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Abstract
Background: Glutathione S-transferases are a group of enzymes that participate in detoxification
and defense mechanisms against toxic carcinogens and other compounds. These enzymes play an
important role in human carcinogenesis. In the present study, we sought to determine whether
GSTT2 promoter single nucleotide polymorphisms (SNPs) are associated with colorectal cancer
risk.

Methods: A total of 436 colorectal cancer patients and 568 healthy controls were genotyped for
three GSTT2 promoter SNPs (-537G>A, -277T>C and -158G>A), using real-time TaqMan assay
and direct sequencing. An electrophoretic mobility shift assay (EMSA) was performed to determine
the effects of polymorphisms on protein binding to the GSTT2 promoter.

Results: The -537A allele (-537G/A or A/A) was significantly associated with colorectal cancer risk
(OR = 1.373, p = 0.025), while the -158A allele (-158G/A or A/A) was involved in protection against
colorectal cancer (OR = 0.539, p = 0.032). Haplotype 2 (-537A, -277T, -158G) was significantly
associated with colorectal cancer risk (OR = 1.386, p = 0.021), while haplotype 4 (-537G, -277C,
-158A) protected against colorectal cancer (OR = 0.539, p = 0.032). EMSA data revealed lower
promoter binding activity in the -537A allele than its -537G counterpart.

Conclusion: Our results collectively suggest that SNPs and haplotypes of the GSTT2 promoter
region are associated with colorectal cancer risk in the Korean population.

Background
Colorectal cancer (CRC), a predominant cause of tumor-
related death in Western nations, is becoming more prev-
alent in Asian countries such as Korea [1,2]. Genetic and
environmental factors are modulators of the carcinogene-
sis process [3]. Studies on the contribution of genetic pol-

ymorphisms to cancer development have examined
numerous genes, including oncogenes, tumor suppres-
sors, DNA repair genes and those encoding Phase I and
Phase II enzymes [4]. Phase II enzymes attach to addi-
tional substrates in an attempt to detoxify the activated
metabolite in preparation for final breakdown or excre-
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tion. Glutathione-S-transferases (GSTs) are a family of
Phase II detoxification enzymes that protect cellular mac-
romolecules by catalyzing the conjugation of glutathione
(GSH) to a wide variety of endogenous and exogenous
electrophilic compounds [5]. GSTs are divided into at
least six classes (alpha, mu, pi, theta, omega and zeta),
each of which consists of one or more isoforms [6]. GST
polymorphisms are associated with bladder, colorectal,
gastric, prostate and various other human cancers [5,7-
11].

The theta class consists of two genes, GSTT1 and GSTT2,
located at 22q11.2, and separated by about 50 kb. GSTT1
and GSTT2 share 55% amino acid sequence identity [12].
The GSTT1-null genotype is associated with increased
CRC risk [7,13,14]. A common characteristic of the theta
class is their affinity for the organic hydroperoxide species;
for example, cumene hydroperoxide is a good substrate
for GSTT2 [15]. Thus, GSTT2 activity is important for the
protection of cells against toxic products of oxygen and
lipid peroxidation [16], which represents a major source
of endogenous DNA damage in humans that contributes
significantly to cancer and other genetic diseases [17].
Pool-Zobel et al. [18] observed that GSTT2 involved in
defense against oxidative stress in primary human colon
cells is up-regulated upon incubation with butyrate. A
comprehensive study of Phase I and Phase II metabolism
gene polymorphisms revealed no significant contribution
of GSTT2 polymorphism to CRC risk [19]. However, dis-
tinct effects of GSST2 promoter haplotypes on gene
expression were observed with a luciferase reporter assay
[20]. Genetic alterations may induce abnormal gene
expression. To date, no case-control analysis of GSTT2
promoter polymorphisms has been performed in human
cancers.

In the present study, we sought to determine whether four
GSTT2 promoter polymorphisms, -537G>A, -277T>C, -
158G>A, and -129T>C, and their haplotypes are associ-
ated with CRC risk. We additionally employed EMSA to
determine whether GSTT2 promoter polymorphisms
affect the binding of putative transcription factors.

Methods
Samples and DNA extraction
Four hundred and thirty-six colorectal cancer samples
were collected from the Seoul National University Hospi-
tal and the National Cancer Center Hospital, Korea. Clin-
ical characteristics, including age, sex, tumor location, and
TNM stage, were additionally analyzed for the association
study with GSTT2 genotyping. DNA was extracted from
normal colorectal tissues. Fresh cancer tissues were stored
at -70°C in a liquid nitrogen tank. Normal population
samples were obtained from 568 healthy Korean individ-
uals as controls, and DNA was isolated from blood sam-

ples. All colorectal cancer samples were collected from
Korean patients enrolled between 1990 and 2003 at Seoul
National University and National Cancer Center. Normal
controls were selected from cancer-free samples enrolled
from the Cancer Cohort Study Branch of the National
Cancer Center. The mean ages of colorectal cancer
patients at diagnosis and normal subjects were 58.8 years
(58.8 ± 12.9 years) and 52.1 years (52.1 ± 10.5 years),
respectively.

Total genomic DNA was extracted with TRIzol reagent,
according to the manufacturer's instructions (Invitrogen,
CA, USA). This study was approved by the institutional
review board of the National Cancer Center and informed
consent was obtained from all subjects prior to inclusion
in the study.

GSTT2 genotyping
The -537G>A (rs140186) and -277T>C (rs9624369) pol-
ymorphisms were screened using real-time TaqMan assay,
and -158G>A and -129T>C polymorphisms were screened
by direct sequencing. For the TaqMan assay, both PCR
primers and MGB TaqMan probes were designed using
the commercial Assay by Design service (Applied Biosys-
tems, Foster City, CA, USA). One allelic probe was labeled
with FAM dye, and the other with VIC. PCR was per-
formed using the TaqMan Universal Master MIX without
UNG in a 7900 HT fast real-time system (Applied Biosys-
tems, Foster City, CA, USA). Data files were assessed using
SDS2.1.1 software (Applied Biosystems, Foster City, CA,
USA). We used BigDye Terminator and an ABI PRISM
3730 DNA analyzer (Applied Biosystems, Foster City, CA,
USA) for direct sequencing analysis. Amplification for
direct sequencing was performed in a final volume of 15
µl containing 10 ng genomic DNA, 10 pmol of each
primer (forward: 5'-CCACTGGGTGAAACTCTAAG-3',
reverse: 5'-GGACACCAGGTCAAGAAAC-3'), 0.25 mM
each dNTP, 0.5 U of Taq polymerase and reaction buffer
(Genecraft Ltd, Munster, Germany). Reactions were per-
formed in a programmable thermal cycler (MWG Biotech
AG, Eberberg, Germany) under the following conditions:
denaturation for 5 min at 94°C, followed by 40 cycles at
94°C for 30 s, 55°C for 30 s, 72°C for 1 min, and a final
extension of 10 min at 72°C.

Microsatellite instability (MSI) analysis
Two microsatellite markers (BAT-25 and BAT-26) were
used to assess MSI status. DHPLC (denaturing high-per-
formance liquid chromatography) and the capillary-based
method were employed [2]. Cancer samples were classi-
fied as MSI when at least one MSI was evident in two
markers. MSI data were obtained from 200 previously
reported samples [2] and 236 patients analyzed in this
study.
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Electrophoretic mobility shift assay (EMSA)
EMSA was performed with the Gel Shift Assay System
(Promega Corporation, Madison, WI, USA). Briefly, the
following consensus oligonucleotide pairs corresponding
to the GSTT2 promoter sequence were synthesized
(Bioneer, Seoul, South Korea) (bold letters specify poly-
morphisms): -537G (including the G allele) forward 5'-
TAAGATCCCTTTTAGGGGATCCCATTCGCTC-3' and
reverse 5'-GAGCGAATGGGATCCCCTAAAAG-
GGATCTTA-3', -537A (including the A allele) forward 5'-
TAAGATCCCTTTTAGAGGATCCCATTCGCTC-3', and
reverse 5'-GAGCGAATGGGATCCTCTAAAAGGGATCTTA-
3'; -158G (including the G allele) forward 5'-AGGAAC-
CGAAGGGGCGAGGCGGGTCCGGGGG-3' and reverse
5'-TCCTTGGCTTCCCCGCTCCGCCCAGGCCCCC-3', -
158A (including the A allele) forward 5'-AGGAAC-
CGAAGGGGCAAGGCGGGTCCGGGGG-3', and reverse
5'-TCCTTGGTTCCCCGTTCCGCCCAGGCCCCC-3'.
Primer pairs were annealed and labeled with [γ-32P]ATP
(Amersham Biosciences, Buckinghamshire, UK). Binding
reactions were performed using HeLa nuclear extracts
(Promega Corporation, Madison, WI, USA), according to
the manufacturer's instructions. The 32P-labeled probe (1
µl) was incubated with 5 mg of HeLa nuclear extracts for
1 h at room temperature. Following the binding reaction,
DNA-protein complexes were resolved by electrophoresis
on a 4% non-denaturing acrylamide gel, which was subse-
quently transferred to 3 M blotting paper, dried, and
exposed to film.

Statistical analysis
GSTT2 genotyping results were analyzed for categorical
variables using the χ2 test, and for continuous variables
using student's t-test (SPSS 12.0, Chicago, IL). We exam-
ined Lewontin's D' (|D'|) and the linkage disequilibrium
coefficient, r2, between all pairs of biallelic loci [21,22].
Haplotypes of each individual were inferred with the algo-
rithm developed by Stephens et al. [21,22], which uses a
Bayesian approach incorporating prior expectations of
haplotypic structure based on population genetics and the
coalescent theory (PHASE version 2.0). The genotype and
haplotype-specific risks were estimated as odds ratios
(OR) with associated 95% confidence intervals (CI) by
logistic regression (SPSS 12.0, Chicago, IL). The observed
genotype frequencies were analyzed with a chi-square test

to determine whether they were in Hardy-Weinberg equi-
librium (HWE). A p value of less than 0.05 was considered
statistically significant.

Results and discussion
We initially selected three single nucleotide polymor-
phisms (SNPs) within the GSTT2 promoter region (-
537G>A, -277T>C and -129T>C) highlighted in an earlier
study [20] and further identified a novel -158G>A poly-
morphism. The rare -129T>C polymorphism with less
than 1% minor allele frequency (MAF) was excluded, and
three GSTT2 promoter polymorphisms (-537G>A, -
277T>C and -158G>A) were analyzed for CRC risk. The
MAF values of the three SNPs were 0.42 (-537A), 0.07 (-
277C) and 0.03 (-158A) (Table 1). In control samples, the
genotype distribution did not deviate from HWE (Table
1). The GSTT2 genotype results were not influenced by
other potential CRC risk factors, such as age, sex, location,
and TNM stage (Table 2). Moreover, the MSI status was
not associated with GSTT2 polymorphisms (Table 2).
Genotypes were analyzed for association with CRC risk
using logistic regression models adjusted for age and sex
(Table 1). The frequency of the -537A allele (G/A or A/A)
was significantly increased in CRC patients compared to
healthy controls (OR = 1.373, p = 0.025, Table 1). In con-
trast, the -158A allele (G/A or A/A) was more frequently
observed in healthy controls than CRC patients (OR =
0.539, p = 0.032, Table 1). Moreover, the -277T/C poly-
morphism was not related to CRC risk (p = 0.125).

Linkage disequilibrium (LD) was tested for all SNP pairs.
Lewontin's D' values of the pairs were 0.965 (-537G>A:-
277T>C), 1.000 (-537G>A:-158G>A) and 1.000 (-
277T>C:-158G>A), and the r2 values were 0.043, 0.017,
and 0.385, respectively. Good level of LD (D' > 0.965) was
observed between all SNP pairs. Four haplotypes with
more than 2% frequency were selected for haplotype asso-
ciation analysis. Haplotype frequencies were 0.511 (HT1),
0.422 (HT2), 0.033 (HT3), and 0.032 (HT4) (Table 3).
Haplotypes were analyzed for association with CRC risk
using logistic regression models adjusted for age and sex
(Table 3). Haplotype 2 (HT2; -537A, -277T, -158G) was
correlated with significantly increased CRC risk, com-
pared to non-HT2 (OR = 1.386, p = 0.021, Table 3). In
contrast, haplotype 4 (HT4; -537G, -277C, -158A) was

Table 1: GSTT2 polymorphisms and colorectal cancer risk

Locus HWE MAF Genotype Healthy controls (N = 568) CRC patients (N = 436) p OR(95% CI)

-537 0.999 0.42 GG 203 (35.7%) 127 (29.1%) 0.025 1.373 (1.041–1.810)
GA or AA 365 (64.3%) 309 (70.9%)

-277 0.548 0.07 TT 489 (86.1%) 388 (89.0%) 0.125 0.735 (0.495–1.090)
TC or CC 79 (13.9%) 48 (11.0%)

-158 0.314 0.03 GG 522 (91.9%) 416 (95.4%) 0.032 0.539 (0.307–0.947)
GA or AA 46 (8.1%) 20 (4.6%)

Adjusted for age and sex; HWE: Hardy-Weinberg equilibrium for controls; MAF: Minor allele frequency
Dominant model: Homozygote of major allele vs. heterozygote and homozygote of minor allele
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Table 2: Clinical characteristics of colorectal cancer patients and GSTT2 genotypes

-537 G>A -277T>C -158G>A

GG (%) GA (%) AA (%) p1 GA+AA (%) p2 TT (%) TC (%) CC (%) p1 TC+CC (%) p2 TT (%) TC (%) p2

No. of subjects 127 240 69 309 388 45 3 48 416 20

Age (years ± SD) 59.1 ± 13.2 58.91 ± 13.0 57.9 ± 12.2 0.83 58.7 ± 12.8 0.76 58.6 ± 13.0 60.0 ± 11.7 66.5 ± 2.1 0.56 60.3 ± 11.5 0.41 58.8 ± 13.0 58.2 ± 11.7 0.85

Sex (M/F)

Male 81 (64.8) 151 (63.4) 44 (63.8) 0.97 195 (63.5) 0.8 247 (64.2) 27 (60.0) 2 (100) 0.49 29 (61.7) 0.74 262 (63.4) 14 (73.7) 0.36

Female 44 (35.2) 87 (36.6) 25 (36.2) 112 (36.5) 138 (35.8) 18 (40.0) - 18 (38.3) 151 (36.6) 5 (26.3)

Location

proxim al 48 (39.3) 84 (35.6) 19 (29.7) 0.43 103 (34.3) 0.33 135 (36.0) 15 (33.3) 1 (50.0) 0.86 16 (34.0) 0.79 141 (35.0) 10 (52.6) 0.18

distal 74 (60.7) 152 (64.4) 45 (70.3) 197 (65.7) 240 (64.0) 30 (66.7) 1 (50.0) 31 (66.0) 262 (65.0) 9 (47.4)

MSI status

MSI 17 (13.9) 35 (14.8) 10 (14.5) 0.97 45 (14.8) 0.83 52 (13.6) 10 (23.8) - 0.17 10 (22.7) 0.1 59 (14.4) 3 (17.6) 0.71

MSS 105 (86.1) 201 (85.2) 59 (85.5) 260 (85.2) 331 (86.4) 32 (76.2) 2 (100) 34 (77.3) 351 (85.6) 14 (82.4)

T-stage

T1 - 2 (0.9) 2 (3.1) 0.11 4 (1.3) 0.39 4 (1.1) - - 0.95 - 0.74 4 (1.0) - 0.9

T2 8 (6.5) 8 (3.4) 2 (3.1) 10 (3.3) 15 (4.0) 3 (6.8) - 3 (6.5) 17 (4.2) 1 (5.3)

T3 102 (82.3) 195 (83.0) 56 (86.1) 251 (83.4) 317 (83.6) 34 (77.3) 2 (100) 36 (78.3) 336 (82.8) 17 (89.5)

T4 14 (11.3) 30 (12.8) 5 (7.7) 35 (11.6) 42 (11.1) 7 (15.9) - 7 (15.2) 48 (11.8) 1 (5.3)

N-stage

N0 58 (46.8) 119 (50.4) 35 (53.0) 0.31 154 (51.0) 0.54 189 (49.7) 23 (52.3) - 0.13 23 (50.0) 0.55 200 (49.1) 12 (63.2) 0.38

N1 36 (29.0) 75 (31.8) 14 (21.2) 89 (29.5) 114 (30.0) 9 (20.5) 2 (100) 11 (23.9) 122 (30.0) 3 (15.8)

N2 30 (24.2) 42 (17.8) 17 (25.8) 59 (19.5) 77 (20.3) 12 (27.3) - 12 (26.1) 85 (20.9) 4 (21.1)

M-stage

M0 90 (74.4) 182 (78.1) 52 (78.8) 0.69 234 (78.3) 0.39 293 (78.3) 30 (68.2) 1 (50.0) 0.21 31 (67.4) 0.1 311 (77.6) 13 (68.4) 0.35

M1 31 (25.6) 51 (21.9) 14 (21.2) 65 (21.7) 81 (21.7) 14 (31.8) 1 (50.0) 15 (32.6) 90 (22.4) 6 (31.6)

TNM stage

I 6 (5.0) 10 (4.3) 3 (4.6) 0.94 13 (4.4) 0.69 16 (4.3) 3 (6.8) - 0.37 3 (6.5) 0.2 18 (4.5) 1 (5.3) 0.46

II 42 (34.7) 93 (40.1) 28 (43.1) 121 (40.7) 145 (39.0) 18 (40.9) - 18 (39.1) 154 (38.6) 9 (47.4)

III 42 (34.7) 78 (33.6) 20 (30.8) 98 (33.0) 130 (34.9) 9 (20.5) 1 (50.0) 10 (21.7) 137 (34.3) 3 (15.8)

IV 31 (25.6) 51 (22.0) 14 (21.5) 65 (21.9) 81 (21.8) 14 (31.8) 1 (50.0) 15 (32.6) 90 (22.6) 6 (31.6)

Student's t-test or χ2 test; p1: Co-dominant model; p2: Dominant model



BMC Cancer 2007, 7:16 http://www.biomedcentral.com/1471-2407/7/16
associated with protection against CRC, compared with
non-HT4 (OR = 0.539, p = 0.032, Table 3). No significant
relationship with CRC risk was evident for haplotypes 1
(HT1; -537G, -277T, -158G) (p = 0.336) and 3 (HT3; -
537G, -277C, -158G) (p = 0.984). The -537A polymor-
phism positively associated with CRC risk was only
observed in HT2, while the -158A polymorphism with a
protective role against cancer was present in HT4. Individ-
ual SNP analysis of -537G>A and -158G>A is almost con-
sistent with HT2 and HT4, respectively. This may be due
to limited individual SNP numbers.

After Bonferroni correction (the threshold of significance
was 0.017, 3 polymorphisms were analyzed), the associ-
ated p values did not retain significance. However, since
SNPs within the same gene displayed good level of LD,
test statistics for the 3 polymorphisms were not independ-
ent, and the significance of association with CRC risk is
noteworthy. However, further functional evidence is
required to confirm our results that GSTT2 promoter pol-
ymorphisms are associated with CRC risk.

Accordingly, to determine whether the two polymor-
phisms affect the binding of putative transcription factors,
EMSA was performed using allele-specific consensus oli-
gonucleotide probes. Upon incubation of radiolabeled
oligonucleotides specific for -537G and -537A in the pres-
ence of HeLa nuclear extracts, the former oligonucleotide
displayed stronger band intensity than the latter (Lanes 2
and 8) (Figure 1). To confirm the presence of the DNA-
protein complex, competition assays were performed with
increasing amounts of unlabeled oligonucleotides (10-,
50-, 100-fold excess). Band densities decreased with
increasing concentrations of unlabeled specific competi-
tor (Lanes 3–5 and Lanes 9–11). In the presence of unla-
beled non-specific probes, such as a 100-fold excess of the
-537A competitor, the -537G oligonucleotide remained
unaffected (lane 6). However, the -537A oligonucleotide
probe could not bind the transcription factor (lane 12),
and displayed no band with a 100-fold excess of -537G
probe. Therefore, we conclude that the -537G oligonucle-
otide has more specific DNA-protein binding capacity

than the -537A probe. EMSA was performed to investigate
the binding between the -537G and A alleles in HeLa
nuclear extracts. The -537A allele displayed weak tran-
scription factor binding activity compared to the -537G
allele. The -158G/A polymorphism did not display differ-
ences in binding activity in EMSA. Our results strongly
indicate that the -537G/A polymorphism of GSTT2 specif-
ically influences transcription factor binding activity,
leading to a decrease or increase in GSTT2 expression.

GSTT2 exhibits high glutathione peroxidase activity with
cumene hydroperoxide as a substrate [15]. In human

EMSA with HeLa nuclear extracts using -537G and -537A oli-gonucleotidesFigure 1
EMSA with HeLa nuclear extracts using -537G and -
537A oligonucleotides. Binding activities of [γ-32P] ATP-
labeled -537G (lane 1–6) and -537A (lane 7–12) oligonucle-
otides. The assay was performed in the presence (+) or 
absence (-) of HeLa nuclear extracts. Unlabeled -537G or -
537A oligonucleotides were used in competition assays. Each 
binding reaction contained 5 mg of HeLa nuclear extracts and 
labeled -537G (lanes 2–6) or -537A (lanes 8–12) oligonucle-
otides. Excess unlabeled oligonucleotides (10-, 50- and 100-
fold) were included in the binding reactions as competitors 
(Lanes 3–5 and 9–11, respectively). In addition, we added a 
100-fold excess of unlabeled -537A and -537G oligonucle-
otides to compete with -537G (Lane 6) and -537A (Lane 12) 
oligonucleotides. The binding activity of -537G was unaf-
fected, even in the presence of a 100-fold excess of -537A 
competitor (lane 6). However, the -537A oligonucleotide 
could not bind transcription factor (lane 12), and displayed 
no band in the presence of a 100-fold excess of -537G probe.

Table 3: Haplotype distribution in colorectal cancer patients and normal controls

Haplotype Frequecy Distribution Healthy control 
(N = 568)

CRC patients 
(N = 436)

p OR(95% CI)

HT1 (G-T-G) 0.511 non-HT1/non-HT1 140 (24.6%) 99 (22.7%) 0.336 1.160 (0.857–1.571)
HT1/non-HT1 or HT1/HT1 428 (75.4%) 337 (77.3%)

HT2 (A-T-G) 0.422 non-HT2/non-HT2 204 (35.9%) 127 (29.1%) 0.021 1.386 (1.052–1.828)
HT2/non-HT2 or HT2/HT2 364 (64.1%) 309 (70.9%)

HT3 (G-C-G) 0.033 non-HT3/non-HT3 532 (93.7%) 405 (92.9%) 0.984 0.995 (0.595–1.663)
HT3/non-HT3 36 (6.3%) 31 (7.1)

HT4 (G-C-A) 0.032 non-HT4/non-HT4 522 (91.9%) 416 (95.4%) 0.032 0.539 (0.307–0.947)
HT4/non-HT4 46 (8.1%) 20 (4.6%)

Adjusted for age and sex; Non-HT1 includes HT2, HT3 and HT4 but not HT1. Dominant model
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colon cancer cells, butyrate and flavonoids that contribute
to detoxification of dietary carcinogens induce upregula-
tion of GSTT2 to protect against toxic products of oxygen
and lipid peroxidation [18,23]. This gene may have an
important role in carcinogenesis and sensitivity of tumors
against oxidation stress. GSTT2 promoter polymorphisms
significantly reduce luciferase activity in two human cell
lines (HEK239t and TE671) [18]. SNPs or mutations
within the promoter region reportedly affect transcription
activity and gene expression [24]. Therefore, SNPs and
haplotypes of the GSTT2 promoter region result in dis-
tinct GSTT2 activities, and the -537A allele may be associ-
ated with cancer development arising from oxidation
stress.

Conclusion
In summary, case-control analysis of CRC patients reveals
that GSTT2 polymorphisms are associated with CRC risk.
Individual SNP analyses and haplotype results were con-
sistent. EMSA results revealed lower promoter binding
activity of the -537A allele, compared to the -537G allele.
To our knowledge, this is the first report that GSTT2 pro-
moter polymorphisms and their haplotypes are associated
with colorectal cancer risk. Our data collectively suggest
that GSTT2 promoter polymorphisms are involved in
CRC development, and it would thus be beneficial to
include GSTT2 promoter SNPs when screening for rela-
tionships between GST families and human cancers.
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