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Abstract
Background: The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor
that regulates adipogenic differentiation and glucose homeostasis. Spermidine/spermine N1-
acetyltransferase (SSAT) and ornithine decarboxylase (ODC) are key enzymes involved in the
meolism of polyamines, compounds that play an important role in cell proliferation. While the
PPARγ role in tumour growth has not been clearly defined, the involvement of the altered
polyamine metabolism in colorectal carcinogenesis has been established. In this direction, we have
evaluated the PPARγ expression and its relationship with polyamine metabolism in tissue samples
from 40 patients operated because of colorectal carcinoma. Since it is known that the functional
role of K-ras mutation in colorectal tumorigenesis is associated with cell growth and differentiation,
polyamine metabolism and the PPARγ expression were also investigated in terms of K-ras
mutation.

Methods: PPARγ, ODC and SSAT mRNA levels were evaluated by reverse transcriptase and real-
time PCR. Polyamines were quantified by high performance liquid chromatography (HPLC). ODC
and SSAT activity were measured by a radiometric technique.

Results: PPARγ expression, as well as SSAT and ODC mRNA levels were significantly higher in
cancer as compared to normal mucosa. Tumour samples also showed significantly higher polyamine
levels and ODC and SSAT activities in comparison to normal samples. A significant and positive
correlation between PPARγ and the SSAT gene expression was observed in both normal and
neoplastic tissue (r = 0.73, p < 0.0001; r = 0.65, p < 0.0001, respectively). Moreover, gene
expression, polyamine levels and enzymatic activities were increased in colorectal carcinoma
samples expressing K-ras mutation as compared to non mutated K-ras samples.

Conclusion: In conclusion, our data demonstrated a close relationship between PPARγ and SSAT
in human colorectal cancer and this could represent an attempt to decrease polyamine levels and
to reduce cell growth and tumour development. Therefore, pharmacological activation of PPARγ
and/or induction of SSAT may represent a therapeutic or preventive strategy for treating colorectal
cancer.
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Background
The peroxisome proliferator-activated receptor γ (PPARγ)
is a member of the nuclear receptor superfamily [1]. It
functions as a transcription factor, heterodimerizes with
the retinoid X receptor (RXR) and regulates the expression
of target genes by binding to the PPAR response elements
(PPERs). The PPARγ, initially identified for its role in the
metabolism and adipocyte differentiation, is also
expressed in tissue outside the adipocyte lineage, includ-
ing colonic epithelia [2]. In cancer biology PPARγ is the
most intensively studied PPAR isoform and several studies
have shown the protective role of this nuclear receptor in
colorectal tumour [3]. On the contrary, other authors
have questioned the antineoplastic activity of PPARγ lig-
ands [4]. In addition, although most of the known target
genes activated by PPARγ belong to the pathway of metab-
olism and lipid transport, the target genes mediating the
pro- or anti-cancer activity by affect of the activated PPARγ
have not yet been identified.

Recently, Babbar et al. [5] demonstrated that in colorectal
tumour cells, the promoter of spermidine/spermine N1-
acetyltransferase (SSAT) gene contains a functional PPAR
responsive element and activated PPARγ is able to activate
transcription of this gene.

SSAT and ornithine decarboxylase (ODC) are key
enzymes involved in the catabolism and biosynthesis,
respectively, of the polyamines (putrescine, spermidine
and spermine), compounds that play an important role in
both normal and neoplastic cell proliferation [6].
Increased ODC activity and the associated elevation in
intracellular polyamines have been implicated in carcino-
genesis of many human tissues, including those of the gas-
trointestinal tract [7-9].

Induction of SSAT plays an important role in lowering the
polyamine pool and typically gives rise to growth inhibi-
tion as well as exerting tumour-suppressive effects
[10,11]. Particularly, Wallace et al. have hypothesized that
the increase in SSAT activity may be an attempt to reduce
the polyamine pool in tumour cells. [12]

Little is know about the relationship between polyamine
metabolism and PPARγ expression in colorectal tumours
and available information is derived from in vitro studies
[5,13].

We have provided evidence about a close relationship
between polyamine biosynthesis and K-ras mutation in
human colorectal carcinoma [14]. Moreover, in the
human colon adenocarcinoma cell line, it has been
shown that mutated K-ras suppressed SSAT via a transcrip-
tional mechanism that involves PPARγ signalling pathway
[15].

In order to investigate the relationship between PPARγ
and polyamine metabolism in human colorectal carci-
noma, the aim of this study was to evaluate the PPARγ,
SSAT and ODC gene expression as well as polyamine lev-
els and ODC and SSAT activities, in neoplastic samples
and in surrounding uninvolved mucosa. The profile of
polyamine metabolism and PPARγ mRNA expression
were also investigated in relation to the presence of K-ras
mutation in our tumour samples. We have exclusively
focalised our attention on mutated codon 12 as it occurs
more frequently in human colorectal cancer [16].

Methods
Patients
Tissue samples were obtained at the time of surgical resec-
tion for colorectal adenocarcinoma from 40 patients: 24
men (mean age 64.8 years, range 36–88) and 16 women
(mean age 64.4 years, range 28–87). Pieces of tissue were
removed from the peripheral region of the tumour and
surrounding mucosa in a region at least 10 cm from the
neoplasm. The normal mucosa was found to be macro-
scopically and microscopically free of neoplastic growth.
Immediately after removal, tissue was washed in cold
saline solution and then rapidly (within 15–30 min)
transported on ice to the laboratory and stored at -80°C
until assay. The quality of the tumour and surrounding
normal tissue specimens and the relative cellular compo-
sition were determined by histopathological assessment.
The clinical and histopathological features of colorectal
cancer patients are reported in Table 1. The design of this
study was approved by the local ethics committee.

Informed consent was obtained from all patients before
their surgery and examination of specimens used in this
study.

Analysis of the PPARγ, ODC and SSAT gene expression
PPARγ, ODC and SSAT mRNA levels were evaluated by
reverse transcriptase and real-time PCR. The RNA isola-
tion, reverse transcriptase and real-time PCR (RT-PCR)
methods have been described previously [17]. In brief,
after RNA extraction, aliquots of 5 µl of the reverse tran-
scriptase reaction (20 µl), corresponding to 0.5 µg of total
RNA, were subjected to the RT-PCR in 25 µl of final vol-
ume contained master mix (iQ SYBR Green Supermix,
BioRad, Milan, Italy). The amplification program on a
iCycler iQ Real-Time detection system (BioRad) was: 30 s
at 95°C and then 10 s at 94°C, 10 s at 55°C and 30 s at
72°C for 45 cycles. A further melt-curve step (melt-curve
started at 55°C and the temperature was increased 0.5°C
per cycle for 80 cycles) was added in the thermocycler pro-
gram at the end of the last extension phase of 45 cycles to
control the presence of the secondary non specific PCR
products or primer-dimer products. For quantitative anal-
ysis the external standard curves were used and the mRNA
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levels of each target gene were then normalized to those of
the β-actin, as control gene.

The primers used were: 5'-AGGCGAGGGCGATCTT-
GACA-3' (forward primer) and 5'-ACCAGGAATGCTTTT-
GGCATACTCT-3' (reverse primer) for PPARγ (GenBak:
NM_138712); 5'-GGTCCGCAAAGGGAAGAAA-3' and 5'-
TGCCAATCCACGGGTCATA-3' for SSAT (GenBank:
NM_002970); 5'-GATTCCAAAGCAGTCTGTCGTCTCA-3'
and 5'-TTGTCCAACGCTGGGTTGATTACGC-3' for ODC
(GenBank: M16650); 5'-AAGACCTG-
TACGCCAACACAGTGCTGTCTGG-3' and 5'-CGTCAT-
ACTCCTGCTTGCTGATCCACATCTGC-3' for β-actin
(GenBank: NM_001101). The relative mRNA levels are
expressed as target gene/β-actin ratio.

Polyamine analysis
Each tissue sample (approximately 10–15 mg) was
homogenized in 700 µl of 0.9 percent sodium chloride
mixed with 5 µl (174 µM) of the internal standard 1, 10-
Diaminodecane (1, 10-DAD). In order to precipitate the
proteins, 50 µl of perchloric acid (PCA) 3 M were added
to the homogenate. After 30 minutes incubation in ice,
the homogenate was centrifuged for 15 minutes at 7000 g.
The supernatant was filtered (Millex-HV13 pore size 0.45
µm, Millipore, Bedford, MA) and lyophilized. The residue
was dissolved in 250 µl of HCl (0.1 M). Aliquots (100 µl)
were reacted with dansyl chloride and the dansyl-
polyamine derivatives were determined by high perform-
ance liquid chromatography (HPLC) as previously
described [7]. Polyamine levels were expressed as concen-
tration values in nmol/g wet weight tissue.

ODC activity
ODC activity was measured with a radiometric technique
as previously described [14]. In brief, the reaction mixture
consists of DL-[1-14C]-ornithine and tissue extract in Tris-
HCL buffer; the 14CO2 product generated by the enzyme
reaction was trapped on filter paper pre-treated with
NaOH, which was suspended in a center well above the
reaction mixture. Radioactivity on the filter papers was
determined by a liquid scintillation counter (model 1219
Rackbeta, LKB-Pharmacia, Uppsala, Sweden). ODC activ-
ity was expressed as pmol CO2/h/mg of protein.

SSAT activity
SSAT activity was measured according to the method
described by Wallace et al. [18] with minor modifications.
The reaction was started by adding 70 µL of cytosol to a
microfuge tube containing 30 µL of incubation buffer (30
mM spermidine, 0.1 µCi [acetyl-1-14C] acetyl coenzyme A,
1 M Tris-HCL, pH 7.8). The incubation was carried out for
10 min at 37°C, then 20 µL hydroxylamine hydrochloride
were added to stop the reaction. The tubes were boiled for
3 min with pierced tops and then spun in a microfuge for
5 min. A quantity of 30 µL of supernatant was spotted on
to Whatman P81 discs which were then washed five times
with distilled water and three times with 100% ethanol.
The radioactivity on the filter papers was determined by a
liquid scintillation counter. SSAT activity was expressed as
pmol of N1-[14C] acetylspermidine generated/min/mg of
protein.

K-ras mutation analysis
Genomic DNA was isolated from 50 mg of normal
mucosa and tumour tissue by TRI-Reagent (Mol. Res. Cen-
tre Inc. Cincinnati, OH, USA) following manufacturer's
instruction. The extracted DNA was dissolved in 50 µl of
sterile water and used for PCR. Mutations in K-ras exon 1,
codon 12 were screened by PCR amplification followed
by RFLP analysis as previously described [14].

Statistical analysis
Differences among polyamine levels, ODC activity, SSAT
activity, and mRNA expression of relative genes were ana-
lyzed by Wilcoxon matched pairs test and Mann Whitney
test when appropriate. The significance of differences, for
the above parameters, in location of tumour,
Dukes'stages, and differentiation grade was determined
by Kruskal-Wallis analysis of variance. Correlations were
evaluated by Spearman correlation test. All data are
expressed as mean ± SEM. A p-value < 0.05 was considered
as significant.

Results
The PPARγ, ODC and SSAT mRNA levels were signifi-
cantly higher in colorectal carcinoma than in normal sur-
rounding mucosa. In addition, polyamine levels, ODC

Table 1: Clinical and histopathological features of colorectal 
cancer patients (40 cases)

No of patients

sex
male 24
female 16

Location of tumour*
right 14
left 14
rectum 12

Dukes' stage
A 2
B 13
C 15
D 10

Differentiation grade§
G1 10
G2 18
G3 12

*Right colon: caecum, ascending colon, hepatic flexure, transverse 
colon; left colon: splenic flexure, descending colon and sigmoid. § G1: 
well-differentiated, G2: moderately differentiated, G3: poorly 
differentiated.
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and SSAT activities were significantly increased in neo-
plastic samples than in normal ones (p < 0.05; Wilcoxon
matched pairs test) (Table 2). Of note, a significant and
positive correlation between PPARγ and SSAT gene expres-
sion was observed in both normal and neoplastic tissue (r
= 0.73, p < 0.0001; r = 0.65, p < 0.0001, respectively;
Spearman correlation coefficient) (Figure 1).

K-ras codon 12 mutation was found in 12 out of 40
patients (30%). PPARγ expression, as well as ODC and
SSAT mRNA levels were significantly higher (p < 0.05;
Mann Whitney test) in colorectal carcinoma samples
expressing K-ras mutation as compared to non mutated K-
ras samples. Mutated K-ras tissues also showed signifi-
cantly higher (p < 0.05) polyamine levels, as well as ODC
and SSAT activities, as compared to non mutated K-ras tis-
sues (Table 3).

The gene expression, the polyamine levels and the enzy-
matic activities were not associated with age, sex, tumour
site, histological differentiation, and Dukes' stage (data
not shown).

Discussion
Several studies have described increased or decreased lev-
els of PPARγ expression in different human tumour tissue
as compared to normal mucosa [19-21]. Hence, taking
into consideration the diversity of human cancer, the
expression of PPARγ may likely be dependent on tissue
specificity and/or mutational events that are prerequisite
for cancer development. In our study, real time RT-PCR
analysis demonstrates a significant enhancement in the
expression of PPARγ in colorectal tumours as compared to
normal surrounding mucosa. Few studies have investi-

Table 2: Polyamine levels, enzymatic activities and genes 
expression in normal and neoplastic colorectal tissues

Normal Neoplastic p

Putrescine 18.74 ± 3.1 50.87 ± 10.5 0.001
Spermidine 150.1 ± 10.6 302.2 ± 27.8 <0.0001
Spermine 387.3 ± 27.98 538.0 ± 41.7 0.003
Total polyamines 556.2 ± 39.9 891.0 ± 70.7 0.0002
ODC 21.2 ± 3.5 274.2 ± 70.9 <0.0001
SSAT 27.4 ± 3.8 40.4 ± 5.0 0.030
ODC mRNA 12.5 ± 2.0 20.7 ± 5.0 0.020
SSAT mRNA 2.7 ± 0.3 13.6 ± 1.5 <0.0001
PPARγ mRNA 0.3 ± 0.05 2.8 ± 0.5 <0.0001

Polyamines are reported as nmol/g wet tissue. ODC activity is 
expressed as pmol 14CO2/h/mg of protein. SSAT activity is expressed 
as pmol N1-[14C] acetylspermidine/min/mg of protein. The relative 
mRNA levels are expressed as target gene/β-actin ratio. All data are 
presented as mean ± SEM (Wilcoxon matched pairs test).

Representative correlations between PPARγ and SSAT mRNA expression in colorectal tissueFigure 1
Representative correlations between PPARγ and SSAT mRNA expression in colorectal tissue. A. PPARγ mRNA expression 
correlates with that of SSAT mRNA levels in the normal mucosa samples of 40 patients (r = 0.73, p < 0.0001; Spearman corre-
lation coefficient). B. PPARγ mRNA expression correlates with that of SSAT mRNA levels in the tumour tissue samples of 40 
patients (r = 0.65, p < 0.0001, Spearman correlation coefficient). The relative mRNA levels are expressed as target gene/β-
actin ratio.
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gated the expression of PPARγ in human colorectal carci-
noma in relation to normal mucosa. Previously, the
comparison of PPARγ expression levels in 11 human
colon adenocarcinomas revealed no change in compari-
son to normal mucosa [22]. In a recent study an increase
of PPARγ expression in comparison to normal mucosa it
has been observed in 25% (four) of patients with colorec-
tal tumour [23] These contrasting results could be attrib-
uted to differences in methodological procedures as well
as to the number of patients analyzed. With regard to the
role of PPARγ in colon cancer, the available data are con-
flicting and mostly obtained in cell lines or in animal
models [24-27]. On the other hand, it is well known that
polyamine metabolism is an integral component of the
mechanism of colorectal carcinogenesis [9,28]. In this
study, a close and positive correlation was observed
between the PPARγ and SSAT expression both in normal
and neoplastic human colorectal tissues. Studies per-
formed with colorectal tumour cell lines have shown that
cells transfected with the PPARγ restored the SSAT pro-
moter activity, and an activated PPARγ could increase
SSAT expression in these cells [15]. Thus, our findings in
human tissue are compatible with the in vitro studies
about the transcriptional induction of PPARγ on the SSAT
gene.

In the light of these data, we suggest that, in colorectal
normal mucosa, PPARγ induces SSAT expression and
influences polyamine availability, regulating cell prolifer-
ation and differentiation. In fact, it is known that the
requirement of polyamines in cell growth is typically met
by a biosynthetic pathway regulated by ODC and bal-
anced by a polyamine catabolic pathway regulated by
SSAT [29].

In colorectal tumour tissue, we observed an increase in
PPARγ and SSAT expression as well as in SSAT activity.

The relationship between SSAT and cancer is only now
being defined. In this respect, in vitro and in vivo studies
are consistent with the notion that SSAT suppresses cell
growth and tumour development [30,31]. On the con-
trary, a Min mouse model in which SSAT expression pro-
motes tumorigenesis has been proposed. [32].
Furthermore, the role of SSAT in the polyamine metabo-
lism in the cancer tissue seems to be tissue dependent. In
fact, it has been observed that the increase in SSAT activity
leads to polyamine pool depletion and growth inhibition
in breast tumour [12,33].

On the other hand, in prostatic cancer the SSAT overex-
pression induces growth inhibition without determining
polyamine pool depletion since SSAT activity seems to
modulate ODC activity [11,34].

In this study, we report both higher polyamine levels and
ODC activity in neoplastic tissue samples than in normal
ones, thus confirming our previous data and those of
other groups obtained in human colorectal cancer or in
other types of carcinoma [35-39].

We have also found that while colon cancer tissue exhibits
about a 13-fold increase of the ODC activity in compari-
son to normal tissue, SSAT activity rises by 1.5-fold only.
The tumour polyamine pool seems to be maintained at
higher levels by a robust increase in ODC activity not
properly balanced by a severe increase in SSAT activity.
Therefore, the SSAT response could be secondary to a pro-
cancerous increase in ODC activity and polyamine levels.
In this direction, we can suppose that the increase in
polyamine catabolic activity, as a result of PPARγ induc-
tion without a concomitant downregulation of the
polyamine biosynthetic pathway, could be insufficient for
counteracting tumour development.

Our findings about PPARγ and polyamine metabolism in
mutated K-ras colorectal cancer seem to follow this direc-

Table 3: Polyamine levels, enzymatic activities and genes expression in neoplastic colorectal tissue with and without K-ras mutation.

Mutated K-ras n = 12 Non mutated K-ras n = 28 p

Putrescine 64.4 ± 14.7 41.0 ± 14.5 0.039
Spermidine 376.1 ± 49.2 248.8 ± 26.9 0.021
Spermine 652.2 ± 48.6 455.5 ± 55.99 0.020

Total polyamines 1093.0 ± 98.0 745.3 ± 85.5 0.012
ODC 525.1 ± 157.6 92.9 ± 26.5 0.002
SSAT 43.1 ± 5.6 25.92 ± 4.3 0.035

ODC mRNA 21.3 ± 4.4 8.79 ± 1.8 0.020
SSAT mRNA 18.0 ± 3.9 7.3 ± 1.4 0.011
PPARγ mRNA 2.9 ± 1.1 0.78 ± 0.2 0.032

Polyamines are reported as nmol/g wet tissue. ODC activity is expressed as pmol 14CO2/h/mg of protein. SSAT activity is expressed as pmol N1-
[14C] acetylspermidine/min/mg of protein. The relative mRNA levels are expressed as target gene/β-actin ratio. All data are presented as mean ± 
SEM (Mann Whitney test).
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tion. In fact, we have detected higher levels of PPARγ and
SSAT expression, as well as higher SSAT activity, in
mutated K-ras samples. These data suggest that in cancer
tissue with high rate of proliferation and likely with
enhanced polyamine levels and ODC activity [14], there
is an attempt to restore a growth control via SSAT with a
mechanism involving PPARγ. However, in a vitro study, it
has been shown that mutated K-ras suppressed the SSAT
expression via a transcriptional mechanism involving the
PPARγ signalling pathway [15]. The in vitro findings may
not be directly relevant to the in vivo effects and different
tumour models can result in diversified functional out-
come.

Conclusion
In conclusion, our data show a close relationship between
PPARγ and SSAT in human colorectal cancer and this
could represent an attempt to decrease polyamine levels
and to reduce cell growth and tumour development.
These findings support the hypothesis that pharmacolog-
ical activation of PPARγ and/or induction of SSAT may
represent, in future, an effective therapeutic or preventive
strategy for colorectal cancer. In this direction a therapeu-
tic or chemopreventive approach using a combination of
polyamine biosynthesis inhibitor like difluoromethylor-
nithine (DFMO), and an agent, like a non-steroidal anti-
inflammatory drug (NSAID) which induces catabolism,
should be more efficacious than a single approach. This
rationale has provided the basis of two ongoing chemo-
prevention studies [40].
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