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Abstract

Background: The reciprocal (9;22) translocation fuses the bcr (breakpoint cluster region) gene
on chromosome 22 to the abl (Abelson-leukemia-virus) gene on chromosome 9. Depending on the
breakpoint on chromosome 22 (the Philadelphia chromosome — Ph+) the derivative 9+ encodes
either the p40(ABL/BCR) fysion transcript, detectable in about 65% patients suffering from chronic
myeloid leukemia, or the p96(ABL/BCR) fusion transcript, detectable in 100% of Ph+ acute lymphatic
leukemia patients. The ABL/BCRs are N-terminally truncated BCR mutants. The fact that BCR
contains Rho-GEF and Rac-GAP functions strongly suggest an important role in cytoskeleton
modeling by regulating the activity of Rho-like GTPases, such as Rho, Rac and cdc42. We, therefore,
compared the function of the ABL/BCR proteins with that of wild-type BCR.

Methods: We investigated the effects of BCR and ABL/BCRs i.) on the activation status of Rho,
Rac and cdc42 in GTPase-activation assays; ii.) on the actin cytoskeleton by direct
immunofluorescence; and iii) on cell motility by studying migration into a three-dimensional stroma
spheroid model, adhesion on an endothelial cell layer under shear stress in a flow chamber model,
and chemotaxis and endothelial transmigration in a transwell model with an SDF-la gradient.

Results: Here we show that both ABL/BCRs lost fundamental functional features of BCR regarding
the regulation of small Rho-like GTPases with negative consequences on cell motility, in particular
on the capacity to adhere to endothelial cells.

Conclusion: Our data presented here describe for the first time an analysis of the biological
function of the reciprocal t(9;22) ABL/BCR fusion proteins in comparison to their physiological
counterpart BCR.

Background [1]. In contrast, Ph+-ALL is an acute disease characterized
The t(9;22)(q34;q11) is detected in 95% of CML and 20- by blasts blocked at the pre-lymphatic stage of differenti-
30% of adult ALL. CML is a myeloproliferative syndrome  ation. Patients suffering from Ph+-ALL constitute a high
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risk group of ALL (5-10% survival rate after five years)[2].
The factors determining the biological differences
between CML and Ph+-ALL are completely unknown.

The t(9;22) is a reciprocal translocation. A portion of
chromosome 9 translocates onto chromosome 22 (22+),
thereby replacing a fragment which in turn translocates
onto chromosome 9 (9+) [1]. The derivative of chromo-
some 22 (22q+) can be revealed by cytogenetic techniques
as the so-called Philadelphia chromosome (Ph).

On chromosome 22, translocation (9;22) involves the bcr
(breakpoint cluster region) locus and there are two princi-
pal regions in which the breaks occur: (major) M-bcr,
which spans between exons 12 to 16, and (minor) m-bcr,
in the first intron, about 50 kb 5' of M-bcr. The product of
fusion between M-bcr and abl is a protein of 210 kDa, the
p210((BCR-ABL)) which is highly specific for CML. Due to
the fact that the m-bcr maps within an intron, the
p185((BCR-ABL)) ranscript in Ph+-ALL is constant [1].
Through fusion to BCR, the kinase activity of ABL
becomes constitutively activated, leading to the constitu-
tive activation of the "down-stream" signal transduction
pathways, such as RAS, JAK-STAT and PI-3 kinase, respon-
sible for the oncogenic potential of BCR/ABL [1]. The sup-
pression of constitutively active ABL kinase by specific
kinase inhibitors, such as Imatinib [3], Nilotinib [4] and
Dasatinib. [5], reverts the oncogenic potential of BCR/ABL
and these drugs are currently in clinical evaluation.

The breakpoint on chromosome 9 is located in intron 1 of
the abl gene locus. It is, in contrast to the breakpoints on
chromosome 22, constant and located between exons 1
and 2. The abl/bcr fusion genes on 9+ differ depending on
the breakpoint on chromosome 22. Fusion between M-
bcr and abl results in the 'small' abl/ber fusion gene encod-
ing a 'small' ABL/BCR transcript, detectable in 65%
patients suffering from CML [6], which is translated into
an ABL/BCR protein with a theoretical molecular mass of
about 40 kDa - p40(ABL/BCR) (Zheng et al. in preparation).
The fusion between m-bcr and abl leads to a 'large' tran-
script, present in 100% of examined patients with a Ph+-
ALL [7], which encodes a fusion protein with a theoretical
molecular mass of about 96 kDa — p96(ABL/BCR)(Zheng et
al. in preparation).

The ABL/BCR fusion proteins represent mutants of the
protein kinase BCR. BCR is a Rho-GEF due to the presence
of a dbl homology (DH) domain and a pleckstrin homol-
ogy (PH) domain (Fig. 1) [8,9]. The GEFs activate mem-
bers of the Ras superfamily by increasing the proportion
of their GTP-bound form with respect to the GDP-bound
form [10]. The prototype for Rho-GEF, the diffuse B-cell
lymphoma (Dbl) oncogene, has a strong transformation
activity in NIH3T3 fibroblasts, and both the Rho-GEF
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function and the oncogenic potential of Dbl depend on its
DH-domains [11].

Furthermore, BCR also contains a C-terminal Rac-GAP
domain. In contrast to GEFs, the GTPase activating pro-
teins (GAPs) promote hydrolysis of GTP to GDP and
increase the inactive forms of small GTPases of the Ras
superfamily [10]. In fact, BCR is a negative regulator of
Rac, as demonstrated by the fact that it reduces the Rac1-
dependent activation of the protein kinase Pak1, an acti-
vator of the JNK pathway, via its GAP function [12].

The Rho-GEF and Rac-GAP functions strongly suggest an
important role of BCR in cytoskeleton modeling by regu-
lating the activity of Rho-like GTP-ases, such as Rac,
cdc42, and Rho [11]. Rho, cdc42 and Rac are involved in
the formation and maintenance of 'stress fibers', filopodia
and lamellipodia, respectively [13]. The N-terminal
'coiled coil' dimerization interface of BCR, its serine/thre-
onine kinase activity, and the tyrosine phosphorylation
site at position 177 (Y177) are indispensable for its func-
tion [1,14].

Both p40(ABL/BCR) and p96(ABL/BCR) are mutated BCR, but
nothing is known about their biology. In the ABL/BCR
fusion proteins, the N-terminus of BCR is substituted by
the first exon of abl. The differences between ALL- and
CML-specific ABL/BCR lie in the presence of the DH and
PH domains. CML-associated p40(#BL/BCR) Jacks the DH/
PH domains conserved in the ALL-specific p96(ABL/BCR)
(Fig. 1). Thus the ALL-specific p96(ABL/BCR) fusion protein
is an N-terminally truncated Rho-GEF and, therefore, a
putative oncogene [15,16].

To determine the role of the ABL/BCR in Ph+ leukemia we
compared the effects of BCR and the ABL/BCR proteins on
the regulation of Rho-like GTPases, cytoskeleton mode-
ling and cell motility.

Methods

Cell lines and Ph+ leukemic blast culture

Cells were cultured at 37°C in 5% CO2 and a humidified
atmosphere. Rat-1 cells and the ecotropic packaging Phoe-
nix cell line were maintained in DMEM (Invitrogen, Karl-
sruhe, Germany) supplemented with 10% FCS (Hyclone,
Perbio, France). 32D cells were maintained in RPMI 1640
medium (Invitrogen) supplemented with 10% FCS (Inv-
itrogen) and 10 ng/ml mouse IL-3 (Cell Concepts,
Umkirch, Germany). The murine bone marrow stroma
cell line M2-10B4 (kindly provided by Gesine Bug, Exper-
imental Hematology, J.W. Goethe University) was main-
tained in RPMI 1640 (Invitrogen) with 10% FCS
(Hyclone), 0.06 mg/ml hygromycin B (Merck/Calbio-
chem, Schwalbach, Germany), 0.4 mg/ml geneticin and 8
mM HEPES (Invitrogen).
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Western blotting

Western blot analysis was performed according to widely
used protocols using antibodies directed against ABL (a.-
ABL)(Santa Cruz Biotechnology, Santa Cruz, California,
USA), BCR (a-BCR)(Santa Cruz), cdc42 (a-cdc42)(Pierce,
Bonn, Germany), Rac (a-Rac) (Pierce) and Rho (o-Rho)
(Santa Cruz). Blocking was performed in 5% low fat dry
milk (a-ABL), 3% bovine serum albumin (BSA) (o-cdc42,
o-Rac, a-Rho), Tris-buffered saline (TBS) containing 0.1%
Tween 20 (TBS-T)(a-BCR). Washing was carried out in
TBS-T. Antibody incubations were performed in either 3%
BSA (a-cdc42, a-Rac, a-Rho) or TBS-T (a-BCR). Horserad-
ish peroxidase-conjugated secondary antibodies were
diluted 1:2000 in 0.5% low-fat dry milk and chemilumi-
nescence was revealed by autoradiography.

Plasmids

The cDNAs encoding p40(ABL/BCR) and p96(ABL/BCR) were
cloned from the BV173 and SupB15 cell lines respectively
by RT-PCR (ABL-ATG 5'- GCA AAA TGT TGGAGA TCT
GCC TG -3'; BCR rev 5'- CTC GTA GAG CTC AGG CAC
TTT G -3') and confirmed by sequencing. Plasmids con-
taining the activated forms of Rac (V12Rac), cdc42
(V12cdc42) and Rho (V14Rho) were kindly provided by
P. G. Pelicci, IEO, Milan Italy. All constructs were sub-
cloned into pENTR.1A ("Gateway" recombination system
- Invitrogen) for further transfer into expression vectors
previously converted to Gateway destination vectors
according to the manufacturer's instructions (Invitrogen).
For retroviral transduction we used retroviral vectors
based on the PINCO vector, which harbors the enhanced
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green fluorescence protein (EGFP) as reporter under the
control of the cytomegalovirus promoter [17].

Retroviral transduction

Phoenix cells were transfected with retroviral vectors by
calcium phosphate precipitation as described before [17].
Retroviral supernatant was collected at days 2 and 3 after
transfection. Target cells were plated onto Retronectin-
coated (Takara-Shuzo, Shiga, Japan) non-tissue culture-
treated 24-well plates. They were exposed to the retroviral
supernatant and then centrifuged at 600 g for 45 minutes.
After incubation for another 3 hours at 37°C, the retrovi-
ral supernatant was replaced. Infection was repeated 4
times and transduction efficiency had to be at least 70%,
as assessed by the detection of EGFP-positive cells by flu-
orescence-activated cell sorting (FACS). Differences in
transduction efficiency between the samples did not
exceed 10%.

Rho-, Rac- and cdc42-activation assays

Rho-, Rac- and cdc42-activation assays were performed
with the GTPase activation kit (Pierce) according to the
manufacturer's instructions. After retroviral transduction,
Rat-1 cells were grown to 90-100% confluence in 100
mm culture dishes and lysed in 500 ul lysis/binding/
washing buffer (25 mM TrisHCI, pH 7.5, 150 mM NacCl,
5 mM MgCl2, 1% NP-40, 1 mM DTT, 5% glycerol). After
centrifugation the clarified cell lysates (500 pg) were incu-
bated with GST-Pak1-PBD (to pull down active cdc42 or
Racl) or GST-Rhotekin-RBD (to pull down active Rho) in
the presence of SwellGel Immobilized Glutathione at 4°C
for 1 hour in a spin column. After incubation, the mixture
was centrifuged at 8,000 x g to remove the unbound pro-
teins. The resins were washed three times with lysis/bind-
ing/washing buffer and the samples were eluted by adding
50 pl of 2X SDS sample buffer and boiling at 95°C for 5
minutes. Half (25 pl) of the sample volumes were ana-
lyzed by SDS-PAGE and transferred to a nitrocellulose
membrane. Active Ras, cdc42, Racl or Rho were detected
by Western blotting using specific antibodies.

Immunofluorescence

Rat-1 cells grown on coverslips were fixed with 2% para-
formaldehyde in phosphate-buffered saline (PBS) for 15
min, washed twice with PBS and then permeabilized with
0.1% Triton X-100 for 20 min. The cells were then blocked
with 2% BSA for 20 min. For actin staining, the cells were
incubated with Cy3-conjugated phalloidin (Invitrogen)
for 15 min at RT. The stained cells were mounted onto
slides in moviol and pictures were taken with an Axioplan
IT microscope and digitalized by the Axiovision software
(Zeiss, Gottingen, Germany).
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Spheroid assay

M2-10B4 spheroids were grown in 1% agarose-coated 96-
well plates using the liquid overlay technique. For initia-
tion, 2.5 x 104 cells were inoculated per well in 200 ul
Iscove's modified Dulbecco's medium (IMDM; Bio-
chrom) supplemented with 10% FCS. After 4 days, 1 x 104
infected 32D cells were added for cocultivation by replac-
ing 100 pl of the medium. Spheroid cocultures were har-
vested 6-96 h later, washed with PBS and dissociated by
incubation with a 0.25% trypsin and 0.1% EDTA solution
(1:3 in PBS; PAN Biotech, Aidenbach, Germany) for 5 min
at 37°C and mechanic pipetting. Cell suspensions were
filtered through a mesh (pore size 70 um; Falcon, Becton
Dickinson Labware, Le Pont de Claix, France) and EGFP
was measured by FACS to determine the percentage of
32D cells in the spheroids. Analysis was performed on a
FACScan (BD Bioscience) using CellQuest software.

Adhesion assay under shear stress — flow chamber

The apparatus consisted of a circular flow chamber with
an inlet port through which the 32D cells were injected,
an outlet port, where the flow-out medium and cells
passed through, and a vacuum port which created a vac-
uum. This apparatus was mounted on a glass slide coated
with an endothelial layer (HUVEC). The entire setup was
placed on an inverted microscope connected to a video
system to document the motility of the cells. The 32D cells
were flushed into the chamber with a constant shear stress
(0.1 and 2 dyn/cm?) through a tubing system connected
to an injection syringe, which in turn was operated by a
perfusion pump with a velocity that could be modified
manually (2.5 to 99 ml/hr). The system created a laminar
flow of liquid over the endothelial layer. Initially, the cells
were flushed at a constant shear stress of 0.1 dyn/cm2 (2.5
ml/h) at a rate of ~4 x 104 cells/min for 10 minutes over
the endothelial layer. Representative pictures of three dif-
ferent fields were taken to assess the adhesion of cells
under low shear stress. The shear stress was increased to a
rate of 2 dyn/cm? for an additional 10 min to flush away
weakly bound cells.

Endothelial transmigration

The endothelial transmigration assay was performed
using transwells with a pore size of 5 um (BD-Falcon, Hei-
delberg, Germany). HUVEC were seeded onto 0.1% gela-
tine-coated transwells at a concentration of 30.000 cells/
well. The non-adherent cells were removed 24 hours after
seeding by flushing with medium. The confluence and the
membrane integrity of the endothelial cells were deter-
mined by measuring the permeability for fluorescein iso-
thiocyanate (FITC)-dextran 3000. Endothelial cells were
washed twice with the assay medium (DMEM containing
0.1% (w/v) BSA) before 25.000 32D cells were added to
each upper compartment with 0.3 ml assay medium. The
plate was incubated at 37°C, 5% CO, for 6 hours. The
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cells that migrated to the lower compartment were col-
lected and mixed with 105 untransduced 32D cells. The
transmigarting cells were then quantified by measuring
the EGFP by FACS.

Results

Differential cytoskeleton modeling by p40(ABLIBCR) 1, 96(ABL/
BCR) and BCR

The reciprocal ABL/BCR fusion proteins are BCR mutants.
BCR has Rho-GEF and Rac-GAP activity, strongly suggest-
ing a main role in the regulation of cytoskeleton modeling
and cell motility by modulating the activity of the Rho
subfamily of small GTPases, such as Rac, cdc42 and Rho.
The basis for this is that Rho-GTPases regulate actin fila-
ment assembly. To determine how the BCR mutations
related to t(9;22) interfere with its functionality we com-
pared the phenotypes induced by p40(BL/BCR) and
P96(ABL/BCR) with that of wt BCR.

First, we investigated how the p40(BL/BCR) and the
P96(ABL/BCR) fusion proteins modulate the cytoskeleton in
comparison to wt BCR. We used the bi-cistronic retroviral
PINCO vector [17] for the expression of BCR, p40(ABL/BCR),
P96(ABL/BCR) and p185(BCR/ABL) in Rat-1 cells, with the pro-
tein of interest under the control of the long terminal
repeat (LTR) and the EGFP driven by a CMV promoter
(Fig. 2A). For controls, the cells were infected with the
empty PINCO vector, able to express only EGFP (mock).
All retroviral constructs used in these experiments are
shown in Fig. 2B. Expression of the transgenes were con-
trolled by Western blotting (Fig 2C). Cytoskeleton mode-
ling was detected by labeling the actin filaments with Cy3-
conjugated phalloidin. The over-expression of BCR led to
a Rho-like phenotype characterized by stress fibers and
microspikes (Fig. 2D). In contrast, p96(ABL/BCR) induced a
cdc42-like phenotype dominated by filopodia, whereas
the p40(ABL/BCR)_re]ated phenotype seemed to be a mixture
between a Rac-like and a cdc42-like phenotype, due to the
presence of both lamellopodia and filopodia (Fig. 2D).
On the other hand, p185(BCR/ABL) induced a phenotype
characterized by complete polarization of the cell and the
formation in a high number of cells of one long, axon-like
filopodium and few shorter neurite-like filopodia, confer-
ring a neuron-like aspect to the cells attributable to strong
Rho-activation [13] as already seen in PC12 cells [18].
This phenotype was influenced by the co-expression of
either BCR or the ABL/BCRs. Both BCR and p40(ABL/BCR)
abolished the polarization of the BCR/ABL-expressing
cells which maintained the capacity to form the neurite-
like filopodia. In contrast, BCR/ABL positive Rat-1 cells
co-expressing p96(ABL/BCR) maintained a polarized pheno-
type with lamellopodia.

In summary, these data suggest that the ABL/BCR fusion
proteins are able to modify the cytoskeleton of fibroblasts
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differently to wt BCR and BCR/ABL. Furthermore it seems
that there is a complex functional interaction between the
t(9;22)-associated fusion proteins.

Differential regulation of small Rho-like GTPases by
p40(ABLIBCR), p94(ABLIBCR) gnd BCR

To determine the molecular mechanisms underlying the
differences between BCR and its mutants regarding
cytoskeleton modeling we looked for alterations in the
regulation of small Rho-like GTPases. Therefore we
assessed the activation status of endogenous Rho-like
GTPases in Rat-1 cells expressing BCR and its mutants. As
a control we used mock-transduced Rat-1 cells. Transduc-
tion efficiency was always more than 80%, as demon-
strated by the percentage of EGFP-positive cells (data not
shown).

As shown in Fig. 3, both p40(ABL/BCR) and p9 6(ABL/BCR) have
lost the Rho-GEF function of BCR, because they were una-
ble to activate Rho. The strong Rho-activation in BCR/
ABL-expressing cells is most likely due to the ABL-kinase
activity, given that the BCR/ABL fusion protein used in
these assays lacks the Rho-GEF domain. Furthermore,
both p40(ABL/BCR) and p96(ABL/BCR) have also lost the Rac-
GAP function of BCR, as shown by their incapacity to sup-
press Rac-activation in Rat-1 cells (Fig. 3). In contrast,
both have acquired the capacity to activate cdc42, whereas
neither BCR nor BCR/ABL were able to activate cdc42 in
these cells (Fig. 3)

Taken together, these data show that the ABL/BCR pro-
teins present a pattern of small Rho GTPase activation
which differs from that induced by wt BCR and BCR/ABL.
In fact BCR can be considered a repressor of Rac and an
activator of Rho that lacks any influence on cdc42,
whereas the ABL/BCR proteins can be considered activa-
tors of cdc42 that have lost the capacity to activate Rho
and to suppress Rac. In contrast, BCR/ABL is an activator
of Rac and Rho, and has no influence on cdc42. These dif-
ferent activation patterns may account for the differences
in cytoskeleton modeling.

In contrast to wt BCR and p40(ABLIBCR) £ 96(ABLIBCR) jnhibits
and BCR/ABL increases the migration of hematopoietic
progenitor cells in a three-dimensional stroma model
Cytoskeleton modeling plays an important role in the
biology of hematopoietic precursors because it contrib-
utes to cell motility, defined by migration, adhesion and
chemotaxis. Motility is a main feature of hematopoietic
stem cells and more mature progenitors, as well as of func-
tional white blood cells. Therefore, we investigated the
effect of retroviral expression of BCR, p40(ABL/BCR),
p96(ABL/BCR) and BCR/ABL on the motility of the murine
IL-3-dependent 32D myeloid precursor cell line. We used
32D cells, because of their capacity to migrate in the three-
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Cytoskeleton modeling in Rat-1 cells expressing t(9;22) translocation products. A. The provirus used for transduc-
tion of the cell line. Expression of the transgenes is driven by the 5'-LTR (long-term repeat), whereas the EGFP-reporter gene
is under the control of the CMV promoter (CMV-P). B. Provirus used for the expression of the transgenes. The sizes are not
to scale. C. Expression of the transgenes in Rat-| cells was controlled by Western blot analysis using a.-ABL and o-BCR anti-

bodies as indicated. D. Rat-| cells expressing the indicated transgenes stained with phalloidin to reveal the actin cytoskeleton.

mock — empty vector infected cells as control. Control —
form of Rac), cdc42* —

mock infected Rat-| cells; Rac* —
V12cdc42 (constitutively activated form of cdc42), Rho* —

V12Rac (constitutively activated
VI14Rho (constitutively activated form of

Rho). The bottom panel shows the Rat-1 cells co-expressing BCR/ABL together with BCR or its mutants.

dimensional stroma spheroids. Transduction efficiency
was always more than 70%, as assessed by the percentage
of GFP-positive cells (data not shown) and expression of
the transgenes was controlled by Western blotting (Fig.
4A).

The effects on migration were assessed in a three-dimen-
sional in vitro spheroid model based on murine M2-10B4
bone marrow stroma cells. It reproduces the stromal
microenvironment in the bone marrow [19] and allows to
study the functional consequences of the complex interac-
tion between cell membrane, adhesion systems and cell
signaling pathways. It has been previously shown that
migration into the M2-10B4 spheroids is closely related to
the presence of activated Rho in the progenitor cells [19].
Here we show that BCR/ABL enhances the capacity of the

32D cells to migrate into the spheroids, whereas BCR did
not increase migration. In contrast to p40(ABL/BCR), which
had no effect, the presence of p96(#BL/BCR) inhibited the
migration of 32D cells into the spheroids (Fig. 4B).

Taken together, these data provide evidence that BCR,
ABL/BCR and BCR/ABL confer to 32D cells a different
migration potential in the three dimensional spheroid
model.

In contrast to the ABL/BCR proteins, BCR increases and
BCR/ABL diminishes the adhesion of hematopoietic
progenitors to endothelium

Adhesion is a complex sequential process of capture, roll-
ing and firm adhesion, mainly mediated by the P- and E-
selectin on the endothelial cells and their binding pro-

Page 6 of 11

(page number not for citation purposes)



BMC Cancer 2006, 6:262

&£ & o
> F&®
Fess &
00 Qo QQ) Qh Q
-
- » B(Asuscn)
- B O(Aauscn)
«-BCR
\
N\ O
&&oo@?‘
P Q

il - —BCR/ABL

a-ABL

Figure 3

http://www.biomedcentral.com/1471-2407/6/262

A A
& £
R
&

R Q¥
B s &
&0 @0 Qq e

T 9

AN e SSEEENS Rac*

-.. ‘ ‘ total Rac

D Q.\
N & @F
) 3
RPN
[e) QO ) ch QV‘
. P—-3 Rho*
— . = total Rho

Rho-like small GTPase activation in Rat-1 cells expressing t(9;22) translocation products. A. Expression of the
transgenes in Rat-| cells was controlled by Western blot analysis using a.-ABL and o-BCR antibodies as indicated. B. The indi-
cated activated small GTPase was pulled down and revealed by the specific antibody. Rac*, cdc42*, Rho* — activated forms;
total Rac, cdc42, Rho — total amount revealed in the cell lysates used for the pull down. One representative experiment of

three performed is given.

teins, such as PSGL-1, CD18, CD11a and Mac-1, on the
leukocyte membrane. Adhesion can be modified by the
activation pattern of Rho-like GTPases through an inside-
out signaling mechanism [20]. Adhesion to endothelial
cells under shear stress was assessed in a flow chamber
model based on HUVEC cells. Here we investigated the
capacity of 32D cells expressing wt BCR, p40(ABL/BCR),
p96(ABL/BCR) or BCR/ABL to adhere to HUVEC cells in a
flow chamber under different shear stress conditions (0.1
and 2 dyn/cm?). HUVEC cells were also stimulated by
TNFa for the induction of selectin expression. The adhe-
sion of the 32D cells to unstimulated HUVEC cells was
not modified by the expression of the different transgenes,
independently of shear stress. In contrast, BCR increased
and p185(BCR/ABL) reduced the adhesion of 32D cells on

TNFa-stimulated HUVEC under both shear conditions
(Fig. 5A). 32D cells expressing p40(ABL/BCR) or p9 6(ABL/BCR)
did not show significant modifications in adhesion to
TNFa-stimulated HUVEC with respect to controls (Fig.
5A). These modifications in adhesion were independent
of the expression levels of PSGL-1 and Mac-1, because
these were not modified by the transgenes, as determined
by comparison with mock-transduced controls (data not
shown).

BCR and p96(ABLIBCR) reduce endothelial transmigration in
an SDF-1 o gradient of hematopoietic precursors

Endothelial transmigration, which is mainly mediated by
integrin expression on the endothelial cells, was investi-
gated in a HUVEC-based transwell assay with an SDF-1a
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Migration of hematopoietic progenitor 32D cells expressing t(9;22) translocation products into M2-10B4 sphe-
roids. A. Expression of the transgenes in 32D cells was controlled by Western blot analysis using a.-ABL and a-BCR antibod-
ies as indicated. B. Percentage of 32D cells expressing the indicated transgenes that migrated into the spheroids. The bar

graphs represent the averages of triplicates with standard deviation. One representative experiment out of three performed is

given.

chemotactic gradient. BCR and p96(ABL/BCR) reduced the
chemotactic response of 32D cells, indicating a role of the
Rho-GEF domain because BCR/ABL and p40(ABL/BCR) did
not influence transmigration in comparison to controls.
These effects were independent of the integrin ligand pro-
teins. In fact, Icam-1 expression was not modified in 32D
cells by the transgenes (data not shown). Furthermore, the
expression of the SDF-1a receptor CXCR4 on the surface
of 32D cells was not modified by the expression of the
transgenes (data not shown).

Taken together, these data indicate that the modification
of the activation pattern of Rho-like GTPases by BCR,
p185(BCR/ABL) and the ABL/BCR fusion proteins, with the
accompanying alterations in cytoskeleton modeling inter-
feres with the motility of hematopoietic precursor cells.

Discussion and Conclusion

BCR is not only a negative regulator of cell proliferation
and oncogenic transformation [14], but plays moreover a
crucial role in cytoskeleton modeling by regulating the
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Adhesion on endothelium and endothelial transmigration of hematopoietic progenitor 32D cells expressing
t(9;22) translocation products. A. Percentage of 32D cells that were adherent to HUVEC in the absence/presence (-/+) of
TNFa under different shear stresses (0.1 and 2 dyn/cm2) in a flow chamber. The bar graphs represent the averages of three
fields counted with standard deviation. One representative experiment out of three performed is given. B. Percentage of 32D
cells that migrated through a HUVEC layer in a transwell assay. The bar graphs represent the average of triplicates with stand-
ard deviation. One representative experiment out of three performed is given.

activity of Rho-like GTPases, such as Rho, Rac and cdc42.
Cytoskeleton modeling and cell motility are considered to
be related [20].

Cell motility is a major feature of the functionality of
hematopoietic cells, regardless of their differentiation
stage. Cell motility regulates i.) the entrance and persist-
ence of very early hematopoietic precursors into the bone
marrow stroma; ii.) the mobilization of more mature
white blood cells from the bone marrow into the periph-
eral blood; and iii.) the capacity of functional blood cells,
such as granulocytes, macrophages, lymphocytes, to leave
the blood stream and reach the areas where their function
is required.

Deregulated cell motility, e.g. in leukemic precursors, can
lead to i.) an abnormal mobilization of early leukemic
precursors into the peripheral blood; ii.) a leukemic infil-
tration of extra-medullar tissues; and iii.) an abnormal
capacity to pass through the blood-brain barrier with con-
sequent meningeal leukemia, as frequently seen in Ph+-
ALL [21].

The capacity of a cell to move is determined by the flexi-
bility of its three dimensional architecture and thus by the
regulation of the cytoskeleton modeling as well as by the

capacity to interact dynamically with the support and the
cellular environment by adhesion and migration. These
features are not only dependent on the cell type but also
on the stage of differentiation [22].

Here we show that the ability to deregulate cytoskeleton
modeling and cell motility is not limited to the major
t(9;22)-associated BCR/ABL, but is also exhibited by the
reciprocal ABL/BCR fusion proteins.

The deletion in the ABL/BCR fusion proteins with respect
to wt BCR leads to a deregulated activation pattern of Rho-
like GTPases in Rat-1 cells. The BCR pattern of activated
Rho, inhibited Rac and unmodified (as compared to the
control) cdc4?2 is shifted to a ABL/BCR pattern of unmodi-
fied Rho and Rac, and activated cdc42. As the isolated
Rho-GEF domain of BCR is a strong activator of cdc42
[23], the lack of cdc42 activation by full-length BCR and
the strong activation by p96(ABL/BCR) sugoests the presence
of a self-inhibitory domain in BCR which is deleted in
Pp96(ABL/BCR) Sych an inhibitory domain could be located
in the GAP domain, which alone is able to inhibit cdc42
[23]. A completely different but still unknown mecha-
nism can be postulated following the observation that
p40(ABL/BCR) activates cdc42 although it lacks the GEF-
domain.
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The expression of BCR/ABL in Rat-1 cells led to a neuron-
like phenotype probably related to very strong Rho-activa-
tion [13]. The pattern of activated Rho-like GTPases in
BCR/ABL expressing Rat-1 cells differs from that in BCR/
ABL-positive Ba/F3 cells, confirming the cell type specifi-
city [24].

The t(9;22) associated fusion proteins do not only modify
the cytoskeleton modeling but also the motility of cells as
we have shown in the 32D hematopoietic precursor cell
line. A relationship between cytoskeleton modeling and
motility is suggested by the fact that migration into sphe-
roid cells has been shown to be closely related to Rho-acti-
vation [19]. Although both BCR/ABL and BCR are Rho-
activators in Rat-1 cells, BCR/ABL-positive cells showed an
increased migration capacity as compared to BCR over-
expressing cells. The inhibition of migration into the stro-
mal spheroids by p96(ABL/BCR) suggests an active mecha-
nism, such as a dominant negative effect on endogenous
BCR, whereas p40(ABL/BCR) js probably unable to interfere
with migration due to the absence of the Rho-GEF
domain. Therefore it remains unclear whether there is a
direct relationship between alterations of migration into
the spheroids and altered cytoskeleton modeling.

The increased adhesion of BCR over-expressing 32D cells
seems to be independent of the expression of selectin lig-
ands expressed on the cell surface (data not shown) indi-
cating another mechanism, which might not be activated
by the ABL/BCR proteins. Our findings confirm recent
data showing that BCR/ABL induces defects in integrin
function in CML which could interfere with the capacity
to adhere and thereby contribute to the dramatic accumu-
lation of mature granulocytes in the peripheral blood
[25]. In contrast to the adhesion process, both BCR and
p96(ABL/BCR)  decreased  endothelial  transmigration,
whereas BCR/ABL and p40(4BL/BCR) had no influence. The
effect of BCR/ABL seems to be cell type specific. In con-
trast to 32D cells BCR/ABL increases endothelial transmi-
gration and chemotaxis of the lymphatic Ba/F3 cells [26].
The fact that adhesion is a part of the transmigration proc-
ess [20] and that the expression level of the SDF-1a.-recep-
tor CXCR4 is not influenced by the transgenes (data not
shown) strongly suggest that the differences are related to
alterations in the leukocyte-endothelium interactions.
The way in which BCR and p96(4BL/BCR) interfere with the
leukocyte endothelium interaction remains to be clari-
fied. This is of high significance because it might influence
the biology of Ph+ leukemia, as suggested by findings
which show that the lack of the adhesion molecules P-
selectin and Icam-1 accelerates the development of BCR/
ABL-induced CML-like disease in mice [27].

Taken together, our data presented here show that the
reciprocal t(9;22) ABL/BCR fusion proteins both lose

http://www.biomedcentral.com/1471-2407/6/262

functions of the physiological counterpart BCR and gain
functions which BCR does not have. These new function-
alities might influence the biology of Ph+ leukemia. The
next step is to determine how BCR/ABL and the ABL/BCR
proteins interfere with each other. Together with the data
presented here, this will foster the understanding of the
pathogenesis, clinical behavior and probably the response
to therapy of Ph+ leukemia.
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