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Abstract

Background: While cure rates for childhood acute lymphoblastic leukemia (cALL) now exceed 80%, over 60% of
survivors will face treatment-related long-term sequelae, including cardiometabolic complications such as obesity,
insulin resistance, dyslipidemia and hypertension. Although genetic susceptibility contributes to the development of
these problems, there are very few studies that have so far addressed this issue in a cALL survivorship context.

Methods: In this study, we aimed at evaluating the associations between common and rare genetic variants and
long-term cardiometabolic complications in survivors of cALL. We examined the cardiometabolic profile and
performed whole-exome sequencing in 209 cALL survivors from the PETALE cohort. Variants associated with
cardiometabolic outcomes were identified using PLINK (common) or SKAT (common and rare) and a logistic
regression was used to evaluate their impact in multivariate models.

Results: Our results showed that rare and common variants in the BAD and FCRL3 genes were associated (p<0.05)
with an extreme cardiometabolic phenotype (3 or more cardiometabolic risk factors). Common variants in OGFOD3
and APOB as well as rare and common BAD variants were significantly (p<0.05) associated with dyslipidemia.
Common BAD and SERPINA6 variants were associated (p<0.05) with obesity and insulin resistance, respectively.

Conclusions: In summary, we identified genetic susceptibility loci as contributing factors to the development of
late treatment-related cardiometabolic complications in cALL survivors. These biomarkers could be used as early
detection strategies to identify susceptible individuals and implement appropriate measures and follow-up to
prevent the development of risk factors in this high-risk population.

Keywords: Acute lymphoblastic leukemia, cancer survivors, genetic determinants, cardiometabolic complications,
genetic association study, extreme phenotype, obesity, dyslipidemia, insulin resistance, hypertension

Background
Childhood acute lymphoblastic leukemia (cALL) repre-
sents one third of all pediatric cancers [1]. Better under-
standing of the disease and treatment optimization over
the last few decades has led to remarkable cure rates
reaching 85% [2]. However, this therapeutic success
comes at a substantial price since 60% of survivors cur-
rently face treatment-related long-term complications

[3]. Children with cALL are exposed to chemo- and
radiotherapy during a critical period of their develop-
ment and thus have a greater risk of developing obesity
[4], insulin resistance [2, 5], hypertension (HTN) [2, 6]
and dyslipidemia [2], forming a metabolic syndrome
(MetS) cluster [2]. These late treatment effects are wor-
risome since people affected by the MetS are at higher
risk of atherosclerotic vascular disease [7], type 2 dia-
betes [8], and stroke [7]. The causes of these complica-
tions in cALL survivors remain unknown, but exposition
to corticoids, methotrexate and cranial radiotherapy has
been reported as contributing factor [9–12].

* Correspondence: daniel.sinnett@umontreal.ca
1Research Centre, Sainte-Justine University Health Center, 3175 chemin de la
Côte-Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
2Departments of Pediatrics, Université de Montréal, Montreal, Quebec H3T
1C5, Canada
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

England et al. BMC Cancer  (2017) 17:751 
DOI 10.1186/s12885-017-3722-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-017-3722-6&domain=pdf
mailto:daniel.sinnett@umontreal.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


In the general population, accumulating evidence indi-
cate that nutrition has an important influence on MetS
susceptibility and treatment response [13–17]. Further-
more, several susceptibility loci and genes are linked to
MetS occurrence [13]. For instance, 20-40% of the vari-
ance of arterial blood pressure, insulin resistance, body
mass index (BMI) and lipid levels are explained by gen-
etic components [13, 18–22]. Genome-wide association
studies (GWAS) revealed that genes coding for adipo-
kines or proteins implicated in lipoprotein metabolism
and inflammation are linked to the pathogenesis of MetS
[13]. Obesity is influenced by variants in genes regulat-
ing food intake, energy metabolism and neuroendocrine
pathways [18, 23, 24]. Numerous genes regulating β-cells
function and insulin secretion explain a significant frac-
tion of insulin resistance [25, 26], while variants in genes
related to lipoprotein metabolism could explain up to
70% of lipid level inheritance [22, 27–29].
Despite their importance, only a few studies evaluating

the cardiometabolic risk of cALL survivors have taken
genetic factors into consideration [30–32]. The identifica-
tion of genetic biomarkers could help pinpoint high-risk
individuals and develop prevention strategies to counter
the development of late cardiometabolic complications.
Even with the success of GWAS in identifying genetic pre-
disposition, only 10% of the genetic variance of complex
diseases can be explained by common variants [26, 33].
The missing genetic contribution might be attributed to
rare variants that were not captured by traditional GWAS
[34, 35] or to the combined impact of rare and common
variants [36]. With next-generation sequencing technolo-
gies, it is now possible to have simultaneously access to
both common and rare variants for genetic association
studies [37]. The aim of this study was to assess the con-
tribution of both rare and common genetic variants in the
prevalence of cardiometabolic complication in a cohort of
cALL survivors.

Methods
Cohort
Participants included were treated for cALL at Sainte-
Justine University Health Center (SJUHC, Montreal,
Canada) with the Dana Farber Cancer Institute (DFCI)
protocols [38]. The cALL survivors were recruited as
part of the PETALE study at SJUHC and had an average
of 15.5 years (+/- 5.2 SD) after diagnosis [39]. Subjects
who were less than 19 years old at diagnosis, more than
5 years post diagnosis, free of relapse, and who did not
receive hematopoietic stem cell transplantation were in-
vited to participate. To limit heterogeneity, the emphasis
was put on pre-B ALL since this type is the most fre-
quent [40, 41]. Participants were mainly of French
Canadian origin [42, 43]. During their medical visits,
participants were subjected to a series of genetic and

biochemical analyses and examined by a multidisciplin-
ary team of health professionals including physicians,
nutritionists, physiotherapists and psychotherapists. The
study was approved by the Institutional Review Board of
SJUHC and investigations were carried out in accord-
ance with the principles of the Declaration of Helsinki.
Written informed consent was obtained from study
participants or parents/guardians.

Classification of cardiometabolic risk factors
The presence of the cardiometabolic risk factors, obes-
ity, insulin resistance, dyslipidemia and pre-HTN was
assessed in all subjects. In adults, obesity was defined
as a BMI ≥30 kg/m2 and/or having a waist circumfer-
ence ≥88 cm (women) or 102 cm (men) [44]. In chil-
dren, BMI ≥97th percentile according to the BMI charts
of the World Health Organization [45] and/or waist cir-
cumference ≥95th percentile defined obesity [46]. Blood
pressure was measured on the right arm in the morning
at rest. In adults, blood pressure ≥130/85 and <140/90
mmHg determined arterial pre-HTN and ≥140/90
mmHg HTN [47]. For children, we used current rec-
ommendations according to age and height: blood pres-
sure ≥90th and <95th percentile indicated pre-HTN and
≥95th percentile HTN [48, 49]. Elevated fasting glucose,
glycated hemoglobin (HbA1c) and/or homeostasis
model assessment (HOMA-IR) were used to identify in-
sulin resistance. Cut-off values were fasting glucose
≥6.1 mmol/L [50] and HbA1c ≥6% [50] for both adults
and children. HOMA-IR ≥2.86 (adults) [2, 51] and
≥95th percentile for a pediatric reference population
[52] were considered elevated. Dyslipidemia was de-
fined based on high low-density lipoprotein-cholesterol
(LDL-C), triglycerides (TG) and/or low high-density
lipoprotein-cholesterol (HDL-C) concentrations. For
adults, thresholds were LDL-C ≥3.4 mmol/L [53–55],
TG ≥1.7mmol/L [53, 55, 56] and HDL-C <1.03 mmol/L
in men and <1.3 in women [56]. For children, the
values were compared to the National Heart, Lung and
Blood Institute guidelines for age and gender [57]. Ac-
cumulation of cardiometabolic risk factors was deter-
mined by adding the presence of dyslipidemia, pre-
HTN/HTN, insulin resistance and obesity. Participants
with 3 or more risk factors were defined as “extreme
phenotype” while those without risk factor were defined
as “healthy”.

Nutritional evaluation
Participants’ dietary intakes were collected using a vali-
dated interviewer-administered food frequency ques-
tionnaire (FFQ) [58] combined with a 3-day food
record. Evaluation of nutrient intakes was performed
using the Nutrition Data System for Research software
v.4.03 [59]. A validated Mediterranean score calculated
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on a nine-point scale [60] was used to assess overall
diet quality. Differences between calorie intake (calcu-
lated with the Institute of Medicine equations [61]) and
estimated energy requirement (accounting for level of
physical activity, equations shown in Table 1 [62]) de-
termined energy balance.

Chemotherapeutic medication dose estimation
Theoretical cumulative doses of glucocorticoids (in
prednisone equivalent [mg/m2]), methotrexate (mg/m2)
and asparaginase (mg/m2) were calculated for each par-
ticipant according to DFCI treatment protocols [38].

Exposure and doses of cranial radiotherapy were re-
corded according to protocol.

Genetic data treatment and selection of variants
We performed whole-exome sequencing (WES) on a
total of 209 participants from the PETALE cohort.
Sequencing data were obtained from SJUHC and
Génome Québec Integrated Centre for Pediatric Clin-
ical Genomic using the SOLiD (ThermoFisher Scien-
tific) or Illumina HiSeq 2500 platforms and were
aligned on the Hg19 reference genome (Fig. 1). Rare
and common variants with a predicted functional im-
pact on protein were identified by the functional anno-
tation from ANNOVAR [63]. Only variants with a
PolyPhen-2 score ≥0.85 [64] or a SIFT score ≤0.1 [65,
66] were labeled as “potentially damaging” and used for
further analyses. Two lists were assembled; the first was
composed of genes involved in methotrexate and corti-
coid metabolic pathways [67] and few genes of lipid
metabolism shown to affect corticosteroid-related com-
plications such as hypertension or osteonecrosis [68,
69]. The second list contained genes related to cardio-
metabolic pathways that were selected based on gene
ontology terms using GOrilla [70, 71] and DisGeNET
[72–75]. Variants were defined as rare (minor allele fre-
quency (MAF) <5%) and common (MAF ≥5%) accord-
ing to the reported frequency in the 1000genome [76]
and ESP6500 [77] datasets for Caucasian populations.
A total of 198 variants in the cardiometabolic list and 7

Table 1 Estimated energy requirement equations

Group Equation EER (kcal/d)

Boys 3-8 y 88.5 - (61.9 × age [y]) + PA × {(26.7 × weight
[kg] + 903 × height [m])} + 20

Boys 9-18 y 88.5 - (61.9 × age [y]) + PA × {(26.7 × weight
[kg] + 903 × height [m])} + 25

Men ≥19 y 662 - (9.53 × age [y]) + PA × {(15.91 × weight
[kg]) + (539.6 × height [m])}

Girls 3-8 y 135.3 - (30.8 × age [y]) + PA × {(10.0 × weight
[kg]) + (934 × height [m])} + 20

Girls 9-18 y 135.3 - (30.8 × age [y]) + PA × {(10.0 × weight
[kg]) + (934 × height [m])} + 25

Women ≥19 y 354 - (6.91 × age [y]) + PA × {(9.36 × weight
[kg]) + (726 × height [m])}

PA Physical activity coefficient, y years, EER estimated energy requirement

Fig. 1 Germline variants analysis pipeline
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variants in the methotrexate and corticoid list did not
conform to the Hardy-Weinberg equilibrium and were
rejected.

Power analysis
We used Quanto version 1.2.4 to compute power
analysis at 80% [78] and Bonferroni correction for the
number of SNPs or genes tested. The power analysis
for common variant revealed that odds ratio (OR)
ranging from 3 to 11 (depending on phenotype ana-
lyzed) for variants with MAF of 5-30% can be de-
tected, whereas the lowest OR for rare variants,
assuming a MAF of 0.01 that can be detected with a
given sample size, was 16.

Association studies and statistical analyses
Association between cardiometabolic risk factors and
common variants were studied using PLINK (http://
zzz.bwh.harvard.edu/plink/) [79, 80]. For each associ-
ation, we also determined the genetic model in which
the common variant affects the phenotype: dominant
model (one variant allele impacts the phenotype), re-
cessive model (two variant alleles are needed to modify
the phenotype) and additive model (accumulation of
variant alleles causes a gradation in the risk of develop-
ing the phenotype). Association analyses of rare vari-
ants were performed using the SKAT-O test in the
SKAT package (https://cran.r-project.org/web/pack-
ages/SKAT/index.html) [35] developed for the open
software R [81]. Combined rare and common variant
analyses were also done with the SKAT package. The
Benjamini and Hochberg method (FDR) was used to
correct for multiple testing for each list and variants
with a FDR less than 0.20 were kept for further analyses
[81]. Selected polymorphisms were analyzed using a lo-
gistic regression model including eight covariables: age
at interview, gender, cumulative doses of corticoids,
methotrexate and asparaginase, exposure or not to cra-
nial radiotherapy, Mediterranean diet score and energy
balance. Finally, we used chi-square tests to compare
the prevalence of cardiometabolic complications be-
tween children and adults. Statistical analyses were per-
formed using SPSS version 22.0 [82].

Results
Cohort characteristics
The characteristics of the cohort are presented in Table
2. The cohort (53.6% female) was mostly composed of
adolescents and young adults (median age of 22.4
years). Dyslipidemia was the most prevalent cardiomet-
abolic risk factor (41.8%), followed by obesity (33.0%),
insulin resistance (18.5%) and pre-HTN (10.1%). Dys-
lipidemia was the only risk factor for which we

observed a significant difference between children and
adults (30.2% vs. 46.9%, P<0.025). Of note, less than
40% of the cohort was classified as “healthy” (no MetS
risk factor) and 10.7% as “extreme phenotype” (≥3 MetS
risk factors).

Genetic associations with cardiometabolic candidate genes
We analyzed 1,202 common variants from the cardio-
metabolic candidate gene list (Fig. 2). We found associ-
ations between common variants and two phenotypes
(Table 3): dyslipidemia and the extreme phenotype.
Eukaryotic Translation Initiation Factor 4B (EIF4B)
(FDR 0.18) and 2-oxoglutarate and iron dependent oxy-
genase domain containing 3 (OGFOD3) (FDR 0.18) was
associated with dyslipidemia while extreme phenotype
was linked to BCL2 Associated Agonist Of Cell Death
(BAD) (FDR 0.20) and Fc Receptor Like 3 (FCRL3)
(FDR 0.20). The SKAT-O test performed on the 12,977
rare variants did not reveal any significant association.
The rare/common variant combined analysis showed
associations between the extreme phenotype and 3
genes: BAD (FDR 0.09), FCRL3 (FDR 0.09) and EIF4B
(FDR 0.10) (Table 3).

Genetic associations with methotrexate and
corticosteroid candidate genes
Next, we studied 34 common variants in the metho-
trexate/corticoid candidate gene list (Fig. 3). For dyslip-
idemia, we observed associations with BAD (FDR 0.02)
and Apolipoprotein B (APOB) (FDR 0.11) (Table 4).
BAD was also associated with the extreme phenotype
(FDR 0.009), insulin resistance (FDR 0.07) and obesity

Table 2 Characteristics of the PETALE cohort
Total cohort Adults Children p-value

Gender, n (%)

Male 97 (46.4) 68 (46.6) 29 (46.0) 0.942

Female 112 (53.6) 78 (53.4) 34 (54.0)

Age, median (range) 22.4 (8.5-41.0) 24.9 (18.1-41.0) 16.2 (8.5-17.9)

Phenotype, n (%)

Obesity 69 (33.0) 48 (32.9) 21 (33.3) 0.949

Pre-hypertension 21 (10.1) 16 (10.9) 5 (7.9) 0.505

Insulin resistance 38 (18.5) 29 (20.1) 9 (14.5) 0.34

Dyslipidemia 87 (41.8) 68 (46.9) 19 (30.2) 0.025

Extreme phenotype 22 (10.7) 18 (12.5) 4 (6.5) 0.197

Number of risk factors

0 81 (39.3) 51 (35.4) 30 (48.4) 0.388

1 62 (30.1) 45 (31.3) 17 (27.4)

2 41 (19.9) 30 (20.8) 11 (17.7)

3 19 (9.2) 16 (11.1) 3 (4.9)

4 3 (1.5) 2 (1.4) 1 (1.6)

Extreme phenotype: Three and more cardiometabolic risk factor
Chi-square tests were used to compare the prevalence of cardiometabolic
complications between children and adults
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(FDR 0.08). Moreover, insulin resistance was associated
with a common variant in Serpin Family A Member 6
(SERPINA6) (FDR 0.07) (Table 4). The SKAT-O ana-
lysis for 376 rare variants revealed associations between
glucocorticoid receptor (Nuclear Receptor Subfamily 3
Group C Member 1, NR3C1, FDR 0.17) and the ex-
treme phenotype as well as between pre-HTN and Cor-
ticotropin Releasing Hormone Receptor 1 (CRHR1)
(FDR 0.20) and Corticotropin Releasing Hormone

Receptor 2 (CRHR2) (FDR 0.20) (Table 4). Combined
rare and common variant analyses exhibited 8 associa-
tions: BAD (FDR 0.04), APOB (FDR 0.12),
Cystathionine-Beta-Synthase (CBS) (FDR 0.12) and Sol-
ute Carrier Organic Anion Transporter Family Member
4C1 (SLCO4C1) (FDR 0.14) with dyslipidemia; BAD
(FDR 0.003) and NR3C1 (FDR 0.15) with the extreme
phenotype; and CRHR1 (FDR 0.14) and CRHR2 (FDR
0.14) with pre-HTN (Table 4).

Fig. 2 Processing of single nucleotide polymorphism for cardiometabolic candidate genes

Table 3 Significant genetic associations with cardiometabolic candidate genes

Common Variants

Gene SNP ID MAF p-value FDR Model

Dyslipidemia EIF4B rs146008363 0.05 0.00018 0.180 DOM

OGFOD3 rs62079523 0.33 0.00032 0.180 DOM

Extreme phenotype BAD rs2286615 0.10 0.00034 0.200 DOM

FCRL3 rs2282284 0.03 0.00042 0.200 DOM

Common/Rare variants

Gene Rare (n) Common (n) p-value FDR

Extreme phenotype BAD 3 1 5.79x10-5 0.087

FCRL3 2 1 3.86x10-5 0.087

EIF4B 1 1 0.00010 0.100

MAF Minor allele frequency, DOM Dominant effect, Rare (n) Number of rare variants analyzed in the gene, Common (n) Number of common variants analyzed in
the gene, Extreme phenotype Three and more cardiometabolic risk factor
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Logistic regression analysis with significant cardiometabolic
candidate genes
Significant genetic variants were further analyzed in a
logistic regression model including 8 covariables (see
Methods). Analysis revealed independent associations be-
tween the extreme phenotype and the common variant
rs2286615 in BAD (p=0.006, in a dominant effect model),
age at interview (p=0.04), and exposure to cranial radio-
therapy (p=0.04) (Table 5). The common and rare variant
analysis showed associations between the extreme pheno-
type and age (p=0.03), cumulative doses of methotrexate
(p=0.05), exposure to cranial radiotherapy (p=0.04) and
the BAD gene (p=0.003) (Table 5). The common variant
rs2282284 in FCRL3 was also associated with the extreme
phenotype with a dominant effect (p=0.006) (Table 5).
FCRL3 (rare and common variants) was associated with
the extreme phenotype (p=0.04) while no other covariable
reached statistical significance in this model (Table 5). The
variant rs62079523 in OGFOD3, associated with dyslipid-
emia in the dominant model, was found highly significant
in the logistic regression model (p=0.005) (Table 5).

Logistic regression model with significant methotrexate
and corticoid candidate genes
The results of the logistic regression analyses for the signifi-
cant genes in the methotrexate/corticosteroid list are

presented in Table 6. We found that the common BAD vari-
ant rs2286615 was associated with the extreme phenotype
(p=0.006) in a dominant and additive effect as it was with
age (p=0.04) and cranial radiotherapy (p=0.04). The com-
bined analysis of common and rare BAD variants was sig-
nificant for the extreme phenotype (p=0.003). In this model,
age (p=0.03), cumulative doses of methotrexate (p=0.05)
and cranial radiotherapy (p=0.04) were also significant. BAD
was associated with dyslipidemia for the common variant
rs2286615 (p=0.008, additive model) and for the common
and rare variants (p=0.006). Also the rs2286615 variant was
associated in dominant (p=0.009) and additive (p=0.006) ef-
fect model with the presence of obesity. Rs676210, a variant
in APOB, had a dominant effect on the risk of dyslipidemia
and was the only significant association in the logistic re-
gression model (p=0.02). An additive effect was observed
for the common variant rs2228541 (SERPINA6) and insulin
resistance (p=0.05). Finally, the logistic regression model in-
cluding rare variants in CRHR1 and CRHR2 for pre-HTN
revealed associations for gender (p=0.03) but the genetic as-
sociations did not reach statistical significance.

Discussion
This study is among the first studies to address the con-
tribution of genetic determinants in the development of

Fig. 3 Processing of single nucleotide polymorphism for methotrexate and corticoid pathways’ candidate genes
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long-term cardiometabolic complications in cALL survi-
vors. Globally, we found that the development of an ex-
treme cardiometabolic phenotype can be predicted by
common and rare variants in BAD and FCRL3. The
presence of dyslipidemia in cALL survivors is influenced
by common variants in OGFOD3 and APOB and by
common and rare variants in BAD. Obesity was pre-
dicted by a common variant in BAD and insulin resist-
ance was associated with a common variant in
SERPINA6. Pre-HTN was related to survivors’ gender as
being a female was found protective for this complica-
tion. This gender difference between men and women
before menopause has been well described in the litera-
ture [83, 84].
We found similar prevalence of obesity in children and

in adults, suggesting that obesity acquired during child-
hood following the treatments persists thorough adult-
hood, a hypothesis supported by other studies [85–87].
Obesity is central to the MetS and is a major risk factor
for HTN, dyslipidemia and insulin resistance [23, 88]. The
PETALE cohort appeared to be particularly affected by
dyslipidemia as almost 47% of adults were afflicted. For
comparison, a study conducted in a population of young

Canadian adults (18-39 years old) revealed that 34% were
affected by dyslipidemia [89]. Given their young age, this
finding raises concerns for the long-term cardiovascular
risk of cALL survivors. In fact, 60% of our cohort was af-
fected by at least one cardiometabolic risk factor, 10.7% of
them being classified as extreme phenotypes. The obser-
vation related to the median age of 22.4 years places the
survivors at high risk for early cardiovascular disease.
The common variant rs2286615 in the BAD gene was

associated with extreme phenotype and obesity, whereas
interactions between rare and common variants were
linked to extreme phenotype and dyslipidemia. BAD is a
gene that codes for a protein member of the pro-
apoptotic Bcl-2 protein family named "Bcl2-associated
agonist of cell death". In response to activation by hyp-
oxia, reactive oxygen species, nutrient withdrawal or
DNA damage, the pro-apoptotic proteins in the Bcl-2
family create pores in the mitochondrial membrane by
which cytochrome can be released, triggering the apop-
totic cascade leading to cell death [90]. BAD could have
an impact on the development of insulin resistance since
an imbalance between pro-apoptotic and anti-apoptotic
proteins in situation of high blood glucose promotes β-

Table 4 Significant genetic associations with methotrexate and corticosteroid candidate genes

Common Variants

Gene SNP ID MAF p-value FDR Model

Dyslipidemia BAD rs2286615 0.10 0.00065 0.021 ADD

APOB rs676210 0.23 0.0069 0.110 DOM

Extreme phenotype BAD rs2286615 0.10 0.00034 0.0089 ADD, DOM

Insulin resistance BAD rs2286615 0.10 0.0044 0.069 DOM

SERPINA6 rs2228541 0.50 0.0051 0.069 ADD, DOM, REC

Obesity BAD rs2286615 0.10 0.0025 0.081 ADD, DOM

Rare variants

Gene Rare (n) p-value FDR

Extreme phenotype NR3C1 2 0.0021 0.17

Pre-hypertension CRHR1 1 0.0025 0.20

CRHR2 2 0.0048 0.20

Common/Rare variants

Gene Rare (n) Common (n) p-value FDR

Dyslipidemia BAD 3 1 0.00049 0.040

APOB 30 3 0.0028 0.12

CBS 3 0 0.0042 0.12

SLCO4C1 4 0 0.0066 0.14

Extreme phenotype BAD 3 1 3.35x10-5 0.0028

NR3C1 2 0 0.0037 0.15

Pre-hypertension CRHR1 1 0 0.0032 0.14

CRHR2 2 0 0.0033 0.14

MAF Minor allele frequency, DOM Dominant effect, ADD Additive effect, REC Recessive effect, Rare (n) Number of rare variants analyzed in the gene, Common (n)
Number of common variants analyzed in the gene, Extreme phenotype Three and more cardiometabolic risk factor
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cell apoptosis [90], the latest playing an important role
in the pathophysiology of type 2 diabetes [90]. Studies
suggest that BAD has a role in β-cell function and can
promote glucose-stimulated insulin secretion [91–93].
Besides, it has been reported that BAD suppresses the
formation of tumors in lymphocytes and that Bad-defi-
cient mice are at higher risk of lymphoma and leukemia
[94]. In another study, Bad-deficient mice were prone to
cancer and did not respond adequately to DNA damage
[95]. This gene is thus a suitable candidate to explain a
common etiology between the predisposition to cardio-
metabolic complication and hematologic malignancies.
Because BAD is recurrent in almost all associations with
the cardiometabolic risk factors in our study, we can con-
clude that it is a strong candidate gene for MetS in cALL
survivors. It is possible that through its effects on insulin
resistance, BAD can predispose the participants to develop
obesity, dyslipidemia and pre-HTN [8, 96–98]. As expected,
age had an impact on the presence of the extreme pheno-
type in the model with BAD. We observed that adults were
more affected by cardiometabolic complications than chil-
dren. This can be explained by the fact that the establish-
ment of cardiometabolic risk factors is a long-term and

latent process. Other studies on cALL survivors have re-
ported that obesity, diabetes and the metabolic syndrome
are more frequent in patients who received cranial radio-
therapy [9, 10, 99]. This is in accordance with our results
showing that cranial radiotherapy significantly increased
the risk of extreme phenotype. This could be caused by the
impact of radiotherapy on the brain satiety control center
and on hormones implicated in energy regulation [1, 100,
101]. Indeed, damages caused by cranial radiotherapy could
lead to growth hormone deficiency and then to the devel-
opment of metabolic disorders such as visceral obesity,
hyperinsulinemia and low HDL-C [102].
Carriers of one allele of the variant rs2282284 in FCRL3,

encoding for a protein that is part of the immunoglobulin
receptors, were at increased risk of presenting the extreme
phenotype. The common and rare variant analysis also re-
vealed a significant association between FCRL3 and the
extreme phenotype. It has a role in immune function and
is expressed in secondary lymphoid organs, mostly in B
lymphocytes [103]. This gene has been linked to rheuma-
toid arthritis, autoimmune thyroid disease and systemic
lupus erythematosus [103–105]. In particular, the SNP
rs2282284 has been associated to higher risk of

Table 5 Logistic regression model with significant cardiometabolic candidate genes

Extreme Phenotype Dyslipidemia

BAD/rs2286615 (C, DOM) FCRL3/rs2282284 (C,DOM) BAD (CR) FCRL3 (CR) OGFOD3/rs62079523 (C, DOM)

OR (95% CI)
p-value

Age 1.219 (1.005-1.478) 1.151 (0.993-1.334) 1.213 (1.017-1.447) 1.150 (0.993-1.332) 1.033 (0.962-1.109)

0.044 0.062 0.032 0.062 0.374

Gender 1.152 (0.216-6.142) 1.062 (0.268-4.201) 1.624 (0.340-7.749) 1.039 (0.266-4.063) 0.720 (0.360-1.439)

0.869 0.932 0.543 0.956 0.352

Corticoid 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000)

0.577 0.570 0.355 0.574 0.528

Asparaginase 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000) 1.000 (1.000-1.000)

0.714 0.158 0.444 0.270 0.346

Methotrexate 0.999 (0.999-1.000) 1.000 (0.999-1.000) 0.999 (0.999-1.000) 1.000 (0.999-1.000) 1.000 (1.000-1.000)

0.075 0.800 0.048 0.729 0.696

CRT 14.506 (1.116-188.530) 4.938 (0.687-35.491) 16.098 (1.220-212.463) 3.544 (0.561-22.385) 1.708 (0.668-4.366)

0.041 0.112 0.035 0.178 0.264

Energy balance 0.999 (0.998-1.001) 0.999 (0.998-1.000) 1.000 (0.998-1.001) 0.999 (0.999-1.000) 1.000 (0.999-1.000)

0.297 0.304 0.421 0.306 0.210

Med score 0.652 (0.319-1.329) 0.884 (0.518-1.509) 0.752 (0.374-1.513) 0.815 (0.491-1.353) 1.008 (0.807-1.259)

0.239 0.651 0.425 0.430 0.944

SNP 57.900 (3.152-1063.462) 67.983 (3.393-1362.288) 68.819 (4.202-1159.995) 11.695 (1.150-118.907) 2.712 (1.352-5.442)

0.006 0.006 0.003 0.038 0.005

Top: Odds ratio [95% CI], bottom: p-value
Boldface: significant association
C common, CR common/rare, DOM Dominant effect, CRT Cranial radiotherapy, Med score Mediterranean diet score, Extreme phenotype Three and more
cardiometabolic risk factor
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neuromyelitis optica (a severe inflammatory demyelinating
disease of the central nervous system) [106] and corre-
lated with the risk of multiple sclerosis [107] in the Chin-
ese Han population. FCRL3 role in immune regulation is
of interest given the contribution of inflammation in MetS
pathogenesis [7, 108, 109].
The common variant rs62079523 in OGFOD3 was

found associated with dyslipidemia in the dominant
model. No clear function has been reported for this gene
in the literature but it was linked with the gene ontology
term 2-oxoglutarate and iron-dependent oxygenase
domain-containing protein 3 in our analysis.
We found the common variant rs676210 in APOB cor-

related with the development of dyslipidemia, the pres-
ence of the minor allele (A) being protective for the
outcome. APOB codes for the apolipoproteins B-48 and
B-100 that play a central role in lipid transport and metab-
olism. They are the main apolipoproteins of chylomicron,
very low density lipoprotein (VLDL) and LDL [110, 111].
The rs676210 polymorphism induces a change (proline to
leucine) in position 2739 of the protein, thereby not affect-
ing apolipoprotein B-48, a 2152 amino acid protein that is
the result of APOB RNA editing [112, 113]. In line with
our results, it was demonstrated that the carriers of the
major allele (G) had higher levels of oxidized LDL [114,
115] that predispose to atherosclerosis. However, these
studies failed to find an association between the SNP and
risk of cardiovascular events [114]. Moreover, in compari-
son with the carriers of the major allele G, the minor allele
A was linked to lower TG, total cholesterol and LDL-C
levels and with higher HDL-C [114]. This profile is favor-
able to a healthy cardiovascular system [114] and is in
agreement with our findings. A study also reported a
higher prevalence of glucocorticoid-induced hypertension
in patients with an APOB polymorphism [68], which dem-
onstrate the multiple impacts this gene can have on car-
diovascular health.
The variant rs2228541 in SERPINA6 was associated

with a decreased risk of insulin resistance. Similarly,
common variants at the SERPINA6 locus were found as-
sociated with plasma levels of cortisol in a study com-
prising of 12,597 Caucasians [116]. It was postulated
that this effect was mediated by changes in the total cor-
tisol binding capacity by the corticosteroid binding
globulin. Variations in plasma cortisol levels have been
associated with cardiovascular disease, obesity, type 2
diabetes, HTN and dyslipidemia [116]. Thus, this SNP
could be linked to cortisol levels and thus predisposes to
type 2 diabetes. However, because data was not available,
we could not determine if SERPINA6 variants were asso-
ciated with the development of hyperglycemia during
ALL treatment.
Rare variants in the CRHR1 and CRHR2 genes were

linked to pre-HTN. This effect was lost in the logistic

regression model, but the latter uncovered the impact of
gender on the phenotype, women being protective for the
outcome. The unequal distribution of the phenotype be-
tween the genders (17.53% in men and 3.57% in women)
could probably explain the observed relationship.
On the other hand, corticoid and asparaginase cumu-

lative doses did not have a significant impact on the de-
velopment of cardiometabolic risk factors in our study.
It appeared that exposure to cranial radiotherapy was
the major risk factor to predict the development of late
cardiometabolic complications. Moreover, neither the
quality of diet (evaluated with the Mediterranean diet
score) nor the excess in calories were found significantly
associated with the outcomes in our models.
Standard contingency tables and regression model

allowed us to study common variants but did not pro-
vide enough power to study rare variants [36]. We had
to use a technique that analyzes the cumulative effects
of different rare variants on the same gene [117]. We
also performed combined rare and common variants
analysis in order to detect interactions. With this strat-
egy we were able to discover associations that could not
be seen with traditional associations studies, consisting
the strength of this study. The limited sample size did
not provide us with optimal power, especially for rare
variants analysis. Replication studies in other cohorts of
cALL survivors will be needed to confirm the observed
associations.

Conclusions
This study contributes to better understand the genetic de-
terminants in the development of long-term cardiometa-
bolic complication in childhood ALL survivors. Genetic
information associated with both common and rare vari-
ants can help predict the development of late onset cardio-
metabolic complications. Genetic biomarkers can be used
to propose prevention strategies, personalize the treatment
and the follow-up to minimize the long-term sequelae and
increase the quality of life of this high-risk population.
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