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Abstract

Background: The incidence of gastric cardiac adenocarcinoma (GCA) has been increasing in the
past two decades in China, but the molecular changes relating to carcinogenesis have not been well
characterised.

Methods: In this study, we used a comparative proteomic approach to analyse the malignant and
nonmalignant gastric cardia epithelial cells isolated by navigated laser capture microdissection
(LCM) from paired surgical specimens of human GCA.

Results: Twenty-seven spots corresponding to 23 proteins were consistently differentially
regulated. Fifteen proteins were shown to be up-regulated, while eight proteins were shown to be
down-regulated in malignant cells compared with nonmalignant columnar epithelial cells. The
identified proteins appeared to be involved in metabolism, chaperone, antioxidation, signal
transduction, apoptosis, cell proliferation, and differentiation. In addition, expressions of HSP27, 60,
and Prx-2 in GCA specimens were further confirmed by immunohistochemical and western blot
analyses.

Conclusion: These data indicate that the combination of navigated LCM with 2-DE provides an
effective strategy for discovering proteins that are differentially expressed in GCA. Such proteins
may contribute in elucidating the molecular mechanisms of GCA carcinogenesis. Furthermore, the
combination provides potential clinical biomarkers that aid in early detection and provide potential
therapeutic targets.

Background

Various analyses of cancer incidence data culled from
Western countries have revealed rapidly rising rates of
adenocarcinoma of the esophagus and gastric cardia in
the last few decades, compared with the stable and declin-
ing rates for esophageal squamous cell carcinoma (SCC)
and distal gastric adenocarcinoma (DGA) [1-3]. This phe-
nomenon is also apparent in China, except that the

increasing incidence of gastric cardia adenocarcinoma
(GCA) appears notably higher than the incidence of
esophageal cancer. Evidence indicates that GCA is a dis-
tinct clinical entity as its pathogenesis and risk factors are
quite different from DGA. Therefore, GCA is far more
prevalent, with a higher incidence of lymph node metas-
tasis and a poorer prognosis than DGA [4]. The annual
incidence of GCA is 50/100,000 and may even be as high
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as 190/100,000 in several regions of China [5]. The rela-
tively asymptomatic nature in the early stages of the dis-
ease and the lack of adequate screening tests have resulted
in a majority of GCA patients diagnosed to be at an
already advanced stage of the disease. Thus, it is necessary
to understand the molecular mechanism of carcinogene-
sis and to identify the biomarkers for the early diagnosis
and effective treatment of human GCA.

Recently, the proteome has emerged as a complement
component of the genome. The supposition is that it
could drastically help in unravelling the biochemical and
physiological mechanisms of complex multivariate dis-
eases at the functional molecular level. Although genetic
mutation and/or errant gene expression may underlie a
disease, the biochemical bases for most diseases are
caused by protein defects. Therefore, an analysis of global
protein abundance in human tumours, called cancer pro-
teomics, could offer many opportunities and challenges
in identifying new tumour markers and therapeutic tar-
gets as well as in understanding tumour pathogenesis.
Currently, two-dimensional gel electrophoresis (2-DE)
and mass spectrometry (MS) are the most widely
employed tools for separating and identifying proteins.
However, heterogeneity is always a concern in studies of
human tumour tissue. Although cell culture is one
approach to overcome this problem, it might not accu-
rately represent the molecular events taking place in the
actual tissue from which they were derived [6]. A compar-
ison between human prostate cell lines and tumour cells
from the same patients showed that 20% of the protein
profiles were altered [7]. Laser capture microdissection
(LCM) is a recent development which can be used to pro-
cure highly representative subpopulation of cells from
complex heterogeneous tissue samples [8]. This technol-
ogy has been used very successfully in a diverse array of
studies using downstream analysis at the DNA and RNA
levels, including global gene expression profiling [9] and
analyses of the proteome of prostate [7], colon [10], hepa-
tocellular [11], breast [12], and pancreatic tumours [13].
However, the combination of 2-DE and MS has never
been applied to the study of human GCA.

This study aims to outline the carcinogenesis of GCA and
to identify GCA-specific disease-associated proteins as
potential clinical biomarkers for early detection and new
therapeutic targets. We performed navigated LCM to
enrich both the malignant and nonmalignant gastric car-
diac epithelia cells from paired surgical specimens of
human GCA. The proteins extracted from these cells were
separated by 2-DE. Differential protein spots were identi-
fied by peptide mass fingerprint (PMF) based on matrix-
assisted laser desorption/ionisation time-of-flight mass
spectrometry (MALDI-TOF MS) and database searching.
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The validity of these findings was confirmed by immuno-
histochemical and western-blot analyses.

Methods

Materials

IPG strips (pH 3-10 nonlinear) and IPG buffer solutions
(pH 3-10 nonlinear) were purchased from Amersham
Pharmacia Biotech (APB, Sweden). DTT, urea, thiourea,
Tris base, TX-100, CHAPS, glycine, acrylamide, methyl-
enebisacrylamide, SDS, TEMED, ammonium persulfate,
silver nitrate, Trypsin (sequencing grade), ACN, and TFA
were purchased from Sigma (St. Louis, MO, USA). Finally,
the complete protease inhibitor cocktail was from Roche
(Lewes, UK). Milli-Q grade water was used for all the solu-
tions.

GCA samples

Nine pairs of human gastric cardia adenocarcinoma and
their adjacent nontumourous cardia tissues were obtained
within 30 minutes after a surgical resection at the second
affiliated hospital of Xi'an Jiaotong University in 2005
(Table 1). In order to avoid obvious areas of ulcer or
necrosis, the samples were procured from the edges of the
tumours. They were immediately frozen in liquid nitrogen
and stored at -80°C until use. Informed consents were
obtained from all patients. Meanwhile, two experienced
pathologists evaluated the tumour grading by a micro-
scopic examination of the samples.

Sample preparation for LCM

Sections (8 um thick) were cut onto slides (precleaned
using a detergent, washed with deionised water, and
dipped in ethanol) using a Leica CM 1900 cryostat (cham-
ber temperature -28° C). The sections were either stored at

Table I: Clinical and histological data of patient tumour samples

Case Age Gender Location? Size(cm) Grade
| 58 M Within2ecmof [.5x2 Moderately
GEJ differentiated
2 63 M Within 2 cm of 5%x6 Moderately
GE) differentiated
3 46 M Within2cmof 4 x5 Moderately
GEJ differentiated
4 60 M Within2cmof 2 x 2.5 Well
GEJ differentiated
5 73 M Within2cmof 3 x| Well
GEJ differentiated
6 70 M Within2cmof 2% | Well
GE) differentiated
7 55 M Within 2 cm of 2x3 Poorly
GEJ differentiated
8 51 M Within 2 cm of 4 %6 Poorly
GEJ differentiated
9 63 M Within2ecmof 3 x25 Poorly
GEJ differentiated
a) Location: epicenter of tumour tissue
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-80°C or kept in the cryostat chamber prior to LCM. Hae-
matoxylin staining was carried out only for monitoring of
tissue sections and was not used in conjunction with
LCM. Sections were fixed (70% ethanol for 1 min), hae-
matoxylin stained and dehydrated (70% ethanol for 45 s,
95% ethanol for 45s, 2 x 100% ethanol for 30s, and fol-
lowed by xylene 2 x for 5 min). Meanwhile, unstained sec-
tions were used for LCM. They were fixed (70% ethanol
for 30s), washed in deionised water for 10s, and dehy-
drated (70% ethanol for 15s, 95% ethanol for 15s, 2 x
100% ethanol for 15s, and followed by xylene 2 x for 1
min). Complete protease inhibitor cocktail tablets were

Navigated LCM

After fixing and dehydration, unstained sections were air
dried and microdissected using the Arcturus PixCella sys-
tem (Arcturus, Mountain View, CA, USA). LCM micro-
scope imaged a haematoxylin stained section adjacent to
the one of interest. This image was displayed on the LCM
computer screen using LCM image analysis software (Arc-
turus, USA) and was used as a map to delimit the region
for dissection on an adjacent unstained section. The sec-
tions were then captured using a 15 um diameter laser
beam typically at 50-80 mV power with pulse duration of
3-10 ms in machine gun mode and with a laser firing fre-
quency of 1 shot per 500 ms. On the average, between
10,000-12,000 shots were taken per cap, and approxi-
mately 25,000-30,000 cells were obtained per cap. Each
cap was captured within one hour. Based on a careful
review of the histologic sections, each dissection was esti-
mated to contain > 95% of the desired cells.

Microdissection caps were inserted into 0.5 mL microcen-
trifuge tubes containing 50 uL of a lysis buffer (7 M urea,
2 M thiourea, 4% w/v CHAPS, 65 mM DTT, 0.5% v/vIX-
100, 40 mMTris-Base, and complete protease inhibitor
cocktail). Then the cells were solubilised by inversion of
tubes followed by vortex-mixing for 1 min and brief
pulse-centrifugation at 12, 000 x g. Afterwards, tissues
from multiple caps (about 800,000~1,000,000 cells) were
extracted into the same lysis buffer until sufficient mate-
rial had been collected. The samples were centrifuged at
40,000 x g for 1 hour at 4°C. Where necessary, superna-
tants were stored at -80°C until further use. Protein con-
centration was determined by the Bradford method.

2-DE

The first-dimensional isoelectric focusing (IEF) was car-
ried out on Pharmacia Immobiline IPG DryStrip system
(Uppsala, Sweden). For the first dimension of electro-
phoresis, the samples containing 60 ug protein for analy-
sis gels were diluted to 250 uL with a rehydration solution
(7 M urea, 2% w/v CHAPS, 50 mM DTT, 0.5% v/v IPG
buffer (pH 3-10 nonlinear), and trace bromophenol
blue) before loading onto 13 cm IPG strips (pH3-10 non-
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linear). IEF was then performed using IPGphor electro-
phoresis unit according to the manufacturer's
instructions. Thereafter, the strips were equilibrated with
a solution (6 M urea, 30% v/v glycerol, 2% w/v SDS, and
50 mM Tris-HCI, pH 8.8), reduced with 1% w/v DTT for
15 min, and alkylated with 2.5% w/v iodoacetamide for
15 min. Strips were then rinsed in electrophoresis buffer
(25 mM Tris base, 192 mM glycine, and 0.1% w/v SDS),
applied to 11% acrylamide gels, and sealed with melted
agarose (0.5% w/v agarose in electrophoresis buffer con-
taining a trace of bromophenol blue). SDS-PAGE was car-
ried out using Hoefer SE 600 vertical chambers and a Tris-
glycine buffer (25 mM Tris and 192 mM glycine) contain-
ing 0.1% w/v SDS, with initial separation at a constant 10
mA/gel for 30 min followed by 20 mA/gel. The second-
dimensional SDS-PAGE was developed wuntil the
bromophenol blue dye marker had reached the bottom of
the gel. The total run time was typically 4 to 4.5 hours.
Gels were fixed in 10% v/v acetic acid, 40% v/v ethanol
before sensitisation for 30 min in a buffer containing 30%
v/v ethanol, 0.2% w/v sodium thiosulphate, and 0.83 M
sodium acetate. This was followed by three 15 min washes
in deionised water. The proteins were then stained with
0.1% w/v silver nitrate for 20 min, washed twice in deion-
ised water for 1 min, and developed in 2.5% w/v sodium
carbonate containing 0.04% v/v formaldehyde (37%
solution). The development was stopped with 1% v/v ace-
tic acid, and the gels were washed three times in water.

Image analysis and statistical analysis

Umax ImageScanner (Amersham Biosciences) was used to
scan the gels, while Image Master™ 2D Platinum Version
5.0 software (Amersham Biosciences) was used for spot
detection, quantification, and matching. The intensity of
each spot was quantified by % volume. Data were then
analysed using SPSS for Windows 11.5 and Excel. Stu-
dent's t-test was used to analyse the differences in protein
levels between GCA and non-tumour samples, with a con-
fidence level of 95%.

MALDI-TOF-MS and database search

Consistently and significantly different spots selected for
analysis by MALDI-TOF MS. Protein spots of interest were
excised and minced into small pieces followed by destain-
ing and washing with deionised water for several times
until the yellow color disappeared. Gel pieces were then
rinsed with 25 mM ammonium bicarbonate, dehydrated
with ACN, and dried in a vacuum centrifuge. Afterwards,
proteins in-gel were digested with 0.02 ug/uL trypsin over-
night at 37°C. Tryptic peptides were then re-dissolved in
a solution containing 50% v/v ACN and 0.2%v/v TFA. A 2
uL aliquot was spotted onto a sample plate with 4 uL of
matrix solution CHCA (a-cyano-4-hydroxcinnamic acid,
10 mg/mL in 50% v/v ACN, 0.2%v/v TFA) and allowed to
air dry. The dried spots were then analysed in a Voyager
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DE MALDI-TOF MS (Framingham, MA, USA). This was
followed by running the spectrometer in a positive ion
mode and in reflector mode with the following settings:
accelerating voltage, 20 KV; gride voltage, 94%; guide wire
voltage, 0.01%; and a delay of 200 ns. Spectra were
acquired manually with the laser intensity set at 3200 with
80 shots per spectrum. Then the mass range was set
between m/z 500 and m/z 5000. Internal calibration was
applied using angiotensin II and insulin B chain peaks at
912.08 Da and 3495.95 Da, respectively.

Proteins were identified by peptide mass fingerprinting
using the search program Aldente [14] with the following
search parameters applied: SWISS-PROT and TrEMBL
were used as the protein sequence databases; a mass toler-
ance of 100 ppm and one incomplete cleavage were
allowed; carboxyamidomethylation, oxidised methio-
nine, and phosphorylation were considered as possible
modifications; the minimum number of matched-pep-
tides was 4; and the peptide ion was [M + H]*.

Immunohistochemical and western blot analysis

To validate the expression patterns of three proteins in
GCA tissues, immunohistochemistry was performed
using formalin-fixed and paraffin-embedded tissue speci-
mens that were matched with 2-DE samples. Dewaxed 5
um thick sections were treated with a 0.3% hydrogen per-
oxidase for 3 min and with a blocking antibody for 30
min. After heat-mediated antigen retrieval, sections were
incubated with primary antibody at 4°C overnight as fol-
lows: HSP27 (Sigma, St. Louis, MO, USA), 1:500; HSP60
(Santa Cruz, America), 1:300; and Prx-2 (Santa Cruz,
America), 1:150. Sections were then incubated with a per-
oxidase-labeled antibody (1:500), developed with diami-
nobenzine, and counterstained with hematoxylin.

For western blot analysis, the protein samples (30 ug)
used in 2-DE were run on 12% SDS-PAGE, transferred
onto PVDF membranes, and then blocked with PBS/5%
skim milk/0.01% Tween for 2-4 hours at room tempera-
ture. Primary antibody was diluted in blocking buffer and
was added as follows: HSP27, 1:200; HSP60, 1:300; and
Prx-2, 1:200. Afterwards, it was incubated with a horserad-
ish peroxidase (HRP)-conjugated secondary antibody and
a HRP-conjugated anti-GAPDH/-actin antibody to con-
firm equal protein loading in each lane for 1-2 hours at
37°C or room temperature. The samples were washed and
detected with enhanced chemiluminescence for 30-60 s
(Minipore).

Results

Profile differences between navigated LCM samples and
whole undissected cryostat tissues

To evaluate the effects of navigated LCM on the profiles of
tissue protein, we performed 2-DE protein profiles of
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whole undissected cryostat tissues and LCM-samples of
GCA. Figure 1 shows an example of the navigated LCM
process. Majority of the spots detected in the dissected
non-tumour and tumour tissues could be observed in the
whole undissected cryostat tissues, except for several
spots. However, there are still some spots found in the
whole undissected cryostat tissue which could not be
observed in both LCM samples. Thus, this technology
could not only enrich non-tumour and tumour epithelial
cells but could also diminish the contamination in tissues
such as hemoglobin [10,11]. Moreover, the navigated
LCM process could eliminate the effects of staining on
protein separation by 2-DE [15]. Thus, our data support
the need to perform navigated LCM in the proteomic
studies of GCA tissues.

Profile differences in protein expression between GCA
tissues and surrounding non-tumour tissues

We performed a navigated LCM and 2-DE for matched
pairs of tumour tissues and the surrounding non-tumour
tissues from GCA patients. Approximately 800-1,000
protein spots were detected by silver staining. To measure
reproducibility, each sample underwent the experiment
three times. There were 905 + 74 and 867 + 51 protein
spots in the map of GCA and non-tumour gastric cardiac
tissue, respectively. The matched spots were 799 + 29 and
727 + 34 separately, and the respective average matching
rate was 88.2% and 83.8%. In addition, the average posi-
tion deviation of matched spots was 1.031 + 0.205 mm
and 1.44 + 0.11 mm in the IEF and SDS-PAGE direction,
respectively. Although the image analysis showed that
these 2-DE maps were reproducible, there were slight dif-

Figure |

Navigated laser capture microdissection of tumour
tissue. (A) Haematoxylin-stained gastric cardia adenocarci-
noma; (B) Unstained GCA tissue; (C) Tumour tissue after
microdissection; (D) Captured tumour cells on LCM film.
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ferences in the intensity and number of spots. Nonethe-
less, an analysis of the gels revealed 27 protein spots
whose intensities varied substantially and consistently
between non-tumour and tumour tissues (Fig. 2). The
ratios of normalised spot intensities of cancer to paraneo-
plasis tissues for each of the proteins of interest were cal-
culated. Spots showing a two-fold difference and with
statistical significance (p < 0.05) were selected. Three of
the 2-DE results were confirmed by immunohistochemi-
cal and western blot analyses.

Protein identification

Both whole undissected cryostat specimens and LCM-
specimens were used for protein identification. Twenty-
seven different protein spots between GCA tissues and
surrounding non-tumour tissues were excised. However,
only 23 proteins were identified by MALDI-TOF-MS
(Table 2). This phenomenon is likely due to post-transla-
tional modifications like peroxiredoxin 1 (Prx-1), which
was present in two adjacent spots (Fig. 2, spot 11). These
proteins were classified into any of the following: cell pro-

http://www.biomedcentral.com/1471-2407/7/191

liferation and differentiation (ANXA2, ANXA4,
hnRNPA2/B1), apoptosis (Prx-1, Prx-2, GSTP, VDAC,
ETFB), metabolism (ADH1C, AKR1C3, CA2, GATM), pro-
tease related (CTSD, PACSIN1), cystoskeleton (Actin 1,
Keratin 8), chaperones (HSP27, 60, 70, PDIA3), and RNA
binding and transcription (hnRNPH3, PCBP1, ENO1).
Figure 3 shows the PMF maps of HSP60.

Immunohistochemical and western blot analysis for HSP
27, 60, and Prx-2 in GCA

To further investigate whether HSP27, 60, and Prx-2 are
expressed in tissues and to determine which cells express
these proteins, immunohistochemical analysis was per-
formed using formalin-fixed and paraffin-embedded tis-
sue specimens that were matched with 2-DE samples. The
expression of HSP27 and 60 could be seen in all the cyto-
plasms of carcinoma cells, while it could be seen in some
of the cytoplasms of columnar epithelial (Fig. 4A-D) in
non-tumour tissues. In contrast, Prx-2 was almost not
found to be expressed in the carcinoma cells but rather in
some of the cytoplasms of columnar epithelial cells
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Figure 2

2-DE map of malignant and nonmalignant gastric cardia tissue. All the maps shown are prepared from the same
patient. (A) 2-DE map of whole undissected cryostat tissues; (B) 2-DE map of non-tumour tissue after LCM; (C) 2-DE map of

GCA tissue after LCM.
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Table 2: Proteins with differential expression between GCA tumour tissues and adjacent paired non-tumour tissues were identified by
MALDI-TOF MS

Spot No. Protein Accession Mr/plP)  Match Cov (%)) T-test Ration(tumour/non-tumour)
No.2 Means + SD

Up-regulation proteins

| Heat-shock protein beta-| (HSP27)* P04792  23/6.0 9 54 0.0040 3.4279 £ 2.0727
2 Heat shock 70 kDa protein 5(HSP70) P11021 70/5.0 22 42 0.0030 3.2597 + 1.5314
3 60 kDa heat shock protein(HSP60)* P10809  58/5.2 12 37 0.0001 2.8308 + 1.1426
4 Protein disulfide isomerase A3(PDIA3)* P30101 54/5.6 13 41 0.0280 42105 + 2.7294
5 Annexin A4(ANXA4) P09525  36/5.8 10 34 0.0140 4.7153 £ 7.3434
6 Annexin A2(ANXA?2) P07335  38/7.5 7 26 0.0150 6.0722 + 5.5431
7 Heterogeneous nuclear ribonucleoproteins A2/ P22626  37/9.0 16 43 0.0050 10.7775 + 9.5547
BI(hnRNP A2/B1)*
8 Cathepsin D heavy chain(CTSD) P07339  27/5.6 12 6l 0.0012 4.3552 + 3.7703
9 Protein kinase C and casein kinase substrate in 9BYIl  51/5.1 5 24 0.0028 2.6026 = 1.2147
neurons protein | (PACSINI)
10 Glutathione S- transferase P(GSTP)* P09211 23/5.4 5 44 0.0026 3.8757 £2.2198
I Peroxiredoxin-1 (Prx-1)* 06830 22/8.3 8 59 0.0140 4.2744 + 4.1568
12 Poly(rC)-binding protein| (PCBPI)* Q15360 37/6.7 12 63 0.0070 2.7401 + 0.5321
13 Aldo-keto reductase family Imember C3 (AKRIC3)  P42330  37/8.1 7 25 0.0040 2.7762 + 1.1820
14 Glycineamidinotransferase (GATM) P50440  44/6.4 8 23 0.0390 2.7839 + 0.4680
15 Keratin, type Il cytoskeletal 8 (Keratin 8)* P05787  54/5.5 9 25 0.0020 3.5063 £ 0.6423
Down-regulation proteins
16 Actin, cytoplasmic | (Actin 1)* P60709  42/5.3 6 30 0.0160 0.2603 + 0.1539
17 Heterogeneous nuclear ribonucleoproteins P31942  37/6.4 5 28 0.0015 0.6028 £ 0.6229
H3(hnRNPH3)
18 Peroxiredoxin-2(Prx-2)* P32119  22/5.7 6 24 0.0250 0.2376 + 0.1202
19 Carbonic anhydrase2(CA2) * P00918  29/6.8 6 33 0.0130 0.3675 + 0.1270
20 Alpha-enolase*(ENOI) P06733  47/7.0 16 42 0.0030 0.2898 + 0.1340
21 Alcohol dehydrogenase |C (ADHIC) P00326  40/8.6 7 49 0.0280 0.2287 + 0.1680
22 Electron transfer flavoprotein subunit b (ETFB) P38117  28/8.3 6 26 0.0240 0.2655 £ 0.1415
23 Voltage-dependent anion-selective channel P21796  31/8.6 7 39 0.0120 0.4474 + 0.0297
(VDAC)*

a) Swiss-Prot accession no.

b) Theoretical value

c) Sequence coverage %

* The proteins have been found in gastric cancer previously.
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Figure 3
MALDI-TOF MS identification of spot 3 in GCA.
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Figure 4

Immunohistochemical analysis for HSP27, 60, and
Prx-2 in human normal gastric cardia and GCA.
Expressions of HSP27 (A), 60(C), and Prx-2 (E) were in the
cytoplasm of tumour cells; Expressions of HSP27 (B), 60(D)
and Prx-2 (F) were found in cytoplasm of normal columnar
epithelial cells; Magnifications: A-F x 40, counterstained with
hematoxylin.

(Fig. 4E, F). To examine these protein expression levels,
western blot analysis was also performed using the same
tissues (Fig. 5). As expected, HSP27 and 60 were found to
be consistently highly expressed in tumour tissue, whereas
Prx-2 was suppressed.

Discussion

Cardia is the anatomical borderland between the
oesophagus and the stomach; hence, there is constant
controversy concerning their relationship in terms of epi-
demiology, clinical features, and classification among
esophageal adenocarcinoma (EA), GCA, and DGA. To
compare their protein profiles, we searched the literature
to find these proteins. Thirteen out of 23 proteins have
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Figure 5

Western blot analysis for validating the increased
expression of HSP27, 60, and decreased expression
of Prx-2 in GCA tissues. GAPDH and [3-actin were used
as references.

been found in DGA previously (Table 2). Among them,
HSP27, 60, 70, PDIA3, and CA2 have the same expression
pattern in GCA and DGA. In contrast, a low-level expres-
sion of HSP27 was found in EA [16-20]. Therefore, the
tumourigenesis of GCA is different from EA and DGA, and
thus GCA should be a distinct pathological entity.

Cellular heterogeneity has been a significant barrier to the
molecular analysis of normal and diseased tissues. First
described by Emmert-Buck et al. in 1996, laser capture
microdissection is a powerful and precise technique used
to study protein changes in a particular subset of cells in a
low-maintenance system that is easy to operate [8]. As
usual, various histochemical stains of the tissue section
are used to guide the dissection process. However, several
cases have shown moderate to dramatic effects of staining
on protein separation by 2-DE [21,22]. To eliminate stain-
ing as a potential detrimental effect, navigated LCM has
been developed recently. It uses a stained section to guide
the dissection of the unstained adjacent specimen [23].
This technique has been applied successfully in the study
of brain samples [15]. In addition, due to the typical mor-
phological characteristics of the gastric cardiac superficial
columnar cell and the cardiac gland, they are easy to iden-
tify on a dehydrated section without staining. Therefore,
navigated LCM became an optical strategy in our pro-
teomics approach. In this research, the numbers of LCM-
derived nonmalignant and malignant cells varied sub-
stantially and were often small compared with the whole
undissected cryostat tissues, notwithstanding the profiles
that were very similar between the LCM samples and the
undissected ones. This indicated that the navigated LCM
may be a feasible approach for the study of gastric cardiac
tissue and that it is compatible with 2-DE and MALDI-
TOF MS.

We obtained the protein profile of GCA by comparing the
changes in the protein profiles of surrounding non-
tumour tissues. To reduce individual differences, tissue
samples were obtained from the same patient, enabling us
to study differential protein expression under similar
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genomic background. To the best of our knowledge, we
reported the first proteomic analysis of GCA. Of the 27
selected protein spots, 23 proteins in the molecular mass
range of 15 to 75 kDa and with an isoelectric point
between 3 and 10 were identified by 2-DE and MALDI-
TOF MS. Most of these proteins were described previously
as differentially expressed either at the mRNA level or at
the protein level in other types of human cancer.

HSPs are a group of stress proteins induced by various
types of environmental and pathophysiologic insults. In
this study, co-up-regulations of HSP27, 70, and 60 were
found in the gastric cardiac tumour tissues. As chaper-
ones, HSP27 and HSP70 could inhibit apoptosis by inter-
acting with apoptosome and the caspase of activation
complex [24], underlying their roles in tumour progres-
sion and resistance to treatment [25]. Numerous studies
indicate that HSP27 and HSP70 overexpressions signal a
poor prognosis and predict a poor response to chemother-
apy. HSPG6O appears to be a key endogenous inflamma-
tory mediator and is presumably released by damaged
cells. Moreover, together with HSP70, HSP60 has a role in
antigen presentation in malignant diseases [26]. HSPs are
also overexpressed in breast, colorectal, gastric, and pros-
tate carcinomas [10,25]. Therefore, overexpression of
HSP27, 70, and 60 may be useful biomarkers for carcino-
genesis in GCA and may be associated with the degree of
differentiation and the prognosis of GCA.

Among identified proteins, two proteins are involved in
the regulation of transcription and expression of tumour-
associated genes. PCBP1, up-regulated in GCA, is an RNA
chaperone post-transcriptional regulator. It has been
demonstrated that PCBP1, together with PTB-1 and
hnRNPK, controls some proto-oncogene genes and apop-
tosis-related genes expression, such as Bag-1, c-myc, Apaf-
1, XIAP, and DAPS5, through stimulating the activity of
internal ribosome entry segment (IRES). PCBP1 is
required to open the RNA in the region containing the
ribosome entry window, while PTB-1 may be required for
ribosome recruitment [27,28]. Recently, Pickering, B.M. et
al. described that the glycan parts of PCBP1 might be
related to metastatic ability and might play a role in hepa-
tocellular carcinoma metastasis [27]. Then the up-regula-
tion of PCBP1 may regulate the cap-independent
mechanism of translation initiation of cardiac tumour-
associated genes in the development of GCA. As a tumour
suppressor, Alpha-enolase can regulate the c-myc pro-
moter activity in the form of a c-myc binding protein
(MBP-1). MBP-1 can then bind to the P2 element in the c-
myc promoter and compete with the TATA-box binding
protein (TBP) to suppress the transcription of c-myc
[29,30]. On the other hand, down-regulation of Alpha-
enolase is in accordance with the work of Chang YS et al.
where it was found that Alpha-enolase predicted aggres-

http://www.biomedcentral.com/1471-2407/7/191

sive biological behaviour and is associated with poor sur-
vival in non-small cell lung cancer [29].

It is noteworthy that three antioxidant enzymes, namely,
Prx-1, Prx-2, and GSTP, were identified in gastric cardiac
tumour. All are involved in the removal of reactive oxygen
species (ROS) which can induce cellular senescence and
apoptosis and therefore function as antitumourigenic spe-
cies [31]. Thus, we presumed that overexpression of Prx-1
and GSTP may protect gastric cardiac tumour cells from
apoptosis by scavenging ROS in these cells. Moreover, evi-
dence suggests that enhanced antioxidant mechanisms in
tumour cells in vivo contribute to chemoresistance and
poor prognosis. Increased expressions of Prx-1 and GSTP
have been detected in hepatocellular [32] and pancreatic
carcinoma [33]. The down-regulation of Prx-2 in GCA
may therefore imply its role as a tumour suppressor,
which was controversial in some other studies [34]. How-
ever, Furuta, J. et al. recently found that Prx-2 was silenced
in melanomas due to aberrant methylation of 33 CpG
islands [35]. Therefore, the disregulations of antioxidant
enzymes in GCA may represent tumour cells with a micro-
environment which is advantageous to their survival and
proliferation.

The other up-regulated proteins involved in physiological
processes are ANXA2, ANXA4, and hnRNPA2/B1. Annex-
ins are Ca2+and phospholipid binding proteins that act as
regulators of membrane fusion and possess the structural
properties necessary to form ion channels [36]. While
ANXA2 and ANXA4 are associated with several physiolog-
ical processes (e.g., signal transduction, cellular differenti-
ation, and proliferation), their roles in GCA
tumourgenesis have not been described previously.
ANXA?2 was overexpressed in advanced gastric carcinomas
and could have contributed to its progression [37]. In rela-
tion to this, Zimmermann et al. reported that ANXA4
plays an important role in the morphological diversifica-
tion and dissemination of renal cell carcinoma [38].
Therefore, the overexpression of ANXA2 and ANXA4 may
be related to the malignant transformation of gastric car-
dia epithelia. hnRNPA2/B1 is a member of a large family
of hnRNP proteins involved in various functions includ-
ing the regulation of transcription, mRNA metabolism,
and translation [39]. He, Y. et al. presented evidence that
hnRNP A2/B1 may play an important role in cell prolifer-
ation through the regulation of BRCA1 and p21 expres-
sions [40]. Guo, W. et al. found that p21 might have an
effect on GCA development [41]. Moreover, hnRNP A2/
B1 is a target antigen for MG7, which is an early gastroin-
testinal cancer-specific monoclonal antibody [42]. Thus,
further studies are needed to discover the pathogenesis of
hnRNP A2/B1 in GCA.
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CAs are physiologically important enzymes that catalyse
reversible conversions of carbon dioxide to bicarbonate
[43]. There are at least 13 active isoenzymes that have
been identified in mammals. They are involved in many
biological processes such as pH homeostasis and ion
transport. CA2 is a very efficient enzyme and is expressed
in most organs of the alimentary tract. It has high expres-
sion in the gastric and intestinal epithelia [44,45]. Its
main physiological functions are to regulate the acidity of
gastric juice, assist in forming a HCO3-, cover the epithe-
lium, and protect it from digestion [44]. A significantly
low expression of CA2 may make it difficult for CA2 to
maintain its function for normal gastric cardiac cell
growth and could therefore lead to the progression of
malignant transformations. Recently, both CA1 and CA2
were reported to have down-regulations in colorectal and
gastric tumours and were considered to participate in can-
cer biological aggressiveness and synchronous distant
metastasis [46,16].

ADHI1C belongs to the zinc-containing alcohol dehydro-
genase family. It takes part in alcohol metabolic process
and can catalyse the oxidation of approximately 80% of
ethanol to acetaldehyde, a known toxic and carcinogenic
compound [47]. Increased acetaldehyde production has
been implicated in the pathogenesis of colorectal, breast,
and hepatocellular cancers [48-50], thereby indicating
that a high intake of alcohol is associated with tumour-
genesis. However, our study's results initially found that
ADH1C was significantly reduced in GCA. In addition,
the role of alcohol consumption in GCA is controversial.
Some studies considered it as a risk factor for GCA, but a
case control study in Sweden revealed that there was no
positive correlation between alcohol consumption and
esophageal or cardiac adenocarcinoma. Therefore, further
studies are required to elucidate the molecular mecha-
nism of ADH1C in the development of GCA.

Conclusion

We applied navigated LCM to the proteomic study of GCA
and compared the differential expressions of protein in
GCA tissues and surrounding non-tumour tissues. The
current study is therefore the first report on proteome
analysis in GCA. Twenty-three proteins were shown to
have significant differential expressions in GCA tissues
compared with surrounding non-tumour tissues. Most of
the proteins identified were not reported in GCA. These
results may help elucidate the molecular mechanisms of
GCA carcinogenesis and could provide potential clinical
biomarkers for early detection and identification of thera-
peutic targets. However, further functional analysis is nec-
essary to elaborate the roles of these cancer-associated
proteins.
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