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Abstract

Background: Annual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer
mortality by more than 20%. However, subjects selected for screening based on demographic criteria typically have
less than a 10% lifetime risk for lung cancer. Thus, there is need for a biomarker that better stratifies subjects for
LDCT screening. Toward this goal, we previously reported a lung cancer risk test (LCRT) biomarker comprising 14
genome-maintenance (GM) pathway genes measured in normal bronchial epithelial cells (NBEC) that accurately
classified cancer (CA) from non-cancer (NC) subjects. The primary goal of the studies reported here was to optimize
the LCRT biomarker for high specificity and ease of clinical implementation.

Methods: Targeted competitive multiplex PCR amplicon libraries were prepared for next generation sequencing
(NGS) analysis of transcript abundance at 68 sites among 33 GM target genes in NBEC specimens collected from a
retrospective cohort of 120 subjects, including 61 CA cases and 59 NC controls. Genes were selected for analysis
based on contribution to the previously reported LCRT biomarker and/or prior evidence for association with lung
cancer risk. Linear discriminant analysis was used to identify the most accurate classifier suitable to stratify subjects
for screening.

Results: After cross-validation, a model comprising expression values from 12 genes (CDKN1A, E2F1, ERCC1, ERCC4,
ERCC5, GPX1, GSTP1, KEAP1, RB1, TP53, TP63, and XRCC1) and demographic factors age, gender, and pack-years
smoking, had Receiver Operator Characteristic area under the curve (ROC AUC) of 0.975 (95% CI: 0.96–0.99). The
overall classification accuracy was 93% (95% CI 88%–98%) with sensitivity 93.1%, specificity 92.9%, positive predictive
value 93.1% and negative predictive value 93%. The ROC AUC for this classifier was significantly better (p < 0.0001)
than the best model comprising demographic features alone.

Conclusions: The LCRT biomarker reported here displayed high accuracy and ease of implementation on a high
throughput, quality-controlled targeted NGS platform. As such, it is optimized for clinical validation in specimens
from the ongoing LCRT blinded prospective cohort study. Following validation, the biomarker is expected to have
clinical utility by better stratifying subjects for annual lung cancer screening compared to current demographic
criteria alone.
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Background
Lung cancer kills nearly 160,000 people per year in the
United States, more than breast, prostate, and colon
combined [1]. Importantly, high risk subjects (age 55–
80, 30 or more pack-years smoking, and quit smoking
<15 years prior) screened annually with low dose CT
(LDCT) were more likely to be diagnosed in early stage
and this was associated with a 20% reduction in mortal-
ity in the National Lung Screening Trial (NLST) [2, 3].
Based on these findings, annual LDCT screening is now
recommended for high risk subjects by the United States
Preventive Safety Task Force (USPSTF) [4]. While the
benefits of screening are clear, they are limited due to
large variation in risk among those eligible by demo-
graphic criteria alone [5–9]. The screen-eligible group is
estimated to comprise 5 and 10 million individuals [3, 10].
However, less than 10% of individuals at risk based on
these demographic criteria are expected to develop lung
cancer in their lifetime. As highlighted in the 2014
USPSTF summary statement, there is a clear and well-
recognized unmet need for development of biomarkers
that can define lung cancer risk better than demographic
criteria alone and enable screening efforts to focus on
persons who are at highest risk [11].
Inter-individual variation in lung cancer risk is in part

determined by variation in function of normal bronchial
epithelial cells (NBEC) that form the bronchial epithelium.
This epithelial layer represents a barrier that protects the
lung functional units and the rest of the body from envir-
onmental and occupational air-born hazards including
cigarette smoke, radon gas, asbestos, and ozone. NBEC
are specialized to express many antioxidant, DNA repair,
and xenobiotic metabolism enzyme genes at high level
[12, 13]. Importantly, many key genome maintenance
(GM) gene pathways, particularly those responsible for
antioxidant protection (AO), DNA repair (DNAR), and/or
stem cell regenerative potential are regulated differently in
normal lung tissue of lung cancer subjects compared to
controls [14–17].
These differences in GM pathway gene regulation in

NBEC of cancer subjects may be partly due to inherited
germ-line variation in NBEC gene regulation and/or
acquired effects. Evidence for the role of inherited pre-
disposition in the form of germ-line variation in GM regula-
tion comes from both GWAS and experimental studies.
For example, in a recent GWAS meta-analysis, putative cis-
regulatory variants in GM genes in the G2/M DNA damage
checkpoint and DNA repair pathways were were associated
with risk for lung cancer [18]. In recent experimental
studies, DNA variants were identified that are responsible
for inter-individual variation in NBEC regulation of the key
nucleotide excision repair gene ERCC5 and a key transcrip-
tion regulator of GM genes, CEBPG [19–21]. Evidence for
the role of acquired NBEC changes in lung cancer risk

includes analysis of gene expression and somatic genetic
mutations in NBEC. For example, certain patterns of gene
expression in NBEC are characteristic of effects from heavy
smoking [22, 23]. In addition, acquired effects from
cigarette smoke create a molecular field of injury in the
airway epithelium that may represent an early stage of car-
cinogenesis [24–26]. A field of injury may include morpho-
logic changes that are preceded and/or accompanied by
somatic mutations, epigenetic modifications, and metaplas-
tic differentiation. NBEC transcript abundance patterns as-
sociated with the presence of early lung cancer have been
described and classifiers based on these findings currently
are being evaluated as biomarkers to guide diagnostic
testing [27, 28].
We previously reported that a lung cancer risk test

(LCRT) classfier comprising 14 genes measured in NBEC
accurately classifies cancer (CA) from non-cancer (NC)
subjects [14]. This classifier includes key NBEC GM genes
in AO, DNAR, and cell cycle control (CCC) pathways. We
hypothesis that the association of this classifier with lung
cancer is largely, if not entirely, due to inherited DNA var-
iants responsible for sub-optimal regulation of GM genes
in NBEC. In an effort to further optimize this biomarker
for increased specificity and ease of clinical implementa-
tion, we used a recently developed targeted competitive
multiplex PCR amplicon library method [29] for RNAseq
to measure high prior likelihood GM pathway gene targets
in NBEC specimens from a retrospective cohort of 120
subjects, including 61 CA cases and 59 NC controls. The
overall goal is to develop a biomarker that will identify in-
dividuals who meet current eligibility criteria for annual
LDCT screening but have such low risk based on LCRT
biomarker measurement that they can be safely advised to
opt out of screening. After optimization of the biomarker
reported here, it will be used to assess NBEC samples
from the prospective LCRT cohort [30].

Methods
Study subjects and bio-specimens
NBEC specimens analyzed were from a retrospective co-
hort of 120 subjects, including 61 CA cases and 59 NC
controls. The controls were confirmed to not have lung
cancer at time of sample collection based on negative
imaging, bronchoscopy, and follow-up according to
standard of care. NBEC specimens were obtained from
each subject by cytology brush biopsy of grossly normal
appearing main stem bronchi from subjects at the
University of Toledo according to previously described
methods [29]. Collection and use of these samples and
corresponding medical/demographic data was approved
under UT IRB protocols #108538 and #107844. Each
subject included in this study provided written informed
consent.
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RNA extraction
RNA was extracted from NBEC using TRI reagent
(Molecular Research Center, Cincinnati, OH). RNA was re-
verse transcribed into cDNA with M-MLV reverse tran-
scriptase (Invitrogen, Carlsbad, CA) using oligo dT primer
according to the manufacturer’s protocol as previously
reported [12]. Most RNA samples were processed to cDNA
immediately and cDNA was stored at −20 °C. In the few
cases when samples were stored as RNA prior to reverse
transcription (RT), they were stored under EtOH at −80 °C.

RNA quality assessment
Presence of gDNA contamination in RNA samples was
assessed by two methods. First, the presence of genomic
material in NBEC cDNA was quantified in a representative
set of samples using commercially available SCGB1A1 gen-
omic DNA reagents (Accugenomics, Inc., Wilmington,
NC) as previously described [20]. Second, for the majority
of targeted region assays the reagents were designed to
span introns. Thus, if there were significant gDNA contam-
ination of the RNA and this carried over to cDNA follow-
ing RT, PCR would yield larger product bands for these
targets after electrophoresis. RNA integrity by comparison
of cDNA yield at two or more regions with varying dis-
tances from the 3′ end of the transcript, assuming that if
the transcript was degraded this would be associated with
breaks at intervals and there would be lower representation
at the more 5′ location.

Target selection
The 68 analytes selected include alternative transcripts
expressed by a sub-set of genes in the previously re-
ported classifier [14], as well as an expanded list of AO,
DNAR, and CCC pathway genes with high prior likeli-
hood for involvement in lung cancer risk based on stud-
ies from this laboratory and others. (Additional file 1:
Table S1.

Targeted RNAseq analysis
We used a targeted competitive multiplex PCR amplicon
library method developed in this laboratory, comprising
first-round competitive multiplex PCR pre-amplification
with second round low-complexity amplification. With
this NGS library preparation method, multiple target
analytes were simultaneously PCR-amplified in a reac-
tion mixture containing a known number of competitive
internal standard (IS) molecules for each respective ana-
lyte. Because each pair of analyte native template (NT)
and respective competitive IS contained the same primer
sequences and was amplified with the same efficiency,
the starting analyte copy number could be calculated as
the product of a) number of IS molecules in the starting
PCR reaction times, b) the ratio of analyte sequence
reads/internal standard sequence reads following PCR

[31]. This approach ensured quality control for a) ana-
lyte copies loaded into library, and b) loading of ampli-
con products into sequencer [32]. Control at each of
these levels is key to avoiding analytical variation due to
stochastic sampling. Further, this approach enabled reli-
able quantification of each analyte, while promoting con-
vergence of products during PCR. This convergence of
products markedly reduced sequencing space required
for analysis [29, 32, 33].

Competitive multiplex PCR amplicon library preparation
A targeted competitive multiplex PCR amplicon library
was prepared for each sample to quantify expression of
the 68 assays representing 33 selected GM genes.

Primers
We designed a pool of forward and reverse primer sets
targeting the selected analytes (Additional file 1: Table S1).
For each analyte assay, primers were designed to target
101-bp regions and were synthesized by Integrated DNA
Technologies (IDT, Coralville, Iowa, USA). A universal tail
sequence (arrayed primer extension: APEX-2 [34]) that is
not present in the human genome was added to the 5′
end of each analyte-specific gene primer and served as a
linker for the next step, the index barcoding PCR. For bar-
coding PCR, primers were designed with APEX sequence
at the 3’end (homologous to the 5′ end of the analyte-
specific primers), barcode sequences in the middle, and
Illumina read1 or read2 sequences at the 5’end. A unique
combination of forward and reverse barcodes was selected
from the available pool to identify each sample. The 5′
read 1 and read 2 sequences in the barcoding primers
served as linkers for the last step PCR that added a plat-
form specific adaptor, in study presented here for the Illu-
mina sequencing flow cell.

Preparation of internal standard mixture (ISM)
For each analyte assay, we designed an IS that had 6
base pairs altered compared to the reference DNA
(NCBI, GRCh37) and all IS were then batch synthesized
(CustomArray Inc., Bothell, WA, USA). To create full-
length, double-stranded products, we used assay-specific
primers to PCR-amplify each IS from the batch product.
PCR products were quantified, mixed and gel-purified to
create an internal standards mixture (ISM) for use in PCR.
The ISM contained 10−15 M targets (600 copies/μL) rela-
tive to the 10−14 M ACTB IS (6000 copies/μL).

PCR 1
For each reaction, a 10 μL reaction volume was prepared
containing 1 μL cDNA sample, 1 μL ISM (final amount
in reaction 600 copies target IS/6000 copies ACTB IS),
1 μL 68-plex primer pool containing target-specific for-
ward (F) and reverse (R) primers with APEX-2 linker tail
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(100 nM each), 1 μL of 2 mM dNTPs, 1 μL of 10× Idaho
Technology reaction buffer with 30 mM MgCl2, 0.1 μL
of Promega GoTaq Hot Start Taq polymerase (5 U/uL),
and 4.9 μL of RNase-free water. Each reaction mixture
was amplified using an air thermal cycler (RapidCycler;
Idaho Technology, Inc. Idaho Falls, Idaho). After an ini-
tial Taq activation at 95 °C for 3 min, the reaction mix-
ture was run for 20 cycles, with each cycle consisting of
94 °C for 5 s (denaturing), 58 °C for 10 s (annealing),
and 72 °C for 15 s (extension).

PCR 2: Microfluidic PCR
The PCR 1 product for each sample was column-
purified (50uL elution, QIAquick® PCR Purification Kit,
Qiagen, Valencia, CA) to remove residual primers and
salts. Next, 1 μL of purified PCR 1 product was loaded
into one of 48 wells of a Fluidigm AccessArray™ chip
(Fluidigm, South San Francisco, CA). Primer pairs for
one or two assays were loaded into each of the 48 pri-
mer wells on the chip. Each combination of 48 samples
and 48 wells of primers (total 70 sets of primers) was
automatically combined with PCR reaction mixture on
the AccessArray, then PCR-amplified in the microfluidic
chambers according to AccessArray™ protocol. The 48-
PCR products for each sample were harvested into each
sample well. After completion of PCR, we checked PCR
products randomly on an Agilent Bioanalyzer 2100
(Santa Clara, CA) to ensure presence of correct size
PCR products.

PCR 3: Barcoding PCR
The PCR 2 product for each sample was column-
purified (50uL elution, QIAquick® PCR Purification Kit)
to remove residual primers and salts. One microliter of
purified product from each sample was used for barcod-
ing PCR. A 10 μL PCR reaction volume was prepared
containing: 1 μL of purified PCR 2 product, 1 μL of
10 μM each sample specific forward and reverse barcod-
ing primer, 1 μL of 2 mM dNTPs, 1 μL of 10× Idaho
Technology reaction buffer with 30 mM MgCl2, 0.1 μL
of Promega GoTaq Hot Start Taq polymerase (5 u/μL)
and 4.9 μL of RNase-free water. Barcoding of each sam-
ple was done with an air thermal cycler under the fol-
lowing conditions: 95 °C for 3 min (Taq activation);
15 cycles of 94 °C for 5 s (denaturation), 58 °C for 10 s
(annealing), and 72 °C for 15 s (extension). We randomly
checked PCR products on the Bioanalyzer 2100 to en-
sure presence of correct size PCR products.

PCR 4
The barcoded PCR 3 product for each sample was di-
luted (100-fold in 10 mM Tris-Cl, 0.1 mM EDTA (TE)
and PCR was conducted to add the platform-specific se-
quences. For each platform specific PCR reaction, a

10 μL reaction volume was prepared containing: 1 μL of
100-fold diluted barcoding PCR product with TE, 1 μL
of 10 μM P5 and P7 primer mixture each, 1 μL of 2 mM
dNTPs, 1 μL of 10× Idaho Technology reaction buffer
with 30 mM MgCl2, 0.1 μL of Promega GoTaq Hot Start
Taq polymerase (5u/μL) and 5.9 μL of RNase-free water.
Each sample was cycled separately using the same PCR
condition as the barcoding reactions. After checking
peaks of PCR products and concentration randomly,
products from all 120 bio-specimens were combined at
equal volumes and then purified with the QIAquick®
PCR purification kit. The library concentration was
ascertained on the Bioanalyzer 2100 and then the aliquot
of library was sent for sequencing.

Sequencing
Each combined sample library generated in PCR 4 was
analyzed at the University of Michigan (UM) Genomics
Core Facility on Illumina Hiseq 2500 with TruSeq SBS
Kit v4. Following analysis, the UM service center pro-
vided raw sequencing data in FASTQ format that were
analyzed by our custom pipeline [29, 32]. First, Read 1
and Read 2 sequence were joined and then de-
multiplexed based on dual-index barcoding on each
template. Then, the locus was identified based on the re-
gion of the primer sequences. The “captured” region be-
tween the primer sequences was aligned using custom
alignment with Approximate String matching algorithm
as previous described [29]. The “counts” of alignment
for each allele at each locus was provided as an Excel
file.

Filtering for stochastic sampling error and total
expression measurement
To avoid stochastic sampling error and sequencing error
we established thresholds for minimum molecules
loaded into library preparation and minimum number of
sequencing read counts, then filtered out data below
thresholds as previously described [32]. For the results
presented, we used thresholds associated with coefficient
of variation (CV) based on stochastic sampling predicted
to be <1.0:

CV ¼ −1þ 10

ðMolecules Input−0:54 þ Sequence Reads−0:54

− Molecules Input X Sequence Reads½ �−0:54Þ

Calculation of analyte NT molecules in 1 μL of cDNA
for each target and reference analyte was based on com-
parison of NT signal (sequence read count) to signal for a
known number of input IS. Specifically, for each analyte,
NT/IS read counts were compared with the known mole-
cules of input IS, which was 600 molecules for each target
analyte and 6000 molecules for ACTB reference analyte.
Then the transcript abundance value was calculated for
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each target and reported as target gene molecules/106

ACTB molecules) (Additional file 1: Table S1).

Statistical analysis
All transcript abundance values (in molecules/106 ACTB
molecules) were log10 transformed prior to further ana-
lysis. Statistical analyses, including cancer vs. control dif-
ferences in linear discriminant analysis (LDA) were
performed using R (v 3.2.5) (http://www.R-project.org).
Twenty-three assays with more than 30% missing values
due to low counts and/or sequencing reads were ex-
cluded from the analysis leaving 45 transcript abundance
assays for building of model by linear discriminant ana-
lysis (LDA) (see Additional file 1: Table S1). These tran-
script abundance assays and three demographic
variables, age, gender, and smoking (pack-years) were in-
cluded in model building.

Imputation of missing values
Missing assays were imputed using Multivariate
Imputation by Chained Equations (MICE) [35] with
Predictive Mean Matching (PMM) [36, 37]. MICE is a
multiple imputation (MI) technique and can take into
account the uncertainty in the imputations and yield ac-
curate standard errors compared with single imputation.
PMM is a very popular semi-parametric method within
the MI framework. It imputes missing values from
nearest-neighbors, where distance is based on the ex-
pectation of the missing variables conditional on the ob-
served covariates. M = 50 copies of the data were
created, each of which had the missing values suitably
imputed using the MICE procedure, resulting in M
multiply imputed datasets. Each complete dataset was
analyzed independently and identically.

Building of classifier model
Feature selection in complete dataset
For each complete data set, correlation-adjusted-t (CAT)
scores [38] were used to calculate the overall ranking for
each feature. CAT analysis takes the feature-feature cor-
relations into consideration and can be viewed as “dec-
orrelated” t-score. Thus it measures the individual
contribution of each feature to separate CA and NC pa-
tients after removing the effects of all other features and
provides a natural feature ranking criterion and facili-
tates the feature selection.

Feature selection in multiply imputed data
Each imputed data set will typically result in LDA
models with different selected features. The LDA model
was built on each copy of imputed data set using fea-
tures with at least 60% of “votes”. Area under the curve
(AUC) and classification accuracies were averaged across
the M copies to give a single summary value. The best

set of features was considered to be those comprised by
the LDA model with the highest average AUC with 10-
fold cross-validation. Standard errors of the average were
computed according to the “Rubin rules” [39]. The Re-
ceiver Operator Characteristic (ROC) curve was plotted
and error calculated by R (v 3.2.5).

Results
NBEC RNA sample characteristics
In each of the representative samples assessed, the signal
for genomic copies, using the genomic DNA-specific
SCGB1A1 reagents (Accugenomics, Inc., Wilmington,
NC) [20] was below the threshold for detection (< 6 copies
in cDNA containing 60,000 copies ACTB. Following PCR
of cDNA using target reagents that crossed introns and
electrophoresis of PCR products, the electropherograms
were free of gDNA product bands. High RNA integrity
was demonstrated by the high yield of PCR products for
target regions at both the 5′ and 3′ end of transcripts for
all genes in which multiple regions were targeted (19 of
the 33 genes assessed).

Cohort characteristics
After filtering measured values to remove those that did
not meet the threshold for molecules loaded into library
preparation and PCR product loaded into sequencer (i.e.
sequencing read counts), we removed five subjects for
whom there were results for <6 assays/subject. Following
this, there were 115 subjects (58 CA and 57 NC controls).
The CA group was significantly different from NC group

with respect to Age (p = 0.022), gender (p = 0.021), and
smoking history (p = 0.035), but not pack-years (p = 0.072)
(summary statistics are provided in Table 1 and details for
each subject in Additional file 1: Table S1. Among the 106
subjects for whom ethnicity was known, the cohort was
86% non-Hispanic white, 12% African American, and 2%
Asian or Hispanic.

Linear discriminant analysis (LDA)
We used LDA to assess each of 48 features for CA vs NC
classification accuracy, including 45 transcript abundance
assays and the three demographic variables, age, gender,
and pack-years smoking. We first calculated the CAT score
for each feature and then identified the best model using
10-fold cross-validation. The best classifier included tran-
script abundance values for 13 assays located on 12 genes.
The list of transcript abundance features in the best classi-
fier, with function and frequency of contribution to classi-
fier during model development is provided in Table 2 and
information for all 48 features used in model building are
presented in Additional file 1: Table S1. The best classifier
had ROC AUC 0.975 (95% CI: 0.96–0.99) (Fig. 1) and over-
all classification accuracy 93% (95% CI 88%–98%) (Table 3).
This classifier was significantly (p < 0.0001) more accurate
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than the best model comprising demographic features only
(Fig. 1, Table 3). With the threshold set at 95% sensitivity,
as might be applied for screening, the specificity was 90%.
NC non-Cancer, CA Cancer, MI Multiple Imputations,

ROC Receiver Operating Characteristic, AUC Area
Under Curve, CI Confidence Interval, PPV Positive Pre-
dictive Value, NPV Negative Predictive Value. *P-value
between two results was <0.0001.

Discussion
The purpose of these studies was to optimize LCRT clas-
sifier performance prior to clinical validation in the
multi-site prospective blinded LCRT cohort trial [30].

Here we report that an LCRT classifier comprising 12
GM genes plus demographic factors has significantly
higher accuracy than demographic factors alone for clas-
sifying CA from NC individuals. The features comprised
by this classifier substantially overlap those in the previ-
ously reported LCRT [14]. That said, the classifier pre-
sented here represents a new model that must be
confirmed in an independent cohort. Toward this goal,
the LCRT prospective trial is expected to be completed
in 2017–18. The trial design, population characteristics,
biospecimen repository, and safety of bronchoscopy to
collect bio-specimens were published recently [30]. The
selected transcript abundance features will be measured in
the LCRT cohort using the high throughput targeted NGS
method that was developed in this laboratory [29, 32] and
used in the study reported here.
We hypothesize that the lung cancer-associated NBEC

gene expression pattern comprised by the classifier rep-
resents a genetically determined GM gene protective
capacity responsible for inherited predisposition. The de-
gree to which the genetically determined pattern inter-
acts with environmental effects (i.e., cigarette smoking)
to determine lung cancer risk was difficult to determine
in this case control study because both cases and con-
trols were enriched for heavy smokers. We will test the
hypothesis that the classifier represents inherited predis-
position in the blinded, prospective LCRT cohort trial
[30]. Specifically, the LCRT classifier will be measured in
all 384 enrolled subjects, with LCRT classifier measure-
ment conducted blinded to outcome. After 7–8 years of
follow-up (2018–2019) we expect >20 incidental lung
cancers which is sufficient power to identify a > 2-fold
increased risk [30]. Because the classifier reported here
detected 33-fold increased risk (95% CI = 12, 102) the
LCRT trial will be strongly powered to detect classifier
effect. Because all subjects enrolled in the LCRT trial
were confirmed not to have lung cancer at the time of
study entry, validation will support the hypothesis that
the classifier expression pattern is a cause of, rather than
a response to, lung cancer.
The hypothesis that the association of LCRT value is

based in part on inherited predisposition will be sup-
ported by validation of the classifier in the prospective
LCRT study but will require additional experimental and
epidemiologic confirmation through studies similar to
those recently reported [18–21]. In prior experimental
studies we reported that germ-line variation is respon-
sible for inter-individual variation in regulation of the
key nucleotide excision repair gene ERCC5, one of the
genes in the classifier reported here, and a key transcrip-
tion regulator of GM genes, CEBPG [19–21]. Additional
studies will be designed to identify DNA variants that
contribute to regulation of other genes comprised by the
classifier reported here.

Table 1 Demographic characteristics of the study population

Non-cancer (n = 57)a Cancer (n = 58)a p-valueb

Age, yr 59.3 (±14.2) 64.4 (±9.5) 0.022

Gender 0.021

Male 28 40

Female 29 16

Smoking history 0.035

Current 23 12

Former 27 37

Never 0 1

Pack-Years 43 (±28.7) 53 (±31.3) 0.072

Ethnicity

White 45 46

AA 9 4

Other 1 1
aMissing data: age (n = 2), gender (n = 2), smoking history (n = 15), ethnicity
(n = 9). bp-values were calculated using a Student’s t-test for age and pack-
years, and Fisher exact test for gender and smoking history. AA:
African American.

Table 2 Classifier feature characteristics

Feature Function Ranking Selection frequency % Missing value

E2F1 CCC/DNAR 1 1 23

ERCC5 DNAR 2 1 9

XRCC1 DNAR 3 0.94 8

GPX1 AO 4 0.92 2

TP63–2 CCC/DNAR 5 0.92 30

GSTP1 AO 6 0.88 12

CDKN1A CCC/DNAR 7 0.86 2

TP53–2 CCC/DNAR 8 0.86 9

ERCC4–2 DNAR 9 0.78 29

RB1 CCC/DNAR 10 0.74 23

ERCC5–2 DNAR 11 0.70 20

KEAP1–2 AO 12 0.70 11

ERCC1–2 DNAR 13 0.68 4

AO antioxidant protection, DNAR DNA repair CCC cell cycle control
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The intended use of the LCRT biomarker is to better
stratify individuals for annual LDCT lung cancer screen-
ing. Specifically, the goal is to identify individuals who
meet current eligibility criteria for annual LDCT screen-
ing but have such low risk based on LCRT biomarker
measurement that they can be safely advised to opt out
of screening. The high specificity of the biomarker pre-
sented here when threshold is set for high sensitivity
supports the hypothesis that this biomarker will have
clinical utility for the intended use. Given that 5–10 mil-
lion are estimated to be eligible for screening at an esti-
mated cost of $2–4 billion/year [10], if only the 10%
with lowest risk based on LCRT opt against screening
this will reduce the cost of screening by hundreds of
millions of dollars/year and reduce unnecessary tests
and procedures resulting from false positive screening
results. Implementation for this purpose likely will de-
pend on results of a well-designed prospective random-
ized clinical trial. That said, due to costs of the

procedure, it is likely that this test initially would be re-
stricted to individuals who are having a standard of care
bronchoscopy for some other purpose, including investi-
gation for possible lung cancer. For those who are deter-
mined not to have lung cancer following bronchoscopy,
a negative LCRT biomarker value would provide evi-
dence to support withdrawal from annual lung cancer
screening after completion of the active lung cancer
work up.
A second possible use of this biomarker may be to guide

intensity of diagnostic testing in the setting of imaging ab-
normalities that raise the question of lung cancer, as de-
scribed for other recently reported tests [27, 28]. For
example, those subjects with LCRT biomarker value
below the threshold might be safely monitored by imaging
or other non-invasive methods without having to undergo
invasive diagnostic tests and/or surgery.
There are ongoing efforts to identify the demographic

criteria that best stratify subjects in the effort to

Fig. 1 Receiver operating characteristic curve (ROC) for performance of best classifier in 57 NC and 58 CA subject based on M = 50
multiple imputations

Table 3 Classifier Performance

Demographics only Demographics plus genes

Number of subjects (N) 115 (NC:57, CA:58) 115 (NC:57, CA:58)

Demographic variable used 3: gender, age and pack-years 3: gender, age and pack-years

Picked Gene Features 0 E2F1 ERCC5 XRCC1 GPX1 TP63.2 GSTP1 CDKN1A
TP53.2 ERCC4.2 RB1 ERCC5.2 KEAP1.2 ERCC1.2

AUC based on 50 MI* 68.3% (95%R CI: 63.3%–73.1%) 97.5% (95%R CI: 96.0%–98.9%)

Classification Accuracy based on
50 MI*

65.5% (95% CI: 56.8%–74.1%) 93.0% (95% CI: 88.4%–97.7%)

PPV* 64.8% (95% CI: 52.9%–76.6%) 93.1% (95% CI: 86.6%–99.6%)

NPV* 66.3% (95% CI: 53.6%–79.0%) 93.0% (95% CI: 86.4%–99.6%)

Sensitivity* 69.2% (95% CI: 57.4%–81.1%) 93.1% (95% CI: 86.6%–99.6%)

Specificity* 61.6% (95% CI: 49.0%–74.2%) 92.9% (95% CI: 86.3%–99.5%)
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optimize outcomes, beyond the current LDCT screening
criteria (age 55–80, >30 pack-years) [4, 40–43]. Thus, it
is likely that the best methods to optimally stratify sub-
jects for inclusion in LDCT screening will combine the
LCRT classifier combining genetic and demographic fac-
tors reported here modified to accommodate recently re-
ported demographic criteria [3, 4, 6, 44]. A decision
regarding the fraction that would have low enough risk
to safely opt out of screening might depend on many
other factors, including occupational exposure, family
history, and confidence limits associated with the bio-
marker after the validation study.
Of the twelve genes represented in the classifier reported

here, six (E2F1, ERCC4, ERCC5, GPX1, GSTP1, and
XRCC1) were in the previously reported classifier [14]. For
ERCC5, two separate assays that targeted different alterna-
tive transcripts contributed to accuracy of the classifier re-
ported here. Transcript abundance values measured by the
two different assays were not correlated, indicating different
regulation control and, therefore, independent association
with lung cancer risk.
While CEBPG was not included in the optimized classi-

fier it is highly correlated with several of the genes com-
prised by the classifier reported here. Further, we previously
reported that a set of AO, DNAR, and CCC genes contain-
ing CEBPG recognition sites display transcript abundance
correlation with CEBPG, consistent with regulation by
CEBPG, and also display lung cancer-associated expression
patterns in NBEC [15]. There is increasing evidence that
CEBPG plays a key role in regulating a variety of stress re-
sponse pathways, including those represented by the LCRT
biomarker reported here [45]. For example, this laboratory
experimentally confirmed that CEBPG up-regulates ERCC5
[21], and identified ERCC5 SNPs that may contribute to
inter-individual variation in regulation of ERCC5 [20, 46].
Thus, it is reasonable to speculate that inter-individual vari-
ation in CEBPG expression combined with variation in
ERCC5 cis-regulatory SNPs contributes to lung cancer risk
determination through effect on regulation of one or both
of the alternative ERCC5 transcripts.
The six new genes in the classifier reported here in-

clude key GM genes CDKN1A, ERCC1, KEAP1, RB1,
TP53 and TP63. CDKN1A is a marker for lung cancer
and uncontrolled cell proliferation [47, 48]. ERCC1 is a
key DNA repair gene that interacts closely with ERCC5
in nucleotide excision repair [49]. KEAP1 (Kelch-like
ECH-associated protein 1) is a key regulator of anti-
oxidant defense. KEAP1 inhibits nuclear factor eryth-
roid 2-related 2 (NEF2L2; also named NRF2)-induced
cytoprotection. TP53 is involved in cell-cycle check-
point, DNA repair, senescence, and apoptosis func-
tions [50]. KEAP1, RB1, and TP53 are frequently
mutated in squamous lung cancers [51–54]. TP63 ex-
pression is a marker for NBEC stem cells [55] and

squamous lung cancer [56], and TP63 is frequently
mutated in squamous lung cancer [53].
The targeted NGS method used in this study has ex-

cellent control for analytical variation, along with rela-
tively high throughput and low cost, and is highly
reproducible across platforms, users, and experiments
[29, 32]. These characteristics will facilitate analysis in
the prospective cohort LCRT study. Prior to analyzing
LCRT prospective trial samples we will take steps to
minimize missing values. Specifically, for this study, we
used only one ISM mixture in which 600 copies of IS
and 6000 copies of ACTB IS were in each assay. How-
ever, for some highly expressed genes (e.g. GSTP1), the
high NT value resulted in missing values due to low se-
quencing counts for the IS, and for some lowly
expressed genes (e.g. E2F1) the low NT value resulted in
missing values due to low sequencing counts for the
NT. Thus, for the prospective trial we will minimize
missing values by measuring each sample using two
ISM, with different target IS concentrations.
The ethnic make-up of the cohort used in the study

reported here to optimize the LCRT classifier is similar
to the make-up of the prospective LCRT cohort that will
be used for clinical validation [30]. Due to the relative
homogeneity of these populations comprising predomin-
antly non-Hispanic white individuals, assessment of clin-
ical utility in other populations will require additional
validation studies.

Conclusions
In summary, the optimized LCRT biomarker is ready for
validation testing in specimens from the prospective
LCRT cohort (ClinicalTrials.gov NCT 01130285) [30]. It
is expected that a sufficient number of incidental cancers
will be observed to reach power by 2018–2019. In
addition, we will continue studies to identify cis-rSNPs
responsible for inter-individual variation in NBEC regu-
lation of genes comprised by the classifier reported here
through integration of databases for NBEC transcript
abundance and eQTL in lung [57] and experimental
confirmation.
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