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Abstract
Background: The development of targeted therapies has created a pressing clinical need for the
rapid and robust molecular characterisation of cancers. We describe here the application of high-
resolution melting analysis (HRM) to screen for KRAS mutations in clinical cancer samples. In non-
small cell lung cancer, KRAS mutations have been shown to identify a group of patients that do not
respond to EGFR targeted therapies and the identification of these mutations is thus clinically
important.

Methods: We developed a high-resolution melting (HRM) assay to detect somatic mutations in
exon 2, notably codons 12 and 13 of the KRAS gene using the intercalating dye SYTO 9. We tested
3 different cell lines with known KRAS mutations and then examined the sensitivity of mutation
detection with the cell lines using 189 bp and 92 bp amplicons spanning codons 12 and 13. We then
screened for KRAS mutations in 30 non-small cell lung cancer biopsies that had been previously
sequenced for mutations in EGFR exons 18–21.

Results: Known KRAS mutations in cell lines (A549, HCT116 and RPMI8226) were readily
detectable using HRM. The shorter 92 bp amplicon was more sensitive in detecting mutations than
the 189 bp amplicon and was able to reliably detect as little as 5–6% of each cell line DNA diluted
in normal DNA. Nine of the 30 non-small cell lung cancer biopsies had KRAS mutations detected
by HRM analysis. The results were confirmed by standard sequencing. Mutations in KRAS and EGFR
were mutually exclusive.

Conclusion: HRM is a sensitive in-tube methodology to screen for mutations in clinical samples.
HRM will enable high-throughput screening of gene mutations to allow appropriate therapeutic
choices for patients and accelerate research aimed at identifying novel mutations in human cancer.
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Background
With the advent of personalised medicine, there is a com-
pelling need for rapid and accurate methods for detection
of nucleic acid sequence changes in clinical specimens. An
ideal technology should be sensitive enough to accommo-
date significant amounts of stromal and normal cell con-
tamination, robust and simple enough to be readily
implemented in a diagnostic laboratory, rapid enough to
provide important therapeutic information in a clinical
timeframe, and cost-efficient. High resolution melting
(HRM) is an emerging technique for detection of nucleic
acid sequence variation [1] that has enormous potential
to meet these clinical demands. We have used detection of
codon 12 and 13 mutations in the KRAS gene to establish
that HRM is a viable methodology that is readily per-

formed both in a research setting and in a routine molec-
ular pathology laboratory.

The ras family genes were originally identified as onco-
genes in acutely transforming retroviruses [2]. Three
highly homologous ras proteins are encoded by the KRAS,
HRAS and NRAS genes. A high frequency of ras mutations
has been found in many tumour types. Ras mutations are
generally restricted to codons 12 and 13 in exon 2 (Figure
1) and codons 59 and 61 in exon 3, all of which result in
constitutive activation of the ras protein [3,4]. Mutated ras
proteins have impaired GTPase activity removing the "off
switch" thereby resulting in a continual stimulus for cellu-
lar proliferation.

Location of KRAS codon 12 and 13 mutations and PCR ampliconsFigure 1
Location of KRAS codon 12 and 13 mutations and PCR amplicons. Exon 2 of KRAS is shown from the ATG without 
the untranslated region. The position and size of the PCR amplicons used in the HRM assays in relation to exon 2 of KRAS is 
indicated. There are 12 possible single base mutations that can occur at codons 12 and 13 of KRAS. All possible mutations are 
listed along with the corresponding amino acid changes. These mutations are located at positions 64, 65, 67 and 68 of the 189 
bp PCR amplicon and at positions 53, 54, 56 and 57 of the 92 bp PCR amplicon.
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While the frequency of mutations and the ras family gene
that is mutated varies by cancer type, approximately 30%
of all human cancers harbour a mutation in a ras gene
with mutations most frequently occurring in KRAS. KRAS
mutations occur in more than 90% of pancreatic adeno-
carcinomas, in approximately 40% of colorectal cancers
and 33% of non- small cell lung carcinomas (NSCLC) [4].

KRAS mutations have a mutually exclusive relationship
with EGFR mutations in NSCLC [5,6]. Mutations in the
tyrosine kinase domain of the EGFR gene have been
observed in NSCLC patients with a response to tyrosine
kinase inhibitors such as gefitinib and erlotinib [7-9]. In
contrast to EGFR mutations, NSCLC patients that have
mutations in KRAS do not respond to tyrosine kinase
inhibitors [10]. NSCLC patients with EGFR mutations
seem to have a favourable prognosis [11,12] whereas
those with KRAS mutations have poor prognosis [13-19].
Mutant KRAS is thus both a predictive marker and a prog-
nostic marker in NSCLC.

KRAS mutation is also a predictive and prognostic marker
in other tumour types. In a recent study of metastatic
colorectal cancer treated with the monoclonal antibody
cetuximab, patients with KRAS mutations were resistant
to the drug and had a poorer prognosis compared with
those without mutations [20]. A review of the literature
concluded that KRAS, but not p53, mutations, were asso-
ciated with poorer overall survival in colorectal cancer
patients [21]. KRAS mutations in pancreatic cancer are
also associated with poor prognosis [22-25].

Detection of KRAS mutations has often been the primary
validation for many of the numerous polymerase chain
reaction (PCR) based mutation detection methods. Meth-
odologies described in the literature include single-strand
conformation polymorphism (SSCP), denaturing high
performance liquid chromatography (DHPLC), denatu-
rant gradient gel electrophoresis, denaturant capillary
electrophoresis, automated constant denaturant capillary
electrophoresis and temperature denaturant capillary
electrophoresis, restriction digestion, allele specific PCR,
allele specific nucleotide hybridisation, PCR-reverse dot
blot, activated RAS-GTP specific biosensor, oligonucle-
otide hybridisation assay, mass spectrometry, peptide
nucleic acid PCR, and array based techniques [26-42]. All
these methods have their advantages and disadvantages in
terms of simplicity, performance, sensitivity, turn-around
time and cost.

DNA sequencing [43] has been considered the "gold
standard" technique because it can identify the specific
mutation that may be present. However it has the disad-
vantages of high relative cost and limited sensitivity. Pyro-
sequencing has the advantage of greater sensitivity and

lower cost [44], but the relatively high cost of the required
apparatus has limited its uptake.

In mutation scanning methodologies such as SSCP and
DHPLC, samples demonstrating variant profiles are
selected for confirmatory analysis with mutation identify-
ing methods such as dideoxy sequencing. An advantage of
scanning methodologies is that the amount of sequencing
performed is significantly reduced, thereby reducing labo-
ratory costs and analysis time. The range of denaturant
capillary electrophoresis methods have many advantages
including sensitivity, identification of mutant samples
through characteristic peak patterns and high throughput
when using a 96-array capillary electrophoresis instru-
ment [30-32]. A disadvantage of the denaturant capillary
electrophoresis methods is that access to a dedicated cap-
illary electrophoresis instrument is required.

High resolution melting (HRM) involves the precise mon-
itoring of the change in fluorescence caused by the release
of an intercalating DNA dye from a DNA duplex as it is
denatured by increasing temperature. Developments in
instrumentation and the use of fully saturating intercalat-
ing dyes have made HRM analysis possible [1]. An impor-
tant advantage of HRM over many of the above methods
is that it is an in-tube method in which the analysis is per-
formed immediately after the amplification and is thus
particularly suitable for medium to high-throughput
applications. Methods that require amplified PCR product
to be removed from the tube for analysis are inevitably
more laborious and require stringent precautions to pre-
vent crossover of PCR products. The HRM methodology
has major potential for the rapid and inexpensive detec-
tion of DNA sequence variations such as polymorphisms
and germline mutations in DNA [45,46].

A particularly desirable HRM application is the detection
of cancer specific mutations in tumour biopsies. HRM has
been used to identify somatic mutations in the c-KIT,
BRAF, HER2 and EGFR genes [47-53]. In this study, we set
out to develop a sensitive, clinically useful HRM assay to
detect somatic mutations in the KRAS gene. We validated
the assay with cell lines with known KRAS mutations, and
with a panel of NSCLC biopsies that were also tested for
KRAS mutations by sequencing.

Methods
Samples and DNA extraction
Thirty NSCLC tumours were analysed, including 22 aden-
ocarcinomas and 8 large cell carcinomas. Patients con-
sented for the use of their tissue through the "Molecular
profiling of early stage non-small cell lung cancer to pre-
dict clinical course and identify pathogenically important
genes" study of St. Vincent's Hospital or though the Peter
MacCallum Cancer Centre Tissue Bank. The samples were
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reviewed by an experienced pathologist. DNA was
extracted from the lung cancer biopsies using the DNeasy
Tissue kit (Qiagen, Hilden, Germany) according to the
manufacturer's protocol or by phenol-chloroform extrac-
tion. Wild-type control DNA and cell line DNA were
extracted using a salting out method [54]. The 22 adeno-
carcinoma samples were previously sequenced for muta-
tions in EGFR exons 18–21.

Assay design and PCR conditions
Primers were designed to span codons 12 and 13 of the
KRAS gene (see Figure 1). Primers for the 189 base pair
(bp) amplicon which spanned all of exon 2 were 5'-TCAT-
TATTTTTATTATAAGGCCTGCTGAA-3' (forward) and 5'-
CAAAGACTGGTCCTGCACCAGTA-3' (reverse). Primers
for the shorter 92 bp amplicon were 5'-ttataagGCCTGCT-
GAAAATGACTGAA-3' (forward) and 5'-TGAATTAGCTG-
TATCGTCAAGGCACT-3' (reverse). The intercalating dye
used was SYTO 9 (Invitrogen, Carlsbad, USA). The reac-
tion mixture was made up using HotStarTaq (Qiagen) and
consisted of 10 ng of genomic DNA, 1× PCR buffer, 2.5
mM MgCl2 total, 200 nM of each primer, 200 µM of
dNTPs, 5 µM of SYTO 9, 0.5U of HotStarTaq polymerase
and PCR grade water in a volume of 20 µL. All PCR reac-
tions were performed in duplicate.

PCR cycling and HRM analysis was performed on the
Rotor-Gene 6000™ (Corbett Research, Mortlake, New
South Wales, Australia). The 189 bp amplicon was run
according to the following conditions; one cycle of 95°C
for 15 minutes; 40 cycles of 95°C for 15 seconds, 60.7°C
for 15 seconds, 72°C for 15 seconds; one cycle of 95°C for
1 second, 72°C for 90 seconds and a melt from 72 to
95°C rising at 0.2°C per second. The 92 bp amplicon was
run according to the following conditions; one cycle of
95°C for 15 minutes; 40 cycles of 95°C for 15 seconds,
67.5°C for 15 seconds, 72°C for 15 seconds; one cycle of
95°C for 1 sec; and a melt from 72 to 95°C rising at 0.2°C
per second.

High resolution melting analytical sensitivity testing
For information about the cell lines used in this study see
Table 1. The HCT116 cell line was mixed with wild-type
DNA in dilutions of 50%, 25%, 10%, 5%, 1%. The A549
and RPMI8226 cell lines were mixed with wild-type DNA
in serial dilutions of 50%, 25%. 12%, 6% and 3%. All

dilutions were tested using both the 189 bp and 92 bp
amplicons.

DNA sequencing
After HRM analysis, the PCR products were column puri-
fied using the PCR-M clean up kit (Viogene, Taipei, Tai-
wan) according to the manufacturer's instructions. The
PCR products were eluted in a 30 µl volume, and 6 µl was
treated with ExoSapIT (GE Healthcare, Buckinghamshire,
England) according to the manufacturer's instructions.
The purified PCR product was then used as template in
cycle sequencing with the Big Dye Terminator v3.1 kit
(Applied Biosystems, Foster City, CA). The reaction mix
consisted of 1× terminator premix, 1× sequencing buffer,
667 nM primer and 3.5 µl of cleaned template in a 15 µl
total volume. The reactions were run on a GeneAmp 9700
thermocycler (Applied Biosystems) according to the fol-
lowing protocol; one cycle of 95°C for 15 minutes; 25
cycles of 95°C for 10 seconds, 55°C for 5 seconds, 72°C
for 4 minutes. The sequencing reactions were ethanol pre-
cipitated and run on a 3100 Genetic Analyser (Applied
Biosystems,). Sequencing data was analysed using
Sequencher™ 4.6 (Gene Codes Corporation, Ann Arbor,
MI).

Results
Assay validation and sensitivity testing
Cancer cell lines with known KRAS mutations (Table 1)
were first used to test the HRM methodology. HRM was
able to discriminate between wild-type DNA and the dif-
ferent mutations present in the cell line DNAs using the
189 bp amplicon flanking exon 2. Figure 2 shows a nor-
malised plot and a difference plot of the HRM data using
wild-type DNA as a baseline. The plasmacytoma cell line
RPMI8226 has a heterozygous 35G > C (G12A) KRAS
mutation and the colon cancer cell line HCT116 has a het-
erozygous 38G > A (G13D) mutation. Both these cell lines
showed typical heteroduplex melting patterns and were
readily distinguishable from wild-type samples. The lung
cancer line A549 has a homozygous 34G > A (G12S)
mutation and, as expected, it produced a curve that was
similar in shape to the wild-type but with earlier melting
of the amplified product compared to wild-type samples,
which is consistent with the lower thermal stability of AT
base pairs relative to GC base pairs.

Table 1: Cell line controls with mutations in KRAS

Cell line Tissue Mutation Genotype Amino acid

A549 lung carcinoma 34G > A homozygous G12S
RPMI8226 plasma cell myeloma 35G > C heterozygous G12A
HCT116 colon carcinoma 38G > A heterozygous G13D
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Difference plots of KRAS mutated cell linesFigure 2
Difference plots of KRAS mutated cell lines. Panel A: A normal plot of the wild-type controls with the cell line samples. 
Fluorescence is on the Y-axis and temperature in degrees Celsius is on the X-axis. Panel B: A difference plot of the wild-type 
controls with the cell line samples. All cell line samples were compared to the median wild-type control sample to produce the 
plot.



BMC Cancer 2006, 6:295 http://www.biomedcentral.com/1471-2407/6/295
Primers giving a 92 bp PCR amplicon were designed to
test the effect of amplicon size on the sensitivity of detect-
ing mutant sequence in a background of normal DNA.
The sensitivity of mutation detection using the 92 bp and
189 bp PCR amplicons was tested by assaying a range of
dilutions of the cell line DNAs in normal DNAs.

HCT116 DNA was mixed with wild-type DNA in propor-
tions of 50%, 25%, 10%, 5% and 1%. The A549 and
RPMI8226 cell lines were mixed with wild-type DNA in
dilutions of 50%, 25%, 12%, 6%, and 3%. Figure 3 shows
the difference plots for both PCR amplicons with the 3
cell line dilutions. The cell line dilutions were assessed by
several individuals in a blinded fashion where scoring
depended on being able to confidently differentiate the
mutant containing DNA dilutions from the normal DNA
samples. In all cases there was an increase in sensitivity
with the shorter 92 bp amplicon. Using the 189 bp ampli-
con, we were able to detect 10% HCT116 in wild-type
DNA whereas using the 92 bp amplicon, we were able to
detect 5% HCT116 DNA. A549 and RPMI8226 gave
essentially identical results: 12% cell line DNA was detect-
able with the 189 bp amplicon whereas 6% cell line DNA
was detected using the shorter 92 bp amplicon.

KRAS mutation detection in NSCLC samples
The 189 bp and 92 bp PCR amplicons were used to screen
for mutations in a panel of DNAs derived from biopsies of
22 adenocarcinomas and 8 large cell carcinomas. We
detected the presence of nine aberrant curves in the 30
samples assayed. The nine mutations identified by HRM
using the 92 bp amplicon were also detected using 189 bp
amplicon. Following HRM analysis, the 189 bp PCR
amplicons from each sample were sequenced. The
sequencing results confirmed the results of the HRM anal-
ysis.

Figure 4 shows a difference plot and sequencing traces for
cell line controls, wild-type samples and a selection of
patients with KRAS mutations. Patients 3 and 6, which
had HRM curves that deviated greatly from the wild-type
curves, showed the presence of a 35G > T and 35G > A
mutations respectively with prominent mutant peaks.
Patient 4 had a HRM curve that deviated less from the
wild-type plot and sequencing showed a 34G > T muta-
tion with a relatively small peak for the mutant T base. The
summary of all mutations detected in the panel of 30 lung
cancer biopsies is presented in Table 2.

Discussion
A wide range of mutation detection methodologies exist,
of which sequencing has been considered the gold stand-
ard because of its ability to identify the specific DNA
sequence change that has occurred. However, dideoxy
sequencing is rarely sensitive below a 10% mutant allele

frequency, which corresponds to a threshold of 20%
tumour cells heterozygous for a mutation [44]. The sensi-
tivity of sequencing can be increased by microdissection
(ranging from relatively crude scraping to laser capture) to
enrich for tumour cells, but this adds to the complexity of
genetic testing. The variety of methodologies used for
mutation detection probably account for much of the
wide divergence of mutation frequencies often reported
for particular genes in given cancer types.

High resolution melting (HRM) methodology represents
a significant advance for mutation detection in tumour
specimens. The developments in intercalating dye tech-
nology have played a major role in the emergence of HRM
methodology. Different base substitutions produce slight
differences in melting behaviour and the resolution of
these melting differences requires an appropriate interca-
lating dye. SYBR green, the most widely used intercalating
dye for monitoring PCR, is not suitable for HRM analysis
because it can only be used at non-saturating concentra-
tions. Thus, SYBR green molecules that dissociate from
DNA during melting can re-intercalate into regions of un-
melted double stranded DNA [55]. This phenomenon of
dye redistribution can mask the small differences in melt-
ing behaviour. New generation intercalating dyes such as
LC Green and LC Green PLUS allow accurate genotyping
of single-nucleotide polymorphisms and sensitive muta-
tion scanning [1,56]. Monis et al. (2005) showed that
SYTO 9 was suitable for fluorescence monitoring of PCR
and standard melting analysis [57]. In this study, we have
shown that SYTO 9 is a suitable dye for mutation scanning
with HRM, as it was able to sensitively detect KRAS muta-
tions in cell line controls and in tumour samples.

An advantage of performing HRM analysis on a real time
PCR machine with HRM capability (for which this is the
first report), is that the PCR amplification and HRM anal-
ysis are performed in the one run and the results are avail-
able for analysis at the end of the run. This allows
assessment of amplification for all samples before HRM
analysis as a quality control measure. In our experience,
samples with poor or late amplification must be treated
with some caution in HRM analysis. Use of a single instru-
ment also minimises the amount of manual handling
which improves turnaround times.

We observed a degree of variation of the melting plots
within wild-type samples, which imposed a lower limit
on the sensitivity of mutation detection with the tumour
sample set. The presence of small amounts of non-specific
amplicons, differing salt or inhibitor concentrations, or
differences in PCR amplification between samples may
contribute to the variation. It is clear that as the spread of
wild-type curves increases, the sensitivity of mutation
detection decreases. Thus instrumentation with greater
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Sensitivity of the KRAS HRM assay for different ampliconsFigure 3
Sensitivity of the KRAS HRM assay for different amplicons. Panel A: The HCT116 dilutions were compared to the 
median wild-type control sample to produce the difference plot for the 189 bp amplicon. Panel B: The HCT116 dilutions 
were compared to the median wild-type control sample to produce the difference plot for the 92 bp amplicon. Panel C: The 
A549 dilutions were compared to the median wild-type control sample to produce the difference plot for the 189 bp amplicon. 
Panel D: The A549 dilutions were compared to the median wild-type control sample to produce the difference plot for the 
92 bp amplicon. Panel E: The RPMI8226 dilutions were compared to the median wild-type control sample to produce the dif-
ference plot for the 189 bp amplicon. Panel F: The RPMI8226 dilutions were compared to the median wild-type control sam-
ple to produce the difference plot for the 92 bp amplicon.
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temperature uniformity across the samples assayed may
have an advantage in mutation scanning.

Difference plots are visually the best way to compare melt-
ing profiles. However, difference plots emphasise small
variations in the melting profiles between different sam-
ples giving rise to a wild-type spread. Nevertheless, wild-
type sample plots were quite distinct from samples with
mutations. We chose a sample from the centre of the dis-
tribution of the wild-type samples as the normalisation
sample for the construction of the difference plots to
standardise the interpretation. The presence of mutated
sequence, even in low proportion, produced difference
plots that were readily discriminated from wild-type sam-
ples as seen in the sensitivity testing of the assay (Figure
3).

In a study that used HRM to screen for mutations in the
RET proto-oncogene, it was found that some mutations
could be directly genotyped from the melting curve
shapes [58]. However, the applicability of shape analysis
in tumour samples will be compromised by the influence
on the shape of the melting profile of varying degrees of
heteroduplex formation due to the proportion of normal
DNA present in the tumour biopsy. Determination of the
precise mutation will depend on more complex methods
such as allele-specific competitive blocker PCR, dideoxy
sequencing or pyrosequencing.

Sensitivity testing is an essential step in the development
of HRM assays for mutation detection and different sensi-
tivities may be achieved with certain mutations or as in
this report, with particular PCR amplicons. Liew et al. pre-

Difference plot and sequencing traces of various mutations in KRASFigure 4
Difference plot and sequencing traces of various mutations in KRAS. Sequencing plots for each sample are below the 
patient numbers. The samples were compared to the median wild-type control sample to produce the difference plot. The 
sequencing traces for patients 3 and 6 showed the presence of a 35G > T and 35G > A mutations respectively.
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viously examined the role of the size of the PCR product
in SNP genotyping and found that smaller amplicons gave
better differentiation between genotypes [59]. Consistent
with those results, we found that use of a smaller ampli-
con increased the sensitivity of mutation detection for
KRAS mutations in the cell lines tested. The 189 bp and 92
bp PCR amplicons have a G+C content of 37% and 43%
respectively and this may also have played a role in the
altered sensitivity of mutation resolution.

Identifying mutations will depend on being able to confi-
dently differentiate the aberrant curves from the wild-type
samples. The cell line dilution results were assessed by
several independent observers in a blinded fashion and
the results indicate that 5–6% tumour cell line DNA in a
background of normal DNA could be detected using the
92 bp PCR amplicon. This will allow confident screening
for mutations in samples that have at least 10% tumour
cells.

The results of our cell line dilution studies indicate that in
some cases, mutations detected by HRM will not be

detectable by dideoxy sequencing. These situations must
be considered when setting up mutation detection algo-
rithms. Pyrosequencing may be the confirmatory
sequencing method of choice as it has been shown to be
sensitive to 5% mutant sequence [44] and minimises the
amount of reactions needed compared to allele-specific
PCR methods. We did not observe a discrepancy between
HRM and dideoxy sequencing in our study. This is likely
to be due to the pathological review and dissection of
areas consisting of at least 50% tumour cells. This argues
for a testing algorithm consisting of a pathological review
to mark out sections of interest and a crude microdissec-
tion to purify the tumour component.

In the case of KRAS codon 12 and 13 mutations, allele-
specific competitive blocker PCR may be a cost-effective
sensitive method to identify mutations detected by HRM
which has the ability to identify low level mutations iden-
tified by HRM not detectable by dideoxy sequencing [60].
Allele-specific competitive blocker PCR has been shown
to be sensitive down to 0.1% mutant sequence in a back-
ground of normal DNA [61].

Table 2: Summary of results for 30 lung cancers screened for mutations in KRAS

Patient Histology HRM Sequencing AA change EGFR sequencing

1 Adenocarcinoma wt wt - wt
2 Adenocarcinoma wt wt - wt
3 Adenocarcinoma mut 35G > T G12V wt
4 Adenocarcinoma mut 34G > T G12C wt
5 Adenocarcinoma wt wt - wt
6 Adenocarcinoma mut 35G > A G12D wt
7 Adenocarcinoma wt wt - wt
8 Adenocarcinoma wt wt - wt
9 Adenocarcinoma wt wt - exon 19 del
10 Adenocarcinoma wt wt - exon 19 del
11 Adenocarcinoma wt wt - wt
12 Adenocarcinoma wt wt - wt
13 Adenocarcinoma mut 35G > T G12V wt
14 Adenocarcinoma mut 34G > T G12C wt
15 Adenocarcinoma wt wt - wt
16 Adenocarcinoma wt wt - wt
17 Adenocarcinoma wt wt - exon 19 del
18 Adenocarcinoma mut 38G > A G13D wt
19 Adenocarcinoma wt wt - wt
20 Adenocarcinoma wt wt - wt
21 Adenocarcinoma wt wt - wt
22 Adenocarcinoma mut 35G > T G12V wt
23 Large cell wt wt - Not done
24 Large cell wt wt - Not done
25 Large cell mut 35G > C G12A Not done
26 Large cell wt wt - Not done
27 Large cell wt wt - Not done
28 Large cell wt wt - Not done
29 Large cell mut 35G > T G12V Not done
30 Large cell wt wt - Not done

HRM – high resolution melting, wt – wild-type, mut – mutant, AA change – amino acid change, exon 19 del – EGFR Exon 19 deletion
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Somatic mutations of KRAS occurring at bases 34, 35, 37
and 38 from the start codon give rise to amino acid sub-
stitutions at codon 12 and 13. We observed six of the pos-
sible 12 mutations, five of which were seen in the patient
specimens. The G12S (35G > A) and G12R (35G > C)
mutations, which were not observed in our relatively
small patient set, are the rarest codon 12 mutations in
lung cancer [62]. G13D was the only codon 13 mutation
observed but all of the codon 13 mutations are rare with
only G13C (37G > T) and G13D (38G > A) occurring at
any appreciable frequency. All of the samples were
sequenced and no other mutations were detected that had
not been detected by HRM. It might be considered that a
limitation of this study is that all possible KRAS muta-
tions were not tested. However, similar sensitivities would
be achieved for the other mutations because the lower
melting temperature of heteroduplexes is the basis of the
sensitivity of mutation detection using HRM.

The frequency of KRAS mutations in this small sample set
was higher than many reports in the literature. There were
7 mutations in 22 (32%) in the adenocarcinomas and 2
mutations in 8 (25%) large cell carcinomas but these fre-
quencies may change substantially when larger numbers
of specimens are analysed. As previously observed by oth-
ers [5,6], there was a mutually exclusive relationship
between KRAS and EGFR mutation status for our sample
set. The adenocarcinoma samples that had EGFR muta-
tions did not present with KRAS mutations. NSCLC
patients with mutated KRAS do not respond to tyrosine
kinase inhibitors and have a poorer prognosis than
patients without mutations [10,13-19]. Early identifica-
tion of these patients will allow appropriate and cost-
effective treatment decisions to be made by clinicians.

Conclusion
In conclusion, we have presented a robust assay for
screening for KRAS codon 12 and 13 mutations that is
applicable to clinical samples. The main limitation of
HRM is that the precise mutation cannot be readily iden-
tified and it thus needs to be used in conjunction with a
sequencing method. Nevertheless, because HRM is both
inexpensive and high throughput, we believe that HRM is
now the method of choice for screening tumour samples
for somatic mutations prior to sequencing, especially
when the mutations are likely to occur at low frequency.
As targeted therapies focus increasingly on key mutations
in oncogenic pathways, it will be necessary to screen not
only for multiple exons within candidate genes, but also
multiple genes within key pathways to confirm or exclude
involvement of that pathway. The rate limiting step in
genetic analysis of tumours is now the collection of sam-
ples and the preparation of the DNA.
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