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Abstract

Background: Haematological cancer is characterised by chromosomal translocation (e.g. MLL
translocation in acute leukaemia) and two models have been proposed to explain the origins of
recurrent reciprocal translocation. The first, established from pairs of translocated genes (such as
BCR and ABL), considers the spatial proximity of loci in interphase nuclei (static "contact first"
model). The second model is based on the dynamics of double strand break ends during repair
processes (dynamic "breakage first" model). Since the MLL gene involved in | 123 translocation has
more than 40 partners, the study of the relative positions of the MLL gene with both the most
frequent partner gene (AF4) and a less frequent partner gene (ENL), should elucidate the MLL
translocation mechanism.

Methods: Using triple labeling 3D FISH experiments, we have determined the relative positions
of MLL, AF4 and ENL genes, in two lymphoblastic and two myeloid human cell lines.

Results: In all cell lines, the ENL gene is significantly closer to the MLL gene than the AF4 gene (with
P value < 0.0001). According to the static "contact first" model of the translocation mechanism, a
minimal distance between loci would indicate a greater probability of the occurrence of
t(11;19)(q23;p13.3) compared to t(4;11)(q21;923). However this is in contradiction to the
epidemiology of 11q23 translocation.

Conclusion: The simultaneous multi-probe hybridization in 3D-FISH is a new approach in
addressing the correlation between spatial proximity and occurrence of translocation. Our
observations are not consistent with the static "contact first" model of translocation. The recently
proposed dynamic "breakage first" model offers an attractive alternative explanation.

Background

The Mixed Lineage Leukaemia (MLL) gene (also called
HRX, HTRX or ALL-1) on chromosome band 1123 is a
recurrent target of reciprocal translocation in human acute
leukaemias. The 11g23 translocation occurs in 5-6% of
patients with acute myelogenous leukaemia (AML) and

7-10% of patients with acute lymphoblastic leukemia
(ALL). More than 40 partners are involved in MLL translo-
cation [2,3]; the most common partner being the AF4
gene, on band 4q21. Translocation t(4;11)(q21;q23) is
involved in a third of all MLL translocation cases [4] and
represents 95% of translocations involved in ALL, com-
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Figure |
Example of 4-color images from simultaneous 3D-FISH experiments in NALM-6 cell nucleus. Labeled genes were MLL, AF4 and
ENL represented by green, white and red spots respectively. Nuclear DNA stained with DAPI is displayed in blue.

pared to only 3.3% in AML [5]. Another frequent partner
of translocation is the ENL gene located on band 19p13.3,
but whilst translocation t(11;19)(q23;p13.3) is found in
both ALL and AML, it represents only 6% of all MLL trans-
locations.

It has been demonstrated that pairs of genes (and chro-
mosomal domains) which are frequently involved in
reciprocal chromosomal translocation are close to each
other in interphase nuclei. These observations have estab-
lished a direct correlation between the spatial proximity of
loci in interphase nuclei and the frequency of their trans-
location. This implies that the translocation takes place
where and when the chromatin fiber containing the part-
ner genes are co-localized (static "contact first" model).
However, recent investigations, using alpha-particles for
targeting double-strand breaks (DSBs), have demon-
strated some displacements of DNA breaks into DNA
repair foci where chromosomal exchange can occur. In
other words, breaks formed at distal locations can subse-
quently be brought together to induce translocation
(dynamic "breakage first" model).

In the present work, we propose a new direct approach to
study the correlation between the relative position of
genes in interphase nuclei and the corresponding frequen-
cies of translocation. We have applied our approach to
genes involved in 1123 translocations (MLL, AF4 and
ENL genes) in differentiated haematological cell lineages
by 3D-FISH and in-depth image data analysis.

Methods

Four hematological cancer cell lines were chosen ;
[NALM-6, IM-9, AML-193 and PLB-985] for their human
near-diploid karyotype and because the chromosomes of
interest (4, 11 and 19) were unmodified. NALM-6 is a
bona fide lymphoid leukemia cell line, derived from the
peripheral blood of a 19-year-old male with B-precursor
acute lymphoblastic leukemia. IM-9 is a non-malignant
lymphoid cell line derived by Epstein-Barr virus (EBV)
tranformation of residual normal B-cells from a patient
with multiple myeloma. AML-193 is a bona fide myeloid
leukemia cell line, derived from a 13-year-old female with
acute myeloid leukemia, subtype M5. PLB-985 is a false
cell line, the result of a cross-contamination with the mye-
loid leukemia cell line HL-60. Hence cultures labeled as
PLB-985 contain in reality HL-60 cells. (All cells were pur-
chased from DSMZ - Braunschweig, Germany - except
the NALM-6 cell line which was kindly provided by L. Lag-
neaux - Belgium). Cells were not synchronized and, in
order to preserve their natural nuclear structure, no drugs
were added. 3D-FISH was performed according to the
standard protocol [16]. Bacterial Artificial Chromosomes
(BAC) and Phage Artificial Chromosomes (PAC) were
obtained from the Resources for Molecular Cytogenetics
database (Italy) [17] : CTD-217A21 for the MLL gene and
RP11-476C8 for the AF4 gene. RP11-2344B19 for the ENL
gene was purchased from Invitrogen (Carlsbad, Califor-
nia). dUTP-Alexa 488, dUTP-Cy3 and dUTP-Cy5 were
used to label BAC/PAC DNA (using random priming pro-
tocols) corresponding to MLL, AF4 and ENL genes respec-

Page 2 of 5

(page number not for citation purposes)



BMC Cancer 2006, 6:20

Lymphoid cell lines Myeloid cell lines

IM-9 AML-193

-

d MLL-AF4 (um)
O=2NWLBOOINROO

d MLL-AF4 (um)
O=-2NWBOOONODOO

T T 1
012345678910
d MLL-ENL (um)

012345678910
d MLL-ENL (pm)

PLB-985

-
=i

d MLL-AF4 (um)
O=-NWLEOLOINODOO

d MLL-AF4 (um)
O=NWLEOLONDWOWO

T y
012345678910
d MLL-ENL (pm)

012345678910
d MLL-ENL (pm)

Figure 2

2D — Plot of minimum value of measured distances between
MLL to AF4 and MLL to ENL genes for all cells. Distances are
expressed in um. Vertical and horizontal blue lines symbolize
the gene proximity criterion (2 um) below which genes could
be potentially translocated. Values express the percentage of
cells in which the distances reported in one axis is smaller
than the distance on the other axis. Grey areas correspond
to nuclei where only one of gene could be translocated.

tively. Simultaneous hybridization was performed in
order to compare the distance between the MLL gene and
each potential translocation partner inside a single
nucleus (figure 1). Confocal microscopy was carried out
using the TCS confocal imaging system, equipped with a
63x objective with a numerical aperture set to 1.4 nm. The
confocal pinhole was adjusted to allow a minimum field
depth. The focus step between sections was 0.35 pm and
the XY pixel was set to 100 nm. Gene to gene distances

http://www.biomedcentral.com/1471-2407/6/20

were calculated using Smart 3D-FISH, an ImageJ plugin,
recently developed in our laboratory [19]. More than
1000 nuclei were analysed. Only cells (415) displaying
two loci and adequate morphological preservation of
chromatin - as assessed by 4'-,6-diamino-2-phenylindole
(DAPI) staining — were retained for analysis. Inter-loci dis-
tances were normalized to nuclear diameter: first, the
nuclear volume was calculated from the total volume of
DAPI stained DNA; a spherical approximation was then
used to calculate the diameter of the nucleus from this
volume. The minimum value of measured distances was
expressed in microns (figure 2) according to gene proxim-
ity criterion in which all loci separated by less than 2 pm,
could be in contact by Brownian motion prior to the
translocation event (according to the "contact first"
model). Statistical analysis was performed using Student's
t test with a level of significance : o = 5%.

Results and discussion

The mean inter-loci distance measurements between MLL,
ENL and AF4 genes in the four cell lines are reported in
table 1 (expressed as a percentage of nuclear diameter).
No significant overall difference was observed in inter-loci
distances between myeloid and lymphoid cell lines,
despite cell line specific genome organization[21].

In all the studied cell lines, the average separation
between MLL and ENL loci was significantly smaller than
that observed for MLL and AF4 (P < 0.0001). The mean
smallest intergenic distance (corresponding to the mini-
mum value of each of the four inter-loci distances) fol-
lows the same tendancy (26% of nuclear diameter for
MLL-ENL distance vs. 34% for MLL-AF4 distance in
NALM-6 and IM-9 cell lines, 26% vs. 36% for PLB-985 cell
lines and 24% vs. 29% for AML-193 cell lines).

For each nucleus, the two smallest intergenic distance -
dyaps and dyyp pag — are displayed in figure 2. Firstly,
our results show that, for the majority of nuclei, the ENL
gene is closer to the MLL gene than to the AF4 gene. Sec-
ondly, according to the gene proximity criterion, we have
calculated the number of nuclei where only the AF4 gene
should be translocated with MLL gene (i.e. dy;.aps < 2 pm
and dy;; pn > 2 pm, greyed area in figure 2). In the same

Table I:
Cell Lineage [No of loci]
NALM-6 [n = 324] IM-9 [n = 448] PLB-985 [n = 432] AML-193 [n = 444]
MLL-ENL 450+ I.1% 453 + 1.0% 45.7 £ 0.9% 39.4 £ 0.8%
MLL-AF4 548 1.1% 554+ 1.0% 57.8 £ 1.0% 46.6 £ 0.9%
AF4-ENL 485+ |.1% 50.6 £ 0.9% 43.7 £ 0.8% 49.5 + 1.0%

Mean inter-loci distances between the MLL, AF4 and ENL genes in NALM-6, IM-9, PLB-985, AML-193 cell lines (expressed as a percentage of nuclear

diameter).
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way, we computed the number of cells in which only the
ENL gene should be translocated with the MLL gene (i.e.
dyiene< 2 um and dyp; ape > 2 pm, greyed area in figure
2). The ratio of these two values, respectively, indicates a
greater probability of a translocation event between MLL
and ENL. (0.33, 0.35, 0.30 and 0.68 for NALM-6, IM-9,
PLB-985 and AML-193 cell lines respectively).

Published MLL translocation frequencies report a high
level of translocation t(4;11) compared to translocation
t(11;19). According to the static "contact first" model, AF4
loci should be closer to MLL than ENL loci. Clearly, this is
not in accordance with our data. In the case of the 11q23
translocation, the dynamic of chromatin must be taken
into account and our results could be the first observation
of the dynamic breakage first model proposed by Kanaar
and co-workers[12].

It should be noted that published translocation frequen-
cies were established after manifestation of cancer. Taking
into account that a second genetic event seems to be
required to induce cancer [22], we cannot exclude that the
chromatin architecture context after MLL-AF4 transloca-
tion may be more favourable to the induction of a second
event compared to MLL-ENL translocation. This could
explain the high level of translocation t(4;11) detected in
acute leukaemia. This could be illustrated by the relatively
small distances between the ENL gene and the AF4 gene
which could be favorable to translocation while the corre-
sponding translocation is never reported in literature[3].

Conclusion

This work, based on simultaneous multi-probe hybridiza-
tion in 3D-FISH experiments describes a new approach to
study translocation mechanisms in a chromatin context.
This method offers the advantage of a direct comparison
of several translocation frequencies with localization of
corresponding loci in each nucleus. Furthermore, it allows
the simultaneous measurement of multiple intergenic dis-
tances in a cell by cell manner in a single experiment,
without the chromatin distortion common to existing
procedures.

Our results are not in accordance with the static model of
translocation mechanism and may represent the first
observation of the dynamic "breakage first" model. We
are currently extending our approach to study MLL and up
to six partner genes to confirm these intriguing results.

Competing interests
The author(s) declare that they have no competing inter-
ests.

Authors' contributions
MG carried out the cytogenetics studies and data analyses

http://www.biomedcentral.com/1471-2407/6/20

TB participated in the data analyses and coordination of
the study

JSS participated in the design of the study
All authors read and approved the final manuscript

Acknowledgements

The authors would like to thank Maité Coppey and Christophe Chamot at
Institut Jacques Monod (Paris, France) for providing access and assistance
with confocal microcopy, Marriono Rocchi (University of Bari, Italy) for
providing BAC/PAC FISH clones, and Laurence Lagneaux (Belgium) for
NALM-6 cell line. Thanks to Jason Martin for reading the manuscript.

References

I.  Rowley |D: Molecular genetics in acute leukemia. Leukemia
2000, 14:513-517.

2. Huret JL, Dessen P, Bernheim A: An atlas of chromosomes in
hematological malignancies. Example: 11q23 and MLL part-
ners. Leukemia 2001, 15:987-989.

3. Huret JL, Senon S, Bernheim A, Dessen P: An Atlas on genes and
chromosomes in oncology and haematology. Cell Mol Biol
(Noisy-le-grand) 2004, 50:805-807.

4.  Secker-Walker LM, Moorman AV, Bain BJ, Mehta AB: Secondary
acute leukemia and myelodysplastic syndrome with 11q23
abnormalities. EU Concerted Action 11923 Workshop.
Leukemia 1998, 12:840-844.

5. Johansson B, Moorman AV, Haas OA, Watmore AE, Cheung KL,
Swanton S, Secker-Walker LM: Hematologic malignancies with
t(4;11)(q21;923)--a cytogenetic, morphologic, immunophe-
notypic and clinical study of 183 cases. European 11q23
Workshop participants. Leukemia 1998, 12:779-787.

6. Moorman AV, Hagemeijer A, Charrin C, Rieder H, Secker-Walker
LM:  The translocations, t(11;19)(q23;pl13.1) and
t(11;19)(q23;p13.3): a cytogenetic and clinical profile of 53
patients. European 11q23 Workshop participants. Leukemia
1998, 12:805-810.

7. Neves H, Ramos C, da Silva MG, Parreira A, Parreira L: The nuclear
topography of ABL, BCR, PML, and RARalpha genes: evi-
dence for gene proximity in specific phases of the cell cycle
and stages of hematopoietic differentiation. Blood 1999,
93:1197-1207.

8. Kozubek S, Lukasova E, Mareckova A, Skalnikova M, Kozubek M, Bar-
tova E, Kroha V, Krahulcova E, Slotova J: The topological organi-
zation of chromosomes 9 and 22 in cell nuclei has a
determinative role in the induction of t(9,22) translocations
and in the pathogenesis of t(9,22) leukemias. Chromosoma
1999, 108:426-435.

9.  Nikiforova MN, Stringer JR, Blough R, Medvedovic M, Fagin JA, Niki-
forov YE: Proximity of chromosomal loci that participate in
radiation-induced rearrangements in human cells. Science
2000, 290:138-141.

10.  Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T: Spatial prox-
imity of translocation-prone gene loci in human lymphomas.
Nat Genet 2003, 34:287-291.

I'l.  Parada L, Misteli T: Chromosome positioning in the interphase
nucleus. Trends Cell Biol 2002, 12:425-432.

12.  Aten JA, Stap ], Krawczyk PM, van Oven CH, Hoebe RA, Essers |,
Kanaar R: Dynamics of DNA double-strand breaks revealed
by clustering of damaged chromosome domains. Science
2004, 303:92-95.

13.  Drexler HG: The Leukemia-Lymphoma Cell Line FactsBook.
Academic Press 2001.

14. Drexler HG, Dirks WG, Matsuo Y, MacLeod RA: False leukemia-
lymphoma cell lines: an update on over 500 cell lines. Leuke-
mia 2003, 17:416-426.

15. Urbani L, Sherwood SW, Schimke RT: Dissociation of nuclear and
cytoplasmic cell cycle progression by drugs employed in cell
synchronization. Exp Cell Res 1995, 219:159-168.

16. Spector LD, Goldman DR: A laboratory manual. 1998, 3:111.19
111.36.

Page 4 of 5

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10720153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11417488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11417488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11417488
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15672464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15672464
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593281
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9949162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9949162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9949162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10654081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10654081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10654081
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11021799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11021799
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12808455
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12220863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12220863
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12592342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12592342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7628532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7628532
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7628532

BMC Cancer 2006, 6:20

17. Ressources for Molecular Cytogenetics : [http://www.biolo-
gia.uniba.it/rmc]. .

18. von Bergh A, Emanuel B, van Zelderen-Bhola S, Smetsers T, van Soest
R, Stul M, Vranckx H, Schuuring E, Hagemeijer A, Kluin P: A DNA
probe combination for improved detection of MLL/I11q23
breakpoints by double-color interphase-FISH in acute leuke-
mias. Genes Chromosomes Cancer 2000, 28:14-22.

19. Gue M, Messaoudi C, Sun JS, Boudier T: Smart 3D-fish: Automa-
tion of distance analysis in nuclei of interphase cells by image
processing. Cytometry A 2005, 67:18-26.

20. Alcobia I, Dilao R, Parreira L: Spatial associations of centro-
meres in the nuclei of hematopoietic cells: evidence for cell-
type-specific organizational patterns. Blood 2000,
95:1608-1615.

21. Parada LA, McQueen PG, Misteli T: Tissue-specific spatial organ-
ization of genomes. Genome Biol 2004, 5:R44.

22. Greaves MF, Wiemels J: Origins of chromosome translocations
in childhood leukemia. Nature reviews 2003, 3:.

Pre-publication history

The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1471-2407/6/20/prepub

http://www.biomedcentral.com/1471-2407/6/20

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 5 of 5

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10738298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10738298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10738298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16082715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16082715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16082715
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10688815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15239829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15239829
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12951583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12951583
http://www.biomedcentral.com/1471-2407/6/20/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Results and discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References
	Pre-publication history

