 5¢ and f). Anti-apoptotic activity is a
crucial factor for assessing the biological behavior of tu-
mors. The levels of Bcl-2 and p21, which are common
anti-apoptosis and cell cycle arrest markers, respectively,
were determined by immunohistochemical and immuno-
blot analysis examination of patient-derived aggressive PTC
cell xenograft tumors. SOLAT maximally decreased Bcl-2
and increased p21 levels (Fig. 6a, b and c). Thus, all of the
results conclusively show that SoLAT exerts potent
anti-cancer activity in the aggressive PTC cell xenograft
model.

Discussion

To our knowledge, this is the first study which showed
that alternating treatment with the TKIs lenvatinib and
sorafenib (SoLAT) was more effective than individual

Table 1 Cell cycle analysis: Alternating treatment with sorafenib and lenvatinib SoLAT showed significant increase in the sub-Gy/G,
population and induction of cell death in advanced PTC (GSP2 and GSP3)

Status Sub-GoG; GGy S G/M
GSP2
Control 14 + 005 495 £ 0.05 27.2 £0.09 219+ 0.05
Sorafenib only 4.7 £0.08 513 £0.07 254 £ 0.09 18.6 = 0.05
Lenvatinib only 9.8 £ 0.04 496 + 003 274+ 012 132 £ 0.04
SoLAT S+L 29.8 + 0.09 467 £0.15 189 £ 0.05 46 + 003
Sorafenib 7.5 £0.02 495 + 0.07 306 £ 0.01 124 £ 0.08
Lenvatinib 219 £ 0.04 50.1 £0.12 223+ 0.05 57 £ 002
Sorafenib 1.7 £ 007 493 £ 004 285 + 0.05 20.5 + 0.09
Lenvatinib 13.7 £ 0.15 483 + 0.02 27.5 £0.01 105 £ 0.02
GSP3
Control 1.1 £0.03 49.8 £0.08 275+ 015 216+ 0.12
Sorafenib only 24 £ 004 516+ 0.06 264 + 0.05 19.6 £ 001
Lenvatinib only 13.6 £ 0.04 532 £0.03 245 = 0.07 8.7 £ 0.05
SoLAT S+L 36.2 £ 0.15 456 £0.14 143 £ 0.19 39+0.22
Sorafenib 2.7 £0.15 512 +0.12 26.7 £0.12 194+ 17
Lenvatinib 324 £0.11 495 + 0.21 135+ 0.07 46 =015
Sorafenib 24 +£0.15 528 £0.25 276+ 0.14 172+ 013
Lenvatinib 229+ 024 551+0.13 155+ 0.19 6.5+ 0.15
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treatment with sorafenib or lenvatinib in inhibiting PTC
tumor progression by inducing cell cycle arrest. There
have been studies testing alternating chemoradiotherapy
instead of concurrent chemoradiation for nasopharyn-
geal cancer and studies which showed alternating treat-
ment for mantle cell lymphoma [22, 23]. Sequential use
of two tyrosine kinase inhibitors was tested in metastatic
renal cell carcinoma [17].

Studies using both in vitro cell culture and in vivo
xenograft model provided evidence of tumor shrinkage
in the alternative switching group. We suggest that these
effects may be due to reduced EMT-mediated drug re-
sistance in the aggressive PTC model.

EMT is induced in aggressive forms of thyroid cancer
with elevated ZEBL1 levels, which can promote drug resist-
ance through EMT-dependent and EMT-independent
mechanisms [24—26]. Studies have shown that downr-
egulation of ZEBI could restore drug sensitivity [27, 28].
Sorafenib inhibits EMT in hepatocellular carcinoma, at-
tenuates HGF secretion in polarized macrophages, de-
creases plasma HGF levels, and abolishes polarized
macrophage-induced activation of the HGF receptor Met
[29]. EMT reversal was shown to overcome drug resist-
ance in lung adenocarcinoma [30].

The frequency and nature of adverse side effects differ
between sorafenib and lenvatinib. Hand foot skin
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reaction is the most common side effect of sorafenib,
whereas hypertension is the most common adverse ef-
fect of lenvatinib. Our results show that the ICs, is re-
duced when the drugs are used alternately compared to
when used individually, which suggests that this can be
an option for decreasing drug toxicity. In contrast to
combination therapy, the drugs may be effective before
being washed out of the body in the case of interval
treatment; however, this requires further in vivo evi-
dence. These findings may assist in developing a treat-
ment protocol with reduced toxicity and enhanced drug
efficacy.

TKIs are recommended for the treatment of
RAIl-refractory DTC patients with metastatic, rapidly pro-
gressive, symptomatic, and/or imminently threatening dis-
ease, which is not otherwise amenable to local control
using alternative approaches. The benefits of systemic
therapeutics have been demonstrated in the form of

improved progression-free survival in three randomized,
double-blinded, placebo-controlled clinical trials for van-
detanib, sorafenib, and lenvatinib [6, 14, 15]. Sorafenib is
known to inhibit RAF-1, a member of the RAF/MEK/ERK
signaling pathway, and also BRAF, VEGFR-2, VEGFR-3,
PDGFR-f, and c-KIT [31]. Lenvatinib has a potent inhibi-
tory effect on VEGFR-2, VEGFR-3, PDGFRa/p, KIT, RET,
and FGFR1-4. Lenvatinib differs from other drugs in its
ability to inhibit FGFR1, providing efficacy in cases with
VEGEFR inhibitor resistance [16, 32, 33]. Despite favorable
results in phase III trials and their status as the first line of
treatment for RAI-refractory DTCs, both lenvatinib and
sorafenib eventually elicit toxicity, and most patients dis-
continue them owing to unresponsiveness. A second-line
kinase inhibitor therapy such as lenvatinib should be con-
sidered for patients with disease progression during initial
kinase inhibitor therapy without prohibitive adverse
effects [6].
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(See figure on previous page.)

Fig. 5 SOLAT was most efficiently induced tumor shrinkage in GSP2 and GSP3 xenografts model. a and d SolL AT suppressed tumor growth better
than individual treatments with sorafenib or lenvatinib. b and e Sorafenib or lenvatinib treatment did not significantly affect the body weight of
treated mice. No evidence of systemic toxicity or treatment-related death was observed in any group. ¢ and f The SoLAT group showed
significantly smaller tumor volumes compared to the individual treatment groups

Mechanisms for TKI resistance include receptor auto-
phosphorylation, autophagy, involvement of hypoxia-in-
ducing factor, epigenetic regulation, and EMT [34, 35].
Furthermore, several EMT-inducing cytokines such as
TGF-B, FGE, HGE, insulin-like growth factor, and IL-6
may also be involved [30, 36]. We noted that SoLAT
blocked constitutive ERK phosphorylation. The RAS/
RAF/MEK/ERK signaling pathway is a major signaling
pathway for EMT and metastasis, and inhibition of this
pathway significantly reduces EMT [37]. Because we only
analyzed ERK as a marker of this pathway in this study,
other markers should be investigated in the future to con-
firm the FGFR inhibition-mediated EMT-reducing effects
of lenvatinib.

It is necessary to investigate the mechanism under-
lying the success of the alternating treatment with
lenvatinib and sorafenib compared to that of individ-
ual lenvatinib treatment in inhibiting the growth of
aggressive PTC both in vitro and in vivo. Further
studies are required to compare the efficiencies and
toxicities of combination therapy and SoLAT. In
addition, the effect of reusing one drug after devel-
opment of resistance to both drugs (as an alternating
therapy or combination therapy) has to be deter-
mined. Similarly, the effectiveness of reusing a thera-
peutic agent after development of resistance versus
alternative interval treatment for prolonging disease-free
survival has to be evaluated; in addition, the appropriate
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Fig. 6 SOLAT was most efficiently induced cell cycle arrest and reduced anti-apoptotic factor on GSP2 and GSP3 xenografts model. a and b
Immunohistochemistry showed that p21 levels were increased and whereas Bcl-2 levels were reduced by the alternating treatment with sorafenib and
lenvatinib SOLAT. ¢ Immunoblot analysis of cell-cycle arrest proteins showed marked increase in the levels of p21 and whereas anti apoptotic proteins
were marked decrease in the levels of Bcl-2 by the SOLAT group than in the individual sorafenib or lenvatinib treatment groups on GSP2 and GSP3
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interval should be determined if interval treatment is
found to be more efficient.

Conclusions

The current study suggests that SOLAT was more effect-
ive than individual treatment with sorafenib or lenvati-
nib in inhibiting PTC progression by inducing cell cycle
arrest and reducing EMT-mediated drug resistance.
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EMT: epithelial mesenchymal transition; FGF: fibroblast growth factor;
PTC: Papillary thyroid cancer, lenvatinib, sorafenib; TKI: tyrosine kinase
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