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Abstract

deficiency using B16F10 melanoma cells.

may promote tumor cell intravasation and metastasis.

Background: Shb is a signaling protein downstream of vascular endothelial growth factor receptor-2 and Shb deficiency
has been found to restrict tumor angiogenesis. The present study was performed in order to assess metastasis in Shb

Methods: B16F10 melanoma cells were inoculated subcutaneously on wild type or Shb +/— mice. Primary tumors were
resected and lung metastasis determined after tumor relapse. Lung metastasis was also assessed after bone marrow
transplantation of wild type bone marrow to Shb +/— recipients and Shb +/— bone marrow to wild type recipients.
Primary tumors were subject to immunofluorescence staining for CD31, VE-cadherin, desmin and CD8, RNA isolation and
isolation of vascular fragments for further RNA isolation. RNA was used for real-time RT-PCR and microarray analysis.

Results: Numbers of lung metastases were increased in Shb +/— or —/— mice and this coincided with reduced pericyte
coverage and increased vascular permeability. Gene expression profiling of vascular fragments isolated from primary
tumors and total tumor RNA revealed decreased expression of different markers for cytotoxic T cells in tumors grown on
Shb +/— mice, suggesting that vascular aberrations caused altered immune responses.

Conclusions: It is concluded that a unique combinatorial response of increased vascular permeability and reduced
recruitment of cytotoxic CD8+ cells occurs as a consequence of Shb deficiency in B16F10 melanomas. These changes
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Background

Angiogenesis inhibition [1] has become a clinically ac-
cepted treatment of numerous malignant diseases (www.
cancer.gov/cancertopics/factsheet/ Therapy/angiogenesis-
inhibitors). The primary targets of anti-angiogenic
therapy so far have been the main angiogenic factor
VEGF (vascular endothelial growth factor) or its recep-
tor VEGFR-2 [2,3]. Despite these advances, this therapeutic
regimen is clearly not as straightforward as initially thought
and certain reports suggest that some tumors may
become more aggressive showing increased invasiveness
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and metastatic spread as a consequence of anti-angiogenic
treatment [4,5].

SHB (Src homology domain containing protein B) is an
adaptor protein [6] operating downstream of VEGFR-2 [7],
the receptor active in VEGF’s angiogenic response [8]. The
Shb knockout mouse phenotype was found to be pleio-
tropic with aberrations in female reproduction [9,10], glu-
cose homeostasis [11], the T lymphocyte response to T cell
receptor stimulation [12,13] and the vasculature [14-16]. In
particular, the vasculature displayed reduced angiogenesis
and vascular permeability in response to VEGF [14,16].
Consequently, absence of one Shb-allele conferred a restric-
tion on tumor growth of Lewis lung carcinoma and T241
fibrosarcoma cells [14] and of inheritable RT2 (rat insulin
promoter-SV 40 T antigen) insulinomas [15]. In addition to
the ameliorating effects of Shb-deficiency on pathological
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angiogenesis, Shb knockout mice displayed vascular abnor-
malities that resulted in impaired recovery after ischemic
injury [16]. Shb knockout endothelial cells show reduced
responsiveness to VEGF-stimulation with respect to ERK
(extracellular-signal regulated kinase), Akt, FAK (focal ad-
hesion kinase), Racl and myosin light chain kinase [14,17].
In concert, this abnormal signaling signature affects endo-
thelial cell migration and adherens junction dissolution
in response to VEGF [14,16,17], explaining the vascular
dysfunction in vivo.

Melanomas are highly invasive cancers that metastasize
at an early stage [18,19]. Since Shb-deficiency appears to
reduce tumor growth by restricting the angiogenic expan-
sion of the vasculature, the question of whether this will
cause increased tumor invasiveness and metastasis or not
remains unanswered. In the RT2 insulinoma model, no
evidence for increased liver metastasis was obtained [15].
However, melanomas have a high inherent propensity for
metastasis and for that reason, B16F10 melanoma cells
were grown in Shb-deficient mice and the numbers of
lung metastases determined. Indeed, it was observed that
melanoma metastasis was increased in Shb-deficient mice
because of a defective vasculature showing elevated vascu-
lar permeability and diminished recruitment of CD8+ cells
to vascular structures.

Methods

Animals

Shb +/+ and +/- mice were bred on the C57Bl6 back-
ground for 8 generations (E8). Alternatively, Shb —/- and
+/+ mice bred for four generations (F4) on that strain of
mice were used. It was previously shown that Shb —/- mice
cannot be obtained after breeding for more than 4 genera-
tions onto the C57Bl6 background [10]. All animal experi-
ments had been approved by the local animal ethics
committee at the Uppsala County Court.

Tumor cell injections

B16F10 melanoma cells (2 x 10°) were injected subcutane-
ously in the subscapular region. When the tumor reached
a size of 0.5 — 1 cm® (determined by a caliper) the tumor
was resected under anesthesia. Excised tumors were
weighed for size determination. The mice were housed for
an additional 10-19 days (commonly, but not always,
there was a tumor relapse deciding the end-point of the
experiment) after which the mice were sacrificed. Some of
the mice were injected with 2 mg/kg FITC-conjugated
Dextran-70000 (46945, Sigma, St. Louis, MO, USA) 30 mi-
nutes before sacrifice into the tail vein in order to deter-
mine blood vessel permeability. For lung seeding, 200000
B16F10 cells were injected in the tail vein and the mice
maintained for three weeks before sacrifice. Lungs were
excised and macroscopically visible metastases counted.
The area was also inspected carefully for lymph node
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metastases but none were detected. The resected primary
tumor was frozen on dry ice for immunofluorescence stain-
ing or stored in RNA-later (Quiagen, Hilden, Germany) for
subsequent RNA preparation.

Immunofluorescence

Excised tumors were sectioned (5 pm) and subjected to
immunofluorescence staining for CD31 (553370, BD
Pharmingen, Franklin Lakes, NJ, USA), VE-cadherin
(vascular endothelial-cadherin) (AF1002, R&D Systems,
Minneapolis, MN, USA), desmin (ab6322, Abcam,
Cambridge, UK) and fibrin/fibrinogen (GAM/Fbg/7S,
Nordic Immunological Laboratories, Eindhoven, the
Netherlands) as previously described [15].

At least five pictures were taken randomly of each tumor
using a Nikon fluorescence and confocal C-1 microscope
(Nikon, Japan). The area, diameter, perimeter of blood
vessels, the fibrin spread area and pericyte covered length
were measured with Image ] software. Quantification of
blood vessel permeability of FITC-conjugated Dextran was
performed using Photoshop software.

Isolation of vascular fragments

Microvascular fragments were isolated from B16F10
melanomas grown on Shb +/- and control mice as pre-
viously described [20]. Briefly, tumors (0.5-1.0 cm®) were
perfused with Hanks’ salt solution under anesthesia and
then excised. They were then cut into small pieces and
digested in 1.5 ml of 5 mg/ml Collagenase A (#103586,
Roche Diagnostics, Basel, Switzerland) and 100 U/ml
DNasel (Invitrogen, Carlsbad, CA) Hanks’ solution per
tumor for 15 min at 37°C. The tumor suspension was
pipetted, filtered through a 70 pm diameter cell strainer
(BD Bioscience, Franklin Lakes, NJ), washed and filtered
a second time with a 40 pum cell strainer. After washing,
the cells were incubated with CD31-coated Dynabeads.
The magnetic beads (with the captured vascular frag-
ments) were collected using a magnetic rack, washed
extensively after which RNA was prepared from the cap-
tured cells using the Quiagen RNeasy Mini Kit (Quiagen,
Hilden, Germany). Endothelial cells were isolated as de-
scribed [14].

Gene expression

Total RNA of tumor was extracted according to RNeasy
mini kit (74104; Qiagen) with RNase-Free DNase set
(79254,Qiagen). One-step quantitative real-time RT-PCR
was performed with QuantiTect™ SYBR°Green RT-PCR-kit
(204243,Qiagen) on a LightCycler™ real-time PCR machine
(lightcycler 2.0; Roche, Mannheim, Germany). Cycle thresh-
old (Ct) values were determined with the LightCycler Soft-
ware v3.5 (Qiagen). Gene expression was normalized for
differences in RNA by subtracting the corresponding B-actin
Ct-value. Statistical comparisons were made on normalized
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Ct-values. TagMan qPCR gene expression analysis (Tagman,
Life technologies, Carlsbad, CA) was used for analysis of
PDGEF-D (platelet-derived growth factor), CSFR2 (colony
stimulating factor receptor 2), CXCL12 (chemokine C-X-C
motif ligand), CXCR-4 (CXCL receptor) and CXCR-7.

Microarray analysis

High quality vascular fragment RNA from five tumors of
each genotype was analyzed with Affymetrix 1.0 ST chips at
the microarray core facility at Uppsala University Hospital
(Uppsala Array Platform, Department of Medical Science,
Science for Life Laboratory, Uppsala University Hospital,
Sweden). Ingenuity software (Quiagen, Hilden, Germany)
was used to perform pathway analysis on the microarray
samples.

Bone marrow transplantation for generating chimeric
mice

Iliac bones, femurs and tibias were collected from 8 to
10 week-old C57Bl/6 Shb +/+ and Shb +/- donor mice and
processed as described [21,22]. Cell numbers were deter-
mined and 1.5 x10° cells were transplanted into congenic
Shb +/+ or Shb +/- recipients by retro-orbital injection.
Prior to the bone marrow transfer, the recipients were irradi-
ated [22] with a split dose separated by two hours of 10 Gy.
Peripheral blood chimerism in the recipient mice was deter-
mined 6 weeks post-transplantation by bleeding 100—200 pl
blood in 0.05 mM EDTA. Total RNA was isolated from
the remaining leukocytes with the RNeasy mini kit (74104;
Qiagen). The Shb gene expression in the chimeric mice was
compared between different Shb genotypes, following the
real-time RT-PCR procedure.

In separate bone marrow transplantation experiments we
assessed chimerism after bone marrow transfer by CD45.1
and CD45.2 staining after transfer of CD45.2-positive bone
marrow to CD45.1-positive recipients. In such experiments,
the donor bone marrow repopulated the host with more
than 75% efficiency (results not shown).

Statistics

All values are given as means + SEM. Probabilities (P) of
chance differences between the groups were calculated
with Mann—Whitney rank sum test (tumor metastases)
or Students’ t-test (all other comparisons). Relative fre-
quencies of metastasis were determined as follows: each
mouse was categorized with category 0 having 0 metas-
tases, category 1 having 1-5 metastases and category 2
having >5 metastases.

Results

B16F10 melanoma growth and metastasis in

Shb +/— mice

Tumor growth, vasculature and metastasis was investigated
using the B16F10 melanoma model [23]. In Additional
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file 1: Figure S1, tumor growth in Shb +/+ and Shb +/-
mice is shown. No statistically significant difference was ob-
served although 5 of 18 +/- tumors were much larger than
the others on day 14 thus explaining the prominent error
bar. Tumor resection was followed by a time period before
animal sacrifice that occurred at the same time point for
both groups of mice (Additional file 1: Figure S1). When
determining lung metastases at sacrifice, the Shb +/- mice
showed an increased number of lung metastases compared
with controls (Figure 1A,B). Lung metastases were also cat-
egorized as zero (0 metastases), low=1 (1-5 metastases)
and high = 2 (>5 metastases) and using this scoring method,
the Shb +/- mice also exhibited an increased frequency of
metastasis (Figure 1C).

Shb —/- mice can be obtained after breeding for max-
imally four generations onto the C57Bl6 background (F4)
and we thus determined numbers and relative frequencies
of metastasis in F4 Shb —/- mice, comparing them with
corresponding F4 wild type controls (Figure 1B, C). Similar
numbers were obtained as was seen in the F8 Shb +/— mice
showing an increased absolute number of metastases,
regardless of whether determined as numbers or relative
frequency of metastasis when scored in categories
(Figure 1B, C). For the following experiments, Shb +/-
F8 mice were studied and compared with F8 +/+ con-
trols since F4 mice are not considered inbred.

Lung seeding of tail vein-injected B16F10 melanoma cells
B16F10 melanoma cells were also injected in the tail
vein to assess metastatic lung seeding of the injected
cells (Additional file 2: Figure S2). No difference could
be noted between wild type or Shb-deficient mice after
this procedure, indicating that the ability of the target
organ to seed tumor cells spread in the bloodstream was
not dependent on genotype.

Shb +/- B16F10 melanoma vasculature

In previous studies, absence of one Shb allele conferred
reduced tumor angiogenesis [14,15]. We currently de-
cided to investigate the vasculature of B16F10 melano-
mas grown on the Shb +/- background. Surprisingly, no
difference in vascular density was observed between Shb
+/+ and +/- tumors (Figure 2A-C). The vasculature was
unevenly distributed in both genotypes with certain
areas showing a high vascular density and others not.

Shb +/- melanoma vascular pericyte coverage and
permeability

Endothelial pericyte coverage and vascular permeability
have been suggested as factors contributing to increased
tumor metastasis [24]. Although no apparent difference in
the endothelial pericyte coverage of tumors grown in Shb
deficient mice was previously detected [14], morphological
aberrations were noted [15]. These could relate to the
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Figure 1 B16F10 melanoma lung metastasis in Shb +/+, +/— and —/— mice. (A) Pictures show examples of lungs without (+/+) and with
(+/-) B16F10 melanoma metastases. (B) At time of sacrifice, numbers of lung metastases were determined (arrow indicates a metastasis). These
are given as absolute numbers for each mouse (B) or scored as relative frequencies after grouping in categories (C) (0=0, 1 = 1-5, 2= >5).
Means + SEM forn=16 +/+,n=16 +/—,n=11 +/+ F4 and n=11 —/— F4.* and ** indicate p < 0.05 and p < 0.01, respectively when compared
with corresponding +/+ controls by Mann-Whitney U test.

abnormal endothelial cell morphology but could also re-  in Shb +/- vascular fragments. The decrease in PDGFRA
flect cell-autonomous changes of pericytes as well. We  expression, together with decreased vascular coverage of
currently set out to investigate the status of pericytes in  desmin staining, point towards reduction of the B-type
the Shb +/- melanomas by staining for the pericyte  pericyte [25] characterized by expression of these markers.
marker desmin (Figure 3A, D). We observed reduced peri- These findings were further supplemented with micro-
cyte coverage in melanomas grown in Shb +/- mice. This  array analysis using Affymetrix 1.0/2.0 chips (Additional
reduction correlated with increased fibrin deposits outside  file 3: Table S1). The most striking findings were reduced
the vessel itself (Figure 3B, E), indicating increased vascu-  expression of IL-6 (interleukin) and numerous markers for
lar leakage. Increased vascular leakage was also noted in  active cytotoxic CD8+ cells. These include several gran-
melanomas grown in Shb +/- mice by assessing FITC-  zymes (Gzmc, Gzmd, Gzme, Gzmf and Gzmg), Pdcdll2
Dextran-70000 fluorescence after injection (Figure 3C, F).  (PD-L2) and Xc/I. One gene that showed increased expres-
Thus the combined data in Figures 2 and 3 provide evi-  sion in Shb +/- vascular fragments was Pten, which exerts
dence for a vascular phenotype showing increased vascu-  an antagonistic role relative that of phosphatidylinositol 3-
lar permeability that is supportive of B16 melanoma kinase. The analysis of the microarrays by Ingenuity
metastasis by allowing melanoma cell intravasation and software revealed that cell-to-cell signaling and inter-

dissemination. action, inflammatory response, immune cell trafficking,

cell-mediated immune response, immunological disease,
Gene expression in vascular fragments isolated from and natural killer cell proliferation and development were
tumors amongst the most deregulated pathways under the “top

To understand the molecular mechanisms responsible for ~ diseases and biological functions” heading. Ingenuity
the observed vascular abnormalities, vascular fragments  analysis also confirmed that granzymes and IL-6 were sig-
were isolated from tumors grown on Shb +/+ and +/-  nificantly downregulated in the Skb +/- microvascular
mice. Real-time RT-PCR for various angiogenic factors, fragments. Collectively, microarray data points to a de-
receptors and chemokines of potential relevance for the crease in the recruitment of immune cells, particularly
vascular phenotype showed no changes in expression of CD8+ cells, to the Shb +/- tumors as compared to wild
most of these (Table 1), i.e. VEGFA, PDGF-AA, PDGEF-  type controls.

BB, PDGF-CC, PDGF-DD, angiopoietin-1, angiopoietin-2, The possible involvement of CD8+ cells in affecting rates
VEGER1, VEGER2, Tie-2, PDGERB, GM-CSE, CXCL-12, of metastasis was studied additionally by tumor staining for
CXCR-4 and CXCR-7 were unchanged. PIGF (placental = CD8a. Tumor numbers of CD8+ cells was difficult to assess
growth factor) was increased and PDGFRA was reduced due very uneven distribution of these cells within the
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Figure 2 Vascular characteristics of Shb +/+ and +/— B16F10 tumors. Sections from B16F10 melanomas grown in Shb +/+ and +/— mice
were stained for CD31 (red, A, B). Representative images at the magnifications indicated are shown (A-B). Relative vascular density (C, grid
intersections over a red structure divided by total intersections) were quantitated and given as means + SEM for 5 tumors each genotype and the
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tumors. However, the association of CD8+ cells with vascular
structures could be quantified by double staining for CD8a
and the vascular marker VE-cadherin showing a lower
percentage CD8+ cells in direct contact with endothelial cells
in Shb +/- tumors (Figure 4).

To obtain reliable estimates of tumor CD8+ cell infil-
tration, CD8a gene expression was determined by real-
time RT-PCR of total tumor RNA and was found to be
selectively decreased in Shb +/— tumors (Figure 5). IL-6
expression was similar in wild type and Shb +/- total
tumor RNA. In vascular fragments, expression of CD8a
as well as granzyme B and IL-6 were decreased as a con-
sequence of Shb deficiency. Gene expression analysis of
isolated endothelial cells showed significantly less IL-6

gene expression (<1%) compared with that of the vascu-
lar fragments, suggesting that passenger lymphocytes
provide the main source of IL-6 mRNA in the vascular
fragment preparations (results not shown).

Bone marrow transplantation experiments

The possibility that immune cells could be responsible
for the increased rate of metastasis motivated us to
perform bone marrow transplantations and to follow the
effect of the hematopoietic cell genotype on metastasis.
Wild type bone marrow was transplanted to Shb +/- re-
cipients and Shb +/- bone marrow was transplanted to
wild type recipients. After restitution of hematopoiesis
(>3 months) B16F10 melanoma cells were inoculated
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(See figure on previous page.)

Figure 3 Pericyte coverage and leakage of fibrinogen in B16F10 tumors grown in Shb +/+ and +/— mice. Sections from B16F10
melanomas were stained for CD31 (red) + desmin (green) (A) or CD31 (red) + fibrin (green) (B). Representative images are shown at the
magnifications indicated. FITC-Dextran-70 K leakage was also determined by direct immunofluorescence of frozen sections of tumors after injec-
tion of the fluorescent dye (C). The percentage vessel coverage by pericytes was quantitated (D), as well as fibrin staining outside the CD31-lines
vessel divided by the corresponding value contained within the CD31-positive structure (E). FITC-Dextran fluorescence was determined by Photo-
shop and given as relative values (F). Means + SEM are given and five tumors each genotype were analyzed. The value of each tumor was based
on five images. * and ** indicate p < 0.05 and 0.01, respectively, by Students’ t-test.

subcutaneously, primary tumors removed and the ap-
pearance of lung metastasis monitored. There was as in
Additional file 1: Figure S1 no difference in primary
tumor growth, time of resection and time point of final
sacrifice between the two groups (results not shown).
However, number of lung metastasis was higher (Figure 6)
in the Shb +/- recipient group receiving wild type bone
marrow when scored as categories (0, 1 and 2 as in
Figure 1), suggesting that the main determinant respon-
sible for the increased metastasis in Shb +/— mice is the
vascular genotype and not that of hematopoietic cells.

Discussion

The current study elucidates the metastatic properties of
melanoma cells in relation to the absence of the Shb
gene. This cancer has been extensively investigated and
tumor progression follows a characteristic pattern [19].

Table 1 Gene expression in vascular fragments

Gene product Shb +/+ Shb +/-
VEGFA 1.0+0.12 1.1+£0.15
PIGF 1.0£0.25 18+022*
PDGF-AA 1.0£0.15 12+0.11
PDGF-BB 1.0+£0.21 124032
PDGF-CC 1.0 £0.09 1.0£0.08
PDGF-DD 1.0 £0.64 13+022
Angiopoietin-1 1.0+0.13 1.1+£025
Angiopoietin-2 1.0£0.22 1.0£034
VEGFRI1 1.0£0.16 1.0£0.28
VEGFR2 1.0+0.18 1.1+027
Tie-2 1.0£0.22 12+£031
PDGFRA 1.0£0.11 0.7+£0.09 *
PDGFRB 1.0+0.27 1.0+ 030
GM-CSF 1.0£0.11 0.8+£040
CXCL-12 1.0£0.59 09+022
CXCR-4 1.0+046 13+022
CXCR-7 1.0£0.63 14+036

RNA isolated from vascular fragments was analyzed by real-time RT-PCR. Ct
values were determined using the Roche Lightcycler software and beta-actin
values were subtracted to normalize for differences in total amounts of RNA.
Relative values shown in table were calculated by the formula 24t Shb+/- minus
Shb+/+) indicates p < 0.05 when compared with wild type. N =5-7.

The driver mutations in melanomas have recently been
mapped [26] and revealed a limited number of genetic
changes in this cancer. Melanoma growth is dependent on
angiogenesis [18,27,28] and numerous angiogenic factors
have been linked to melanoma growth [29,30] although the
role of VEGF appears modest [31]. Alternative candidates
for support of melanoma growth and metastasis are inflam-
matory cytokines and chemokines [32]. Factors of particular
importance in this context are IL-8 [29], CCL19/21 [33],
CXCL12 [34], IL-6 and macrophage migration inhibitory
factor [35,36]. The combined data suggest a scenario that

Shb +/+

Shb +/-

CD8+
VE-cadherin

50 um

Percent

+/+ +/-
Figure 4 Proximity of CD8+ T cells with vascular structures.
Cryosections of subcutaneous B16F10 melanomas were stained for CD8+
(red) and VE-cadherin (green). Pictures were taken at 20X (for statistical
analysis) or 40X (for representative image) original magnification and the
numbers of CD8+ cells immediately adjacent (direct contact) to VE-
cadherin positive cells were scored in percent of total CD8+ cells for each
host genotype present in the images. Representative images and statistics
are shown as percent adjacent CD8+ cells (means + SEM) for 4 tumors

each genotype (5 images each tumor).
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fragments. Total tumor RNA or RNA from isolated vascular fragments +/-to +/+ +/+to +/-
were isolated from either host genotype and analyzed by real-time Figure 6 Effects of bone marrow genotype on B16F10 metastasis.
RT-PCR. Ct-values were determined using the Roche Lightcycler software Shb +/— mice received +/+ bone marrow and Shb +/+ mice received
and beta-actin values were subtracted to normalize for differences in +/ bone marrow after transplantation to recipients that had been
total amounts of RNA. Relative values shown in table were calculated by depleted of their endogenous bone marrow by irradiation. After
the formula 2% €127 mne ST Sindicates p < 0.05 when compared 3 months when hematopoiesis had been restored, B1I6F10 tumors were
with wild type. N = 5-7. gown subcutaneously, resected and the mice sacrificed when tumor
recurrence occurred (average 34 + 2 days after initial injection of cells in
the +/+ recipient group and 36 + 0 days in the +/— recipient group).
utilizes multiple factors for melanoma growth and Numbers of lung metastases were then scored and given as absolute
angiogenesis values (A) or as frequencies of categories (B) where 0=0, 1 = 1-5 and
) . . 2=>5 metastases. Means + SEM for 5 mice in each group are given.
The B16F10 melanoma cell line is a useful model for *indicates p < 005 by Students t-test groupare g

studying melanoma metastasis in vivo [23] and conse-
quently, we tested tumor metastasis in Shb deficient mice.
The increased rate of lung metastasis observed in Shb de-
ficient mice may have several explanations. One possibility
is increased vascular permeability due to reduced pericyte
coverage. However, gene expression profiling showed less
expression of various markers for cytotoxic CD8+ lym-
phocytes in the Shb +/- vasculature and this may offer an
alternative suggestion. Due to some yet unknown feature
of the Shb deficient vasculature, passage of CD8+ cells
over the vascular barrier into the tumor is specifically
hampered thus causing less CD8+ cell infiltration into the
tumor. This may contribute to increased metastasis since
it is well established that CD8+ cytotoxic T cells combat
melanoma growth and metastasis [37-39]. Indeed, treat-
ment with an activator of CD8+ T cells, Ipilimumab (anti-
CTLA-4), together with an inhibitor of VEGF signaling
(Bevacizumab) causes perivascular CD8+ cell accumula-
tion [40], thus confirming the relevance of the vasculature
for tumor-infiltration of cytotoxic T cells. The bone

marrow transplantation experiments further support this
notion, since the metastatic phenotype followed the
recipient genotype, i.e. more metastasis was seen in Shb +/-
recipients with a Shb deficient vasculature despite these hav-
ing a wild type bone marrow producing wild type blood
cells. The decrease in tumor infiltration of CD8+ cells was
indeed surprising, considering that vascular permeability
was increased these conditions. Apparently, specific mecha-
nisms operating in the vascular component control lympho-
cyte endothelial transmigration. Lymphocyte extravasation
depends on numerous endothelial processes but selective
mechanisms operating for lymphocytes and in particular for
CD8+ lymphocytes are poorly defined.

The microarray analysis provides no obvious explan-
ation for leaky vascular phenotype, although changes in
the expression of numerous cytokines/chemokines could
contribute to this. PIGF is one factor that has been sug-
gested to increase vascular permeability [41-43] but more
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recent studies suggest a modest role, if any, of PIGF for
vascular permeability [44,45]. Reduced PDGFRA ex-
pression could be explained as downregulation of its ex-
pression in a subset of pericytes, the B-pericyte [25].
Apart from the reduction in PDGFRA expression, our
study shows decreased perivascular desmin staining, a
feature shared by these B-pericytes. Alternatively, re-
duced PDGFRA expression might indicate a reduction
in myofibrillar cells. PDGFRA-expressing cells can be
found on tumor-associated fibroblasts infiltrating B16
melanomas [46] but their association with the vascula-
ture has not been investigated. It is likely that in certain
malignancies, fibroblasts might be found in the vicinity
of the vasculature [47], but this occurs normally in con-
junction with alpha-smooth muscle actin expression,
conferring these cells a myofibroblast phenotype. In our
study, as analyzed by microarray, we did not detect
significant differences in alpha smooth muscle actin
expression, indicating that the decrease in PDGFRA
expression may indeed reflect down-regulation of the B-
type subset of pericytes. It is tempting to speculate that
the shift towards an increase in type-A pericytes could
confer the microvascular environment with features that
enhance malignant cell intravasation. Increased expression
of Pten is, however, likely to have profound effects on
endothelial function since this gene reduces phosphatidyl-
3-inositol levels and thus suppresses PI3K and Akt activ-
ities. These play major roles for angiogenesis and vascular
permeability [48] and thus a reduction in these would be
predicted to be deleterious for vascular integrity.

The compromised vasculature in Shb deficient mice in-
creases the risk of intravasation of melanoma cells allowing
them to disseminate in blood and infiltrate target tissues
such as lung. Apparent is the fact that lung seeding of me-
tastases after tail vein injections was not different between
the genotypes, further implicating local vascular changes in
the primary tumors as responsible for the effects. We were
unable to detect increased metastasis to the liver of Shb +/-
insulinomas [15] and the discrepancy between those find-
ings and the current may lie in the difference in the local
angiogenic milieu, which is probably dependent on a multi-
tude of factors in melanomas whereas RIP-Tag2 insulino-
mas are highly dependent on VEGF and FGF-2 [49].

Conclusions

Absence of Shb promotes B16F10 tumor metastasis due
to increased vascular permeability and reduced pericyte/
myofibrillar cell coverage of endothelial cells, thus allow-
ing intravasation and vascular dissemination of tumor
cells. The data support a model in which tumor metastasis
is affected in a context-dependent manner by the absence
of Shb, contingent on the local angiogenic environment
and how it affects vascular permeability and immune cell
recruitment. Since Shb is a signaling protein participating
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in angiogenic responses, this finding has implications for
choosing an appropriate strategy for inhibiting tumor ex-
pansion by anti-angiogenic treatment without simultan-
eously increasing tumor metastasis.

Additional files

Additional file 1: Figure S1. B16F10 melanoma growth (A) and times
of tumor resection and animal sacrifice (B). B16F10 melanoma cells
(2X10°) were injected subcutaneously on day zero on the backs of Shb
+/+ and +/— mice. Tumor sizes on day 10, 12, 14 and at removal are
shown. After tumor removal, mice were maintained for some time until
sacrificed, at which numbers of metastases were determined. Times of
tumor resection and animal sacrifice are given. Means + SEM for n=5 on
day 10, n=24 on day 12 and n=23 (+/4) and n=19 (+/-) on day 14.
For time of resection and sacrifice, n=16-21.

Additional file 2: Figure S2. Lung seeding of tail vein-injected B16F10
melanoma cells in Shb +/+ and +/— mice. (A) Numbers of lung seeding
metastases for each mouse at three weeks after tail vein injections of
B16F10 cells (p > 0.77). (B) Numbers of metastases determined as categories
(1=1-5,2=5-10,3> 10). Means + SEM are given (p > 0.61). Nine mice of
each genotype were injected with 200000 cells.

Additional file 3: Table S1. Gene expression in Shb +/- vascular
fragments relative wild type. Values are log2 expression wild type, log2
fold change in expression (+/-) and p values for five preparations of
vascular fragments from each genotype.
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