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Abstract

Background: Tissue factor (TF) is a transmembrane protein that acts as a receptor for activated
coagulation factor VII (FVIla), initiating the coagulation cascade. Recent studies demonstrate that
expression of tumor-derived TF also mediates intracellular signaling relevant to tumor growth and
apoptosis. Our present study investigates the possible mechanism by which the interaction
between TF and FVlla regulates chemotherapy resistance in neuroblastoma cell lines.

Methods: Gene and siRNA transfection was used to enforce TF expression in a TF-negative
neuroblastoma cell line and to silence endogenous TF expression in a TF-overexpressing
neuroblastoma line, respectively. The expression of TF, Bcl-2, STAT5, and Akt as well as the
phosphorylation of STAT5 and Akt in gene transfected cells or cells treated with JAK inhibitor and
LY294002 were determined by Western blot assay. Tumor cell growth was determined by a
clonogenic assay. Cytotoxic and apoptotic effect of doxorubicin on neuroblastoma cell lines was
analyzed by WST assay and annexin-V staining (by flow cytometry) respectively.

Results: Enforced expression of TF in a TF-negative neuroblastoma cell line in the presence of
FVlla induced upregulation of Bcl-2, leading to resistance to doxorubicin. Conversely, inhibition of
endogenous TF expression in a TF-overexpressing neuroblastoma cell line using siRNA resulted in
down-regulation of Bcl-2 and sensitization to doxorubicin-induced apoptosis. Additionally,
neuroblastoma cells expressing high levels of either endogenous or transfected TF treated with
FVlla readily phosphorylated STAT5 and Akt. Using selective pharmacologic inhibitors, we
demonstrated that JAK inhibitor |, but not the PI3K inhibitor LY294002, blocked the TF/FVlla-
induced upregulation of Bcl-2.

Conclusion: This study shows that in neuroblastoma cell lines overexpressed TF ligated with FVlla
produced upregulation of Bcl-2 expression through the JAK/STATS signaling pathway, resulting in
resistance to apoptosis. We surmise that this TF-FVIla pathway may contribute, at least in part, to
chemotherapy resistance in neuroblastoma.
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Background

Tissue factor (TF) is a transmembrane protein that
belongs to the class II cytokine receptor superfamily that
shares a significant degree of homology with the inter-
feron gamma receptor [1]. It binds to coagulation factor
VII (FVII) and its active form (FVIIa), thus initiating the
coagulation cascade via the extrinsic pathway. In addition
to its role in coagulation, accumulating evidence suggests
that TF regulates intracellular signaling pathways [2], that
play a crucial role in embryonic development [3], inflam-
mation [4], angiogenesis [5,6], and tumor development
and metastasis as well [6,7]. These latter two processes are
mediated through activation of the Src family - which
subsequently activates PI3K/Akt and p38 MAPK pathways
to positively regulate tumor cell growth [8,9] and PAR-2
activation as well — which results in increased cell migra-
tion [10,11]. Also, phosphorylation of the TF cytoplasmic
domain by palmitoylation has been found to be relevant
for tumor metastasis [12]. Moreover, specific interaction
of the cytoplasmic domain of TF with actin-binding pro-
tein-280 (ABP-280) has been shown to mediate tumor
cell metastasis and vascular remodeling in human bladder
carcinoma cells [13].

There is an increasing body of evidence demonstrating
that overexpression of TF is a characteristic marker for cer-
tain neoplasms. High levels of TF expression have been
observed in a variety of human cancers, namely glioma
[14], breast [15], lung [16], colon [17], prostate [18], pan-
creas [19] and ovarian cancer [20]. In these malignancies,
TF is expressed either by the tumor cells themselves or the
adjacent stromal cells, and expression of TF has been
shown to correlate with malignant grade, metastasis, and
poor prognosis. Also, studies in mice demonstrate that TF-
induced cellular signaling is involved in tumor growth
and metastasis [21-25].

Despite a significant body of research on the role of TF on
tumor growth and metastases in some solid tumors, the
mechanisms involved in both TF-mediated signaling con-
trol of apoptosis and the cellular response to anticancer
treatments has not been studied in any detail thus far. A
link between TF signaling and apoptosis was first sug-
gested by the studies of Sorensen and Versteeg et al
[26,27], who demonstrated that binding of FVIla to TF
transfected into baby hamster kidney (BHK) cells pro-
tected them against serum deprivation and loss-of-adhe-
sion induced apoptosis, primarily through induction of
the PI3K/Akt and p42/p44 MAPK pathways. In addition,
the FVIIa/TF complex has been shown to induce BHK cell
survival by both activation of STAT5 transcription factor
and upregulation of the anti-apoptotic factor Bcl-XL [28].
A recent study showed that the FVIIa/TF complex prevents
apoptosis in human breast cancer [29]. Although these
observations suggest that TF may play a role in regulation
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of cell survival and prevention of apoptosis, the mecha-
nisms by which TF signaling exerts an anti-apoptotic func-
tion in human cancer are not well understood.

In the present study, we examined TF expression in neu-
roblastoma cell lines, and evaluated the role of TF/FVIla-
mediated signaling in regulating survival and apoptosis of
tumor cells treated with the chemotherapeutic drug doxo-
rubicin. We also examined the possible mechanisms by
which TF/FVIla interaction regulates anti-apoptosis in
neuroblastoma cells.

Methods

Cell lines

Two neuroblastoma cell lines SH-EP1 and SK-N-SH were
used. The SH-EP1 is a substrate-adherent (S) type clone of
SK-N-SH [30]. The cell lines were cultured in RPMI 1640
supplemented with 10% fetal bovine serum (FBS), 2 mM
L-glutamine, 50 units/ml penicillin, and 50 pug/ml strepto-
mycin, at 37°C and in a humidified atmosphere contain-
ing 5% carbon dioxide.

Plasmids and gene transfection

The full-length TF ORF containing a hemagglutinin (HA)
tag at the 5' end was inserted into the pcDNA3.1 vector
(Invitrogen, Carlsbad, CA) between the BamH1 and Xbal
sites to create pcDNA3.1/TF. Other constructs that express
truncated TF tagged at the N-terminal end with HA, i.e.
pcDNA3.1/TF (extro) containing extracellular domain
and transmembrane domain and pcDNA3.1/TF (intro)
containing cytoplasmic domain and transmembrane
domain were derived from pcDNA3.1/TF by replacing the
full-length TF ORF with corresponding PCR products that
lack the nucleotides for either the last 40 or the first 256
amino acids of TF, respectively.

For the transient gene transfection assay, SK-N-SH cells
were plated at a density of 1 x 10¢/well in a 6-well plate
one day before transfection. Transfection was performed
with Lipofectamine 2000™ (Invitrogen, CA), according to
instructions by the manufacturer. A total of 4 pg of plas-
mid DNA was used for transfection in each well, and the
total DNA supplied was kept constant in all cases by
adjusting with empty vector. The nearly confluent cells
were harvested 48 h after transfection, and used in exper-
iments analyzing gene expression and sensitivity to treat-
ment with doxorubicin.

SiRNA transfection

Both TF siRNA and STAT5 siRNA were used to inhibit
endogenous TF and STATS5 expression, respectively. As
previously reported, the sequence of TF siRNA was 5'-
GCGCTTCAGGCACTACAAA-3' [31]; this was synthesized
for us by Dharmacon (Chicago, IL). The STAT5 siRNA was
purchased from Invitrogen. A mismatched siRNA was
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used as a control. Transfection of siRNA into cells was per-
formed using siPORT™NeoFX™ Reagent (Ambion, Austin
TX). Briefly, cells were trypsinized and diluted in RPMI
1640 medium supplemented with 10% FBS to a density of
1 x 105 per ml. The siRNA solution and siPORT™NeoFX™
Reagent were diluted in OPTI-MEMI media and mixed fol-
lowing the manufacturer's protocols, then the prepared
cells were added to the plates containing these siRNA/
siPORT™NeoFX™ complexes. Cells were incubated at
37°C until ready to assay. All treatments were performed
in triplicate.

Western blotting

First, whole cell protein samples were prepared by lysing
cells in a buffer composed of 150 mM NaCl, 50 mMTris
(pH 8.0), 5 mM EDTA, 1% (vol/vol) Nonidet P40, 1 mM
phenylmethylsulfonyl fluoride (PMSF), 20 ug/mL apro-
tinin, and 25 ug/mL leupeptin for 30 min at 4°C. After
this denaturation, equal amounts of the protein extracts
were resolved by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred to a nitro-
cellulose membrane. After blocking the membrane with
buffer containing 20 mM Tris-HCI (pH 7.5) and 500 mM
NaCl-5% nonfat milk for 1 hour at room temperature, it
was subsequently incubated with primary antibodies for 3
hours at room temperature, followed by washes and treat-
ment with horseradish peroxidase-labeled secondary anti-
body. These blots were developed using a
chemiluminescent detection system (ECL; Amersham Life
Science, Buckinghamshire, England). After stripping, the
membrane was re-probed with an anti-B-actin antibody to
control for equal protein loading and protein integrity.

Clonogenic assay

The soft agarose method was used to measure colony for-
mation. Briefly, a bottom layer of low-melting point aga-
rose solution containing 0.5% agarose in a final
concentration of 1 x RPMI 1640 medium supplemented
with 10% FBS and the various concentrations of test rea-
gents such as FVIla (American Diagnostica Inc. Stamford,
CT) and siRNA, was poured into gridded 35 mm dishes
and allowed to gel. The top layer contained prepared
(trypsinized, siRNA transfected, counted) cells, 0.35%
agarose, and the 1 x medium as diluent. The cells in soft
agarose were then cultured at 37°C in a humidified
atmosphere containing 5% carbon dioxide. After 1 to 2
weeks, the cultures were fixed with formalin and the colo-
nies were scored under phase microscopy (using a cutoff
value of 50 viable cells).

Cytotoxicity and apoptosis assays

The effects of TF transfection and TF inhibition by siRNA
on cell growth and apoptosis of tumor cells after treat-
ment with doxorubicin in the presence or absence of acti-
vated FVIla were determined using a water-soluble
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tetrazolium salt (WST-1) assay and the annexin-V assay,
respectively. Doxorubicin concentrations used in the
experiments were those achieved with therapeutic doses,
and the concentration of FVIla used (10 uM) corresponds
to the normal plasma concentration of zymogen FVII. For
the WST-1 assay, cells were cultured in 96-well microtiter
plates along with different concentrations of doxorubicin,
for 44 hr. Then, WST (25 pg/well) was added and the cells
were incubated for an additional 4 hr. The final optical
density (OD) in the wells was read with a microplate
reader at a test wavelength of 450 nm and a reference
wavelength of 620 nm.

For the annexin-V assay, tumor cells incubated with or
without doxorubicin were harvested by trypsinization,
washed with PBS, and then stained with FITC-annexin-V
(Oncogene, San Diego, CA) and PI for 30 min according
to the manufacturer's instructions. Stained cells were
detected using the FACScan (Becton Dickinson) and ana-
lyzed using WinList software (Verity Software House, Inc).

Results

TF expression and sensitivity to doxorubicin in
neuroblastoma cell lines

We have examined TF protein in two neuroblastoma cell
lines and found that the level of TF expression was
remarkably variable among the different cell lines. As
shown in Fig. 1A, SH-EP1 cells expressed very high levels
of TF, whereas SK-N-SH cells lacked TF expression as
detected by western blot assay. SH-EP1 cells were much
more resistant to doxorubicin than SK-N-SH cells. The dif-
ference in mean cell survival between the two cell lines
after 48-hr of drug exposure was significantly greater for
the SH-EP1 line in either presence or absence of FVIIa (Fig
1B). Consistent with these observations, the apoptosis
assay showed a lower percentage of annexin-V positive
SH-EP1 cells after 48 hr of drug treatment compared to
SK-N-SH cells (13 vs. 53 %, p < 0.01) (Fig. 1C). Interest-
ingly, for SH-EP1 cells but not for SK-N-SH cells, cell sur-
vival and apoptosis observed after doxorubicin were
significantly different depending upon the presence or
absence of FVIIa in the assays (80 vs. 64% for cell survival
and 13 vs. 31% for apoptosis in Fig. 1B and 1C, respec-
tively, p < 0.05).

Effect of inhibiting TF by siRNA on doxorubicin-induced
apoptosis in SH-EP| cells

To examine whether silencing of endogenous TF by TF
siRNA had any effect on Bcl-2 and Bcl-XL expression and
resistance of SH-EP1 cells to doxorubicin, we used a spe-
cific TF siRNA shown to effectively inhibit TF expression
in a previous report [31]. SH-EP-1 cells were cultured in
medium with 10 nM FVIIa for all experiments. As seen in
Fig. 2A, transfection of TF siRNA into high-expressor SH-
EP1 cells effectively downregulated expression of TF as

Page 3 of 11

(page number not for citation purposes)



BMC Cancer 2008, 8:69

- T
A 5 Z
Lll.l =
T ~
)] w

B 120 -
%‘
S 400 ¢
[
o
(]
Pt
2 804
s
©
=60 1
P
= —a— SH-EP1(+FVIla)
D a0 ]| —o— sHEP1CFVIE)
> —¥— SK-N-SH (+FVila)
Q —&— SK-N-SH (-FVla)
20 . r \
0 05 1 2
Concentration of doxarubicin (M)
Figure |

http://www.biomedcentral.com/1471-2407/8/69

Control Doxorubicin
Apoptotic cells
206 13%
i | i SH-EP1 (+FVIla)
{
4% 31%

SH-EP1 (-FVlla)

53%

SK-N-SH (+FV1a)

56%
SK-N-SH (-FV1la)

-y

TF expression and sensitivity to doxorubicin-induced apoptosis in neuroblastoma cell lines. A. western blot assay for expres-
sion of TF in two neuroblastoma cell lines SH-EP| and SK-N-SH. Actin served as a control for equal protein loading in western
blotting. B, response to doxorubicin-induced cell death of SH-EP| and SK-N-SH. Cells were cultured with or without 10 nM

FVlla and different concentrations of doxorubicin for 48 hrs, and cell survival was determined by WST assay. Data represent

mean * SD detected in triplicate experiments. C, doxorubicin-induced apoptosis in SH-EP| and SK-N-SH. Cells were cultured
with or without 10 nM FVlla in the absence (control) or presence of 2 uM doxorubicin for 48 hrs, and apoptotic cells were

detected by annexin-V staining analyzed using flow cytometry.

well as Bcl-2 in a dose-dependent manner. Furthermore,
inhibition of the endogenous TF by TF siRNA suppressed
SH-EP1 cell growth, as compared with control siRNA (Fig.
2B). Also, transfection of TF siRNA sensitized SH-EP1 cells
to doxorubicin-induced apoptosis, as measured both acti-
vation of caspase-3 and cleavage of the death substrate
PARP. As demonstrated in Fig. 2C, significant cleavage of
caspase-3 and PARP was detected in TF siRNA-transfected
cells 8 hours after doxorubicin treatment, whereas cleav-
age of these two proteins was not observed in the control
siRNA-treated cells even after 24 hours of doxorubicin
treatment. Likewise, in the quantitative apoptosis assay,
24 hours post-treatment with doxorubicin and TF siRNA,
there was an increased percentage of annexin-V positive
SH-EP1 cells compared to that observed after doxorubicin
plus control siRNA treatment (Fig. 2D).

Effect of TFIFVIla on Bcl-2 expression and sensitivity to
doxorubicin in TF-transfected cells

To further explore the role of TF expression in apoptosis,
expression of Bcl-2 and sensitivity to doxorubicin was
evaluated in TF-transfected SK-N-SH cells in the presence
of FVIla. TF was efficiently transfected and expressed in
SK-N-SH cells (Fig. 3A). FVIIa treatment of either TF-trans-
fected SK-N-SH cells or endogenously- TF expressing SH-
EP1 cells significantly induced Bcl-2 expression, whereas
expression of Bax (a member of the Bcl-2 family)
remained unchanged (Fig. 3B). To investigate whether
induction of Bcl-2 by TF/FVIla can affect sensitivity to dox-
orubicin-induced cell death, we performed a WST cytotox-
icity assay in TF-transfected-SK-N-SH cells treated with
FVIIa. As shown in Fig. 3C, transfection of TF alone into
SK-N-SH cells did not increase resistance to doxorubicin.
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Figure 2

The effects of TF silencing by siRNA on the expression of endogenous TF, Bcl-2 and Bcl-XL as well as cell growth and apopto-
sis induced by doxorubicin in SH-EPI. A, cells cultured with 10 nM FVlla were treated with different concentrations of either
TF siRNA or control siRNA for 24 h. Expression of endogenous TF, Bcl-2 and Bcl-XL was detected by western blot assay. B,
clonogenic assay of SH-EP1 in culture with TF siRNA. Cells (I x 104) were cultured in soft agarose in the presence of FVlla for
2 weeks with different doses of TF siRNA and control siRNA, respectively, and resulting colonies counted. Data for the colony
counts is shown (mean * S.D. for triplicate cultures). C, western blot assay for activation of caspase-3 and cleavage of the
death substrate PARP in SH-EP| cells that were treated with 2 uM doxorubicin (Dox) and 200 nM of either TF siRNA or con-
trol siRNA for the indicated time points. D. quantitative detection of apoptotic cells induced by Dox when given in combina-
tion with either TF siRNA or control siRNA. SH-EP| cells were treated with Dox (2 uM) plus siRNA (200 nM) for the
indicated times, and apoptotic cells were detected by flow cytometry. Data represents the percentage of annexin-V positive
cells.

However, in presence of FVIIa resistance of these trans- TF-transfected SK-N-SH cells treated with FVIla. FVIla
fected cells to doxorubicin was significantly enhanced in  treatment induced phosphorylation of STAT5, which was

an FVIla dose-dependent manner (Fig. 3D). detectable 5 min post-addition of FVIla and reached a

maximum effect 20 min thereafter (Fig. 4A and 4B). Sim-
Induction of STAT5 and Akt by TF/FVlla interaction ilarly, induction of Akt phosphorylation was detected
Since the JAK/STAT5 and PI3k/Akt signaling pathways  only in TF-transfected but not control-transfected SK-N-
have been reported to be involved in regulation of cell sur- ~ SH cells. Expression of pan-STAT5 and pan-Akt was not

vival mediated by the TF/FVIla interaction, we tested the  affected by FVIIa, suggesting that the observed increases in
phosphorylation of STAT5 (p-STAT5) and Akt (p-Akt) in  phosphorylation of STAT5 and Akt were most likely due
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Transfection of the TF gene and its effect on Bcl-2 expression and sensitivity to doxorubicin. A, SK-N-SH cells lacking TF

expression were transfected with the expression plasmid pcDNA3.1/TF and control plasmid (an empty neo pcDNA3.| plas-
mid). Expression of transfected TF was detected by western blot assay. B, the effect of interaction between TF and FVlla on
Bcl-2 and Bax expression. SK-N-SH transfected with TF and SH-EP| expressing endogenous TF were both incubated with 10
nM FVlla for the indicated time points. Cell extracts were then analyzed for Bcl-2 and Bax expression by western blot. Labels
under Bcl-2 bands in the blot represent expression levels after normalization for actin, compared with untreated (0) samples
(defined as | unit) C, effect of enforced TF expression on cell survival of SK-N-SH cells in the presence or absence of FVlla in
response to doxorubicin. Cells transfected with TF and control cells (I x 104) were treated with or without 10 nM FVlla and
different doses of doxorubicin. Cells were incubated for 48 h, then cell viability was determined by WST assay. D, a similar
WST assay of dose-dependent inhibition of FVIla on doxorubicin-induced cell death. SK-N-SH cells transfected with TF were
treated with 2 uM doxorubicin in the presence or absence of different concentrations of FVlla as indicated.

to active phosphorylation of existent molecules, but not a
product of upregulation.

In order to investigate whether the cytoplasmic domain of
TF is involved in activation of STATS5, two expression plas-
mids containing a cytoplasmic domain deletion
[PcDNA3.1/TF (extro)] and only the cytoplasmic domain
of TF [pcDNA3.1/TF (intro)| were tested. In presence of
FVIIa, transfection of the pcDNA3.1/TF (extro) lacking the
cytoplasmic domain into SK-N-SH cells was able to

induce phosphorylation of STAT5 comparable to that in
cells transfected with the plasmid containing the full-
length TF. In contrast, transfection of pcDNA3.1/TF
(intro) under similar stimulation of FVIIa did not induce
STAT5 phosphorylation (Fig. 4C). These results indicate
that the cytoplasmic tail of TF is not the part of the mole-
cule involved in phosphorylation of STAT5.

We also performed similar experiments of TF-transfected

cells to study the effect of stimulation with FVIIa in the
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Activation of STAT5 and Akt by TF/FVIla interaction. A, western blot assays for expression of STATS, STAT3 and Akt, as well
as their phosphorylated products (p-STATS5, pSTAT3 and p-Akt) in TF-transfected SK-N-SH cells treated with FVlla. Cells
were incubated with or without 10 nM FVlla for 10 min and 20 min respectively, and then cell extracts were analyzed for pro-
tein expression as indicated. B, graphical representation of the relative protein levels of p-STATS, p-STAT3, and p-Akt com-
pared to non-phosphorylated proteins in SK-N-SH/TF cells treated with FVlla. Data are representatives of at least three
independent experiments. C, phosphorylation of STATS5 by the interaction between FVlla and either full-length TF or different
truncated TF proteins. SK-N-SH cells transfected with different plasmids as indicated were incubated with 10 nM FVilla for dif-
ferent time. Phosphorylation of STATS5 was detected by western blot assay. Data shown as the fold induction of mean (+ SD)
p-STATS levels from at least three independent experiments, compared to controls. The expression of either TF or HA (tag)
in SK-N-SH cells transfected with different TF plasmids was detected by western blot (insert). The TF mAb (TF9-10H10, Calbi-
ochem) only recognizes the extracellular domain of TF. D, Blockage of TF/FVlla-induced phosphorylation of STAT5 and Akt by
specific JAK and PI3K inhibitors, respectively. TF-transfected SK-N-SH cells were incubated with or without 10 nM FVlla, along
with either 600 nM JAK inhibitor | or 20 uM of the PI3K inhibitor LY294002 as indicated for 20 min. Induction of p-STAT5 and
p-Akt as well as expression of STAT5 and Akt were detected by western blot assay.

presence of the specific JAK inhibitor 1 and PI3k inhibitor  transfected SK-N-SH cells treated with FVIIa. These results
LY294002, in order to examine whether activation of  suggest that both pathways are also involved downstream
STAT5 and Akt were altered, respectively. As shown in Fig.  of the TF/FVIla interaction in human cells and can be
4D, JAK inhibitor 1 did block phosphorylation of STAT5,  blocked by specific pathway inhibitors.

whereas LY294002 inhibited Akt phosphorylation in TF-
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TFIFVlla interaction-induced Bcl-2 expression via the JAK/
STATS signaling pathway

Since we found that TF/FVIla interaction induces the JAK/
STAT5 and PI3K/Akt survival signaling pathways as well as
the anti-apoptotic factor Bcl-2, we evaluated whether
there are associations between Bcl-2 induction and either
induction of STAT5 or Akt activation. We tested for the
expression of Bcl-2 in FVIIa-stimulated, TF-transfected SK-
N-SH cells in the presence of either JAK inhibitor 1 or
LY294002. As shown in Fig. 5A, we found that JAK inhib-
itor 1, but not LY294002, blocked the TF/FVIla-induced
upregulation of Bcl-2. This JAK inhibitor 1-mediated sup-
pression of Bcl-2 was dose-dependent. Our results imply
that TF/FVIIa-upregulation of Bcl-2 is mediated by the
JAK/STAT5 pathway.

To further prove that the JAK/STAT5 pathway contributes
to TF/FVIla-induced upregulation of Bcl-2, we also tested
for Bcl-2 expression in FVIla-stimulated, TF-transfected
SK-N-SH cells, in which the STATS5 was silenced by a prior
transfection of STAT5 siRNA. As can be seen in Fig 5B,
transfection of the STATS5 siRNA inhibited the expression
of endogenous STAT5 expression, and consequently
blocked TF/FVIla-mediated upregulation of Bcl-2 (Fig.
5C). This appears to suggest that not only JAK, but also
STATS is involved in the upregulation of Bcl-2 following
the interaction of FVIIa with TF.

Discussion

In this study, we demonstrate that the coagulation factor
TF is distinctly expressed in varying degrees in human
neuroblastoma cells. Thus, one of the cell lines, SH-EP1,
expressed extremely high levels of TF, whereas the SK-N-
SH cell line completely lacked expression of this protein.
This study also demonstrates that downregulation of TF in
SH-EP1 cells by siRNA sensitized these cells to doxoru-
bicin-induced apoptosis. Conversely, transfection of TF
into the TF-negative tumor cell line SK-N-SH caused resist-
ance to doxorubicin and increased cell survival.

Enforced expression of TF alone was not sufficient to
enhance resistance to doxorubicin. However, after stimu-
lation with FVIIa, the TF-transfected cells became signifi-
canlty resistant to doxorubicin. These results suggest that
the observed TF-mediated response to chemotherapeutic
drugs is dependent upon its ligation by FVIIa. Another sig-
nificant finding in this study was that FVIla and tumor-
expressed TF interaction induced Bcl-2 expression, an
anti-apoptotic protein regulated by the JAK/STAT5 signal-
ing pathway.

It has been previously demonstrated that the interaction
between TF and FVIIa induces many intracellular signal-
ing events involved in apoptosis, such as activation of the
PI3K/Akt and JAK/STAT5 pathways [8,28]. Consistent
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with these observations, both Akt and STAT5 were acti-
vated (i.e. phosphorylated) in our TF-transfected cells in
the presence of FVIIa. The use of pharmacological inhibi-
tors revealed that only inhibition of the JAK/STAT5 sign-
aling pathway blocked TF/FVIla-induced Bcl-2 expression.
Inhibition of PI3K antagonized activation of Akt, but
failed to repress TF/FVIla-induced Bcl-2 expression. These
results clearly suggest that the TF/FVIIa interaction
induces Bcl-2 expression only through JAK/STAT5, but
not the PI3K/Akt pathway.

STAT5, a member of the signal transducers and activators
of transcription (STAT) family, mediates a pro-survival
signal for cytokine- and growth factor-induced cell sur-
vival, and thus it has an anti-apoptotic effect [32].
Cytokine receptors such as the interferon-gamma receptor
recruit the members of the cytoplasmic Janus kinase (JAK)
family, which subsequently mediates recruitment and
activation of STAT5 [33]. The TF protein shares considera-
ble homology with the cytokine receptor class Il family,
including the interferon gamma receptor. Thus, TF has the
potential to activate STAT5 through JAK when regulating
the gene expression of its targets. Normal transcriptional
targets of STAT5 are known to include Bcl-2. Also, previ-
ous studies showed that the Bcl-2 gene promoter contains
a STATS5 consensus element, and that STAT5 is able to
induce Bcl-2 expression [34,35]. In contrast, downregula-
tion of Bcl-2 was detected in STAT5-deficient mice and
bone marrow cells, even when stimulated with SCF and
IL-3 [36,37]. Our results using siRNA to knock down
endogenous STATS5, did indeed inhibit TF/VFIla-induced
upregulation of Bcl-2, further confirming STAT5 regula-
tory role of Bcl-2 expression.

This study, also examined the role played by the cytoplas-
mic domain of TF in the observed upregulation of Bcl-2 by
TF/FVIIa. Previous studies on the role of the cytoplasmic
domain of TF in regulating cellular signaling have
reported conflicting results. While some studies suggest
that the intracellular domain of TF is required to confer
full pro-metastatic potential to this protein [12,23,38];
other studies have concluded that the TF cytoplasmic tail
is not involved in TF/FVIla-mediated intracellular signal-
ing [28,39]. Our results support the notion that the cyto-
plasmic domain of TF is not necessary for activation of
STAT5/Bcl-2 pathway.

Conclusion

Neuroblastoma, the most common extracranial solid
tumor in children, is a biological heterogeneous tumor
that exhibits a wide range of clinical behavior, with some
tumors undergoing spontaneous regression or matura-
tion, while others exhibit an aggressive growth and have a
high metastatic potential. Most of the latter tumors are
intrinsically resistant or become resistant to chemother-
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Figure 5

Effects of inhibiting STATS5 on TF/FVlla-induced Bcl-2 expression. A, TF-transfected SK-N-SH cells were incubated with or
without 10 nM FVlla, and elevating doses of JAK inhibitor | (100, 300, 600 nM) and LY294002 (5, 10, 20 uM) for 2 h. Bcl-2
expression was detected by western blot assay. B, TF-transfected SK-N-SH cells were treated with different concentrations of
either STATS siRNA or control siRNA for 24 h. The expression of endogenous STATS was detected by western blot analysis.
C, TF-transfected SK-N-SH cells were incubated with 10 nM FVlla in the absence or presence of varying doses of either
STATS5 siRNA or control siRNA. Bcl-2 expression was detected by western blot, and densitometric data for the Bcl-2 bands
provides the degree of inhibition of TF/FVII-induced Bcl-2 expression achieved by STATS5 siRNA treatment. The western blots
shown in Figs A and B are representative of at least three independent experiments, and data shown in Fig C are mean fold
inhibition (x SD) of Bcl-2 of three independent assays.
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apy and patients have a poor prognosis. The results of this
in vitro study in neuroblastoma cell lines suggest that TF
overexpression may be an additional biological factor that
determines an aggressive tumor phenotype and poor
treatment outcome for the patients. The study also pro-
vides some insight into how to block TF activation of Bcl-
2, a finding which may have therapeutic implications.
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