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Abstract

Background: Adoptive immunotherapy offers great potential for treating many types of cancer but its clinical
application is hampered by cross-reactive T cell responses in healthy human tissues, representing serious safety risks
for patients. We previously developed a computational tool called Expitope for assessing cross-reactivity (CR) of
antigens based on tissue-specific gene expression. However, transcript abundance only indirectly indicates protein
expression. The recent availability of proteome-wide human protein abundance information now facilitates a more
direct approach for CR prediction. Here we present a new version 2.0 of Expitope, which computes all naturally
possible epitopes of a peptide sequence and the corresponding CR indices using both protein and transcript
abundance levels weighted by a proposed hierarchy of importance of various human tissues.

Results: We tested the tool in two case studies: The first study quantitatively assessed the potential CR of the
epitopes used for cancer immunotherapy. The second study evaluated HLA-A*02:01-restricted epitopes obtained
from the Immune Epitope Database for different disease groups and demonstrated for the first time that there is a
high variation in the background CR depending on the disease state of the host: compared to a healthy individual the
CR index is on average two-fold higher for the autoimmune state, and five-fold higher for the cancer state.

Conclusions: The ability to predict potential side effects in normal tissues helps in the development and selection of
safer antigens, enabling more successful immunotherapy of cancer and other diseases.

Keywords: Cancer, Immunotherapy, Tumor immunology, Cross-reactivity, T cell epitope, Immunoinformatics, Tumor
antigen expression

Background
The principles of how the immune system can opti-
mally control infections and early stages of cancer under-
pin the development of immunotherapies. Among these
approaches, adoptive transfer of antigen-specific T cells is
emerging as a particularly attractive form of immunother-
apy to treat patients with more advanced stages of cancer
and unresolved infectious diseases. This approach utilizes
transfer of tailored antigen-specific immune T cells and
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provides the possibility of clinically efficient treatment of
infectious diseases and human malignancies [1].
One major stumbling block precluding wider applica-

tion of adoptive immunotherapy is the occurrence of
adverse effects of off-target cross-reactivity (CR), which
may result in significant, even lethal, toxicity. The cause of
toxicity is a hyper-activated T cell response with reactiv-
ity directed against normal tissue [2]. Immune CR arises
when T cells recognizing a selected target epitope are
transferred back to the patient and exhibit recognition of
self-epitopes in non-cancerous tissues. On the molecu-
lar level this effect is usually the consequence of a high
degree of sequence similarity between the target and the
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self-epitopes, resulting in the binding of a stable self-
peptide-MHC complex to the T cell receptor (TCR) and,
consequently, cross-activation of unwanted autoimmune
T cell responses [3]. Depending on the sequence similarity
there can be on-target/off-tumor or off-target recogni-
tion. The former is directed against the identical epitope
that is also present in a non-cancerous tissue, while the
latter is directed against a similar epitope also present
in a healthy tissue. The ability to predict the scope and
extent of on- and off-target effects can help in selection of
safer antigens, and consequently enable more successful
immunotherapy treatment [4].
A computational strategy for the prediction of potential

peptide-HLA cancer targets and evaluation of the likeli-
hood of off-target toxicity for the targets was developed
by Dhanik et al. [5]. The strategy utilizes a sequence-based
algorithm similar to the one used in our previous stud-
ies [6] and in our current work, but it is not available as a
web-service.
We have developed the Expitope server as a tool to

assess epitope expression in various tissues (freely accessi-
ble at http://webclu.bio.wzw.tum.de/expitope2). Expitope
incorporates the most recent genome-wide information,
including protein sequences and protein abundance data
across various tissues and cell lines. It enables researchers
to screen their epitopes in silico for potential CR in human
tissues, before moving their therapeutic candidates into
clinical trials.

Approach
CR to an immunotherapeutic epitope may arise if a pro-
tein normally expressed in healthy cells is cleaved by
one of the proteasomes to produce a peptide with an
amino acid sequence that is similar to the given epitope.
Another prerequisite for CR is the presentation of the nat-
ural epitope by major histocompatibility complex class I
molecules (MHC-I) in various tissues. We model this pro-
cess by themethod described by Keşmir et al. [7]. To quan-
titatively assess the natural occurrence of epitopes, we use
experimental data on gene expression and abundance of
proteins in which the epitopes are present. The methods
are described in detail in our previous publication [8] on

the iCrossR tool, which has been merged into the cur-
rent version 2.0 of Expitope. The iCrossR project’s aim
was to perform a quantitative characterization study of
all MHC-I epitopes listed in the cancer immunotherapy
database. A new feature of Expitope 2.0 is the calcula-
tion of the tissue-weighted cross-reactivity (CR) indices.
Below we test the approach and provide information on
the new data sources and a new tissue-weighted CR-index
formula.

Material and Implementation
Gene and protein expression data
The previous version 1.0 of Expitope [6] assessed the
expression of human antigens based on one combined
gene expression database [9] and the Illumina Body Map
database [10]. Interestingly, HLA-typing of samples from
the Illumina BodyMap andWang et al. [9] showed that the
tissues used for expression analysis are most likely derived
from the same individual except for seven brain samples
[11]. In order to avoid data redundancy with the new
Illumina Body Map database, we now only use the brain
expression data fromWang et al. [9]. The new version 2.0
of Expitope incorporates three gene expression and four
protein abundance datasets (Table 1). It should be noted
that in contrast to the PaxDB and Human Proteome Map
datasets, which contain ppm values, the Human Protein
Atlas data has been generated by immunohistochemistry,
which makes the accuracy of the data dependent on the
specificity of the antibodies used. The values range from
0 to 3, indicating no detectable expression (0) up to high
expression (3).

IEDB datasets
We selected four groups of peptides (Table 2) from the
Immune Epitope Database (IEDB) [12], containing a total
of 1720 epitopes of 7-25 amino acids in length (Additional
file 1: Table S1, Additional file 2: Table S2, Additional
file 3: Table S3, Additional file 4: Table S4). The selection
for all groups was restricted to the following tags: ’human
HLA-A*02:01’, ’Linear Epitopes’, ’Positive Assays only’, ’T
cells Assays’, ’MHC ligand Assays’, ’No B-cell assays’, ’Host:
Homo Sapiens (Human)’, from which the selection was

Table 1 Sources of gene expression and protein abundance data

Data source ID Name Number of tissues Type References

PaxDB Pax4 PaxDB v4.0 22 Protein abundance [24]

Expression Atlas E-Prot-3 Human Protein Atlas 44 Protein abundance [25, 26]

Expression Atlas E-Prot-1 Human Proteome Map 23 Protein abundance [25, 27]

Expression Atlas E-Mtab-513 Illumina Body Map 16 Gene expression [10, 25]

Expression Atlas E-Mtab-5214 GTEx 53 Gene expression [25, 28]

Wang et al. 2008 Wang Wang 2008 7 Gene expression [9]

Expression Atlas E-Mtab-3358 FANTOM5 RIKEN 56 Gene expression [25, 29]

http://webclu.bio.wzw.tum.de/expitope2
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Table 2 Four epitope groups from the IEDB database

Group ID in IEDB Disease state of host Number of entries Peptide length range (average)

1 DOID:0050117 Infectious diseases 588 8-20 (9)

2 DTREE_00000014 Healthy (no disease) 461 8-25 (10)

3 DOID:417 Autoimmune diseases 155 8-21 (10)

4 DOID:162 Cancer 516 7-25 (11)

further restricted for each of the four groups using the tag
corresponding to a disease state of the host (column 3 of
Table 2).

Identification of natural epitopes
Amino acid sequences of epitopes were matched against
the RefSeq database [13] of all naturally occurring human
protein sequences, including annotated isoforms, down-
loaded from the National Center for Biotechnology Infor-
mation (NCBI). The matching procedure yields a list of
protein segments, which we call “natural epitopes” (NEs).
Potential immunogenicity of eachNEwas calculated using
the formula developed by Keşmir et al. [7], which com-
bines the predicted scores for proteasomal cleavage, TAP
affinity and MHC-binding predictions. The quantitative
score Q of epitope presentation on MHC-I is defined as:

Q = PCL/ (ATAP ∗ AMHC) (1)

where PCL is the proteasomal cleavage probability, while
ATAP and AMHC are the IC50-affinities to the transporter
molecule associated with antigen processing (TAP) and
to the MHC complex, respectively. Lower values for ATAP
and AMHC correspond to higher predicted affinities, as
IC50-affinity is defined as a dose of peptide that displaces
50% of a competitive ligand.

Calculation of the tissue weighted CR-index
In this version, we modified the CR-index calculation
formula [8] to include tissue weighting, reflecting the per-
ceived importance of different tissue types in the human
body. For each database, the tissue profile S(t) for a given
epitope was calculated as follows:

S(t) =
K∑

k=0

⎧
⎨

⎩v(k) · log10
⎡

⎣
M(k)∑

i=1
a(i, t)

⎤

⎦

⎫
⎬

⎭ (2)

where k is the allowed number of mismatches and K is
the maximal k; t is the tissue index in a given database
of T tissues; i is the running index in the list of match-
ing NEs for each k, and M(k) is the size of the list; v(k)
is the normalized mismatch weight, and a(i,t) is the pro-
tein or transcript abundance in the tissue t corresponding
to the i-th NE. The sum over i includes only the unique
NEs that have the scores Q(i) (Equation 1) above a chosen
threshold. The normalized mismatch weight is calculated
as v(k) = (1/P(k))/

∑
k(1/P(k)), where P(k) is the probability

of finding a random peptide of length l with k mismatches
in our protein sequence database of the total length of
N=6.5e7 amino acids, P(k) = 1-(1-0.05l-k)N-l+1. For exam-
ple, for a peptide of length 9, the mismatch weights are:
v(k=0,1,2,3) = 0.95, 0.0475, 0.0023, 0.0002.
The weighted CR-index is defined as a tissue-weighted

average of the tissue profiles S(t):

ICR = 1
∑T

t w(t)

T∑

t
w(t)S(t) (3)

where w(t) represents the weight assigned to the tissue
type t (Table 3). The ICR index error is obtained as one
standard deviation from the mean upon bootstrapping,
which involves repeating index calculation 10 times using
90% of randomly subsampled data. The weight values
range between 0 and 1, with the weight of 1 correspond-
ing to the most vital organs and systems according to the
Sequential Organ Failure Assessment (SOFA) score used
to evaluate the condition of patients in Intensive Care
Units (ICUs) [14]. The second highest weight of 0.8 is
assigned to tissues that belong to vital organs where a
failure does not immediately threaten a patient’s life. A
weight of 0.5 is assigned to tissues where CR is not nec-
essarily life threatening, but can nevertheless cause severe
complications. The second lowest weight of 0.3 refers to
tissues and organs that can be surgically removed without
major complications. Finally, the weight of 0 was assigned
to irrelevant tissues such as testis, where expression of an
antigen does not cause an immune response, as well as
to the tissues that are only present during pregnancy and
other samples that do not correspond to healthy human
tissue, e.g. cancer cell lines.
Consequently, large ICR values may indicate potentially

life-threatening CR of the epitope. The higher the num-
ber of hits to different NEs that are close in sequence to
a therapy peptide, and their total abundance/expression
levels in the tissues with high weights, the higher is the
probability of CR. Higher thresholds for Q correspond
to choosing a higher probability of the selected natu-
ral epitope to be immunogenic, while the parameter K
controls the sequence similarity: exact match (K=0) for
prediction of on-target/off-tumor recognition, and K> 0
for off-target recognition. The values of these parameters
can be set by Expitope users. In this work, we chose K=1,
i.e. up to one mismatch in amino-acid sequence, and two
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Table 3 Weight values and categorization of tissue types

Consequence Damage immediately life Damage life threatening Damage not immediately

threatening life threatening

Weight 1 0.8 0.5

Tissues Lung/Respiratory system Digestive system Urinary bladder

Brain/Nervous system (except appendix) Various glands

Blood/Immune system Soft tissue Prostate

Heart Skin

Kidney Eyea

Liver

Consequence Damage not life Tissue not affected

threatening

Weight 0.3 0

Tissues Reproductive organs Cancer cell lines

Mammary tissue Testis

Tonsils Fetal tissue

Appendix

Gall bladder

Spleen

aThe weight for eye tissue is set to 0.5, as T cells are able to infiltrate it [30]

thresholds forQ: 0.02 corresponding to top 10% immuno-
genic NEs found for all epitopes in this study, and 1e-4
corresponding to top 50% of the NEs, i.e. top-scored for
proteasomal cleavage, TAP transport and MHC-I bind-
ing. However, calculation of the indices with the numbers
of mismatches K=[0,3] and the combined scores Q=0.02,
1e-4, 1e-5 gave very similar results (Additional file 5:
Tables S5-S7; Figure S2).
While a high ICR means that severe complications are

expected for a target epitope, its low value hints towards
minor or non-life-threatening side effects. An index
greater than zero always means that there is some expres-
sion present that should be investigated in detail. The
index is only an estimate, which does not take into account
many patient-specific factors, and therefore should not be
used as the sole measure for making decisions. As the tis-
sue classification is not exhaustive and not all organs are
completely represented by the tissue types of which they
consist, a high expression value in a low rated tissue could
correspond to a tissue type not covered, but also present in
other more vital organs. Nonetheless, the weighted index
offers a short summary of the rather extensive result tables
that are produced by Expitope 2.0, and contain individual
expression values for each tissue and all NEs. Therefore,
the weighted index allows for quick rejection of target epi-
topes that are likely to cause severe side effects caused
by CR.
The ICR indices were calculated with the default param-

eters (except Q and K ) for each peptide and each database

using Eq. 3, and were averaged over the seven databases to
give the average ICR indices for each peptide. For the plots
the ICR indices are averaged for all peptides in each group.

Web server
Expitope 2.0 is a web application that can be easily used
by the researchers inexperienced in bioinformatics, espe-
cially from the immunotherapy domain. There is no login
requirement to the website and user IP addresses are not
stored.Multiple clients can connect to the server, and con-
current clients are served one query at a time. The jobs
are submitted to high-performance computational infras-
tructure. The results are displayed once they are ready;
alternatively the user can return to the results later, using
the session URL. It is also possible to download the results
as a spreadsheet to be used with Microsoft Excel or sim-
ilar software. This allows to sort and filter the results
according to individual criteria, e.g. for sorting epitopes
by binding affinity predicted by netMHC.
The workflow of Expitope is shown in Fig. 1. The user

inputs a peptide sequence and specifies parameters for
sequence matching and for the computation of MHC
class I binding affinity via the html forms displayed in
a web-browser (white). The server performs the search
for natural epitopes (NEs) and calculates their Q scores.
Computations are performed by the client process at the
backend of the server (large gray rectangle). Results are
returned to the user in the form of text files and graphi-
cal visualizations (dark gray). The user selects a particular
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Fig. 1Workflow of the Expitope 2.0 web server

database and a plot type for visualization (white). The
parameters that can be changed by users in the forms have
the following default values: the TAP weight is 0.2, the
cleavage threshold is 0.7, theQ score threshold is 1e-4 and
the number of mismatches is 2.

Results and discussion
Known cross-reactive epitopes
For the first version of the Expitope web server, the
MAGEA3 epitope EVDPIGHLY was tested that had been
associated with cross-reactivity caused by the TCR rec-
ognizing an epitope with four mismatches derived from
titin, which is expressed in heart muscle tissue [6, 15]. We
were able to reproduce these findings by using Expitope
2.0 with default the parameters except for allowing up to
four mismatches and additionally, the newly added pro-
tein databases showed an even clearer result with values of
2.98e+03 ppm (PaxDB) and 2.86e+03 ppm (Human Pro-
teome Map) and the maximum value of 3 for the Human
Protein Atlas. Another case of observed cross-reactivity
has been a TCR recognizing theMAGEA3/MAGEA9 epi-
tope KVAELVHFL [16]. Expitope 2.0 with the default
parameters finds this and all other epitopes from various
members of the MAGE family the TCR was able to detect.
This includes one epitope of MAGEA12, which was found
to be expressed in brain where it led to cross-reactivity.
We found expression values of 0.2 FPKM and less but no
protein expression for MAGEA12, which is also not con-
tained in the Human Protein Atlas and Human Proteome
Map. This demonstrates the importance of taking even
small amounts of expression into account when assessing
potential cross-reactivity and also comparing the results
obtained from all databases, especially for crucial tissues
like heart, brain and lung.

Case studies
Cancer immunity peptides
Here we provide an overview of our previous study [8],
where we analyzed short (8-15 amino acids) peptide
sequences from the Cancer Immunity Peptide Database
[17] as well as peptides of viral origin. The CR-index

calculation was based only on the PaxDB protein abun-
dance database and without tissue weighting.
The peptide dataset consisted of four groups of cur-

rently known human MHC class I epitopes including:
mutation antigens displayed by tumor cells (40 pep-
tides, group A), cancer-testis (CT) antigens (67 peptides,
group B), differentiation antigens (57 peptides, group C),
and overexpressed proteins (94 peptides, group D). In
addition, 89 epitopes originating from viral sources (group
E) were investigated. When matched exactly, the group of
“mutation” antigens produced no hits to the proteins nor-
mally expressed in human tissues, since the epitopes of the
group have sequences that originated from mutations of
normal human protein sequences. The second validation
is from the CT antigens, which at small numbers of mis-
matches (0-1), showed few matches to proteins expressed
in the majority of human tissues, with the expected excep-
tion of ovary/testis, where multiple hits were found. The
hit patterns were very similar for all epitopes of this
group. This is exactly as expected, since CT antigens are
expressed mostly in these two tissues. In contrast to the
results for groups A and B, the antigens of the groups C
and D showed more hits, both for exact matches and for
high numbers of mismatches. This is also as expected as
the proteins containing the epitopes are expressed in a
wide variety of normal tissues. Finally, the epitopes orig-
inating from the viral sources showed noticeably fewer
matches to the human proteins compared to the cancer
peptides.

IEDB epitopes
We sought to assess quantitatively the extent of potential
“background” CR of the epitopes derived from the host
individuals having different disease states - ranging from
healthy to cancer. Such background CR is not caused by
one single therapy but accumulates due to many factors,
including an unknown history of diseases.
The ICR indices of individual epitopes calculated across

the seven databases used in this study are highly cor-
related, since for each database they are obtained by
summation of the abundance (or expression) values for
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the same proteins. There are high correlations between
the ICR values computed for the peptides using the three
abundance databases as well as between the ICR val-
ues derived from the four expression databases (data not
shown). Similarly, the correlations between the abun-
dance and expression indices are high (Additional file 5:
Figure S1), with the Pearson’s coefficients in the range
0.94-0.96. Averaging of the indices allows one to obtain a
more accurate prediction of CR due to increased signal-
to-noise ratio, as the databases are derived from different
data sources.
Figure 2 shows the ICR indices for the four epitope

groups described in Table 2 (group ICR indices before
averaging by databases can be found in Additional file 5:
Tables S5-S7). The indices for the epitopes computed
from 10% top-scoring NEs (Q=0.02, Fig. 2 left) are on
average 3-times lower, compared to those from 50% top-
scoring NEs (Q=1e-4, Fig. 2 right), corresponding to lower
numbers of matching NEs. Higher thresholds for Q cor-
respond to a higher probability of the selected NEs to be
immunogenic. It has been reported that the top-scoring
7-10% epitopes identified by the immunogenicity predic-
tion methods have 85% probability of being immunogenic
[18]. In this work we have chosen two thresholds of
10% and 50% of sequence matches. The rationale for this
choice was to ensure a low amount of false positives in the
immunogenicity prediction for the 10% ICR index, and to
compare it with the 50% value containing medium to high
immunogenic peptides. Two groups - ‘Infectious diseases’
and ‘Healthy’ - have average indices close to zero on both
plots, indicating low amounts of cross-reactive epitopes in
the critical tissues. The groups ‘Autoimmune diseases’ and
‘Cancer’ exhibit approximately 2- to 5-fold higher aver-
age index values compared to the ‘Healthy’ group, in each
plot respectively, corresponding to considerably higher
presentation level of the cross-reactive peptides in these
states.

The interpretation of these results is as follows. The epi-
topes in the ‘Infectious diseases’ group are derived from
non-human organisms rather than from human hosts.
Thus, compared to the epitopes from the other three
groups, which are of human origin, a lower ICR index is
expected, implying low sequence identity to the host and
thus a low probability of CR. The slightly elevated index
for the ‘Healthy’ group is most likely due to the pres-
ence of common pathogens (such as Herpes simplex virus
or Epstein-Barr virus) mimicking human sequences, an
immune escape strategy known as immune camouflage
[19]. A higher ICR for the ‘Autoimmune’ group compared
to the ‘Healthy’ group is not surprising, as autoimmu-
nity is a response of the human body’s immune system
directed against human proteins overexpressed or aber-
rantly presented in healthy tissues. For example, multi-
ple sclerosis, the most frequently occurring disease in
this group, is due to autoimmunity to the myelin basic
protein (MBP), expressed in the tissues of the central
nervous system [19]. Other epitopes in this group with
very high index values are derived, e.g. from the proteins
actin, myosin-9, septin-2 and vimentin, which are nor-
mally expressed in various tissues. Normally, peripheral T
cells are trained to recognize pathogen-derived epitopes
and ignore self-antigens, however some T cells escape
this selection and are able to recognize self-antigens, thus
initiating an autoimmune response and becoming self-
reactive. Consequently with respect to autoimmunity, the
term CR is defined as the recognition by T cell TCRs of
many different peptide antigens, presented by the HLA
of an individual [20], which can also be referred to as
cross-recognition.
The significantly higher CR index for the cancer group

compared to the other three groups indicates a presence
of a high background level of CR when targeting cancers.
Cancer epitopes originate either from wild-type proteins
overexpressed in tumors, or as a result of cancer-specific

Fig. 2 The ICR indices for the four IEDB peptide groups (Table 2), obtained by averaging over the seven databases listed in Table 1. Q=2e-2 (left),
Q=1e-4 (right), with up to one mismatch (K=1). Thick black line: median; gray: the lower and the upper quartiles (25th and 75th percentiles); upper
and lower whiskers: highest and lowest values
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mutations in the genes, named neoepitopes. On average,
neoepitopes have lower similarity to self-antigens com-
pared to the wild-type cancer epitopes, thus potentially
are less cross-reactive. Since T cells with TCRs binding to
self-antigens are negatively selected in the thymus, there
will generally be a lack of the T cells that can fight tumors,
producing overexpressed wild-type proteins. In contrast,
the cancers producing neoepitopes can be effectively con-
trolled by the immune system provided that suitable T
cells are available. Thus, different types of cancer pro-
duce epitopes of varying cross-reactivity, which explains
the larger variance seen in Fig. 2 for the cancer group
compared to the other groups.
High ICR for the ‘Autoimmune disease’ and ‘Cancer’

groups may also be due to an activated state of the
immune system, when immunoproteasomes create larger
amounts of immunogenic (in comparison to standard pro-
teasomes) epitopes, including those from the residuals of
normal cells killed by the immune system [21]. In addi-
tion, disruption of the normal functioning of the ubiquitin
proteasome system may result in creation of abnormally
presented immunogenic epitopes, leading to many types
of disorders, including malignancies, neurodegenerative
diseases and systemic autoimmunity [22, 23].
Thus, multiple reasons for a high variability in presented

CR epitopes appear to exist depending on the host disease
state. This CR, which we tentatively call “background”
CR, is independent of any immune therapy. Clearly, a
collection of epitopes present in a particular individual
is different from our datasets obtained from the IEDB
database. Likely, it will include only a subset of the pep-
tides, but a statistical distribution in many patients may
exhibit a pattern similar to the one reported in this work.
Eventually, it remains to be seen if there can be any inter-
ference between the background CR and the CR invoked
by a therapy, but both types are important to assess the
safety of the therapy.

Conclusion
It is a long-standing dream of many medical practition-
ers to use the immune system for effective treatment
and permanent cure of human disease conditions. With
the number of tested and approved immunotherapies
growing, evidence of the side effects associated with the
current therapies also increased. Consequently, therapy
developers require reliable tools for predicting unwanted
cross-reactions.
The Expitope web tool for predicting CR of T cell epi-

topes is based on experimental protein abundance and
expression data obtained from a growing number of pub-
licly available databases. We demonstrate its performance
for a large number of epitopes detected in the human
organism for various cancer types and at various diseases
states, ranging from healthy to cancer. The results of our

study of Cancer Immunity Peptides [8] showed that the
currently known cancer epitopes display a very large CR
variability across a range of tissues. Our predictions are in
close agreement with the results of several clinical stud-
ies, with the CR indices being high in the tissues where
actual side effects have been reported, and close to zero
for no side-effects. Thus, Expitope enables researchers to
assess potential side effects of their selected antigens for
therapy and to identify specific human tissues where such
side effects could be expected. Since any immunotherapy
can cause side effects, we suggest using this tool at both
early and late stages of a therapy development process. CR
index values calculated by Expitope can serve as an esti-
mate of the amount of potential CR for in silico assessment
of immunotherapeutic strategies.
For the first time we demonstrate that there is a high

variation in the CR of peptides presented at different dis-
ease states of the host: it is on average 2-fold higher for
individuals with an autoimmune state and 5-fold higher
for individuals with cancer in comparison to individuals
in an apparent healthy state. Presumably, a similar back-
ground CR may exist prior to an immune therapy, which
may differ by the host disease state. Since the human
organism negatively pre-selects T cells binding to self-
antigens, there will be a small number or no T cells fight-
ing disease tissue cells marked by highly cross-reactive
epitopes. Consequently, the similarity of presented epi-
topes to self-antigens is an obstacle for disease elimina-
tion both for the organism itself and for immunotherapy.
Thus, therapy developers should consider the possibility
of background CR interfering with a therapy.

Availability and requirements
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