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Abstract

Background: DEK is a transcription factor involved in stabilization of heterochromatin and cruciform structures. It
plays an important role in development and progression of different types of cancer. This study aims to analyze the
role of DEK in metastatic colorectal cancer.

Methods: Baseline DEK expression was firstly quantified in 9 colorectal cell lines and normal mucosa by WB.
SiRNA-mediated DEK inhibition was carried out for transient DEK silencing in DLD1 and SW620 to dissect its role
in colorectal cancer aggressiveness. Irinotecan response assays were performed with SN38 over 24 hours and
apoptosis was quantified by flow cytometry. Ex-vivo assay was carried out with 3 fresh tumour tissues taken from
surgical resection and treated with SN38 for 24 hours. DEK expression was determined by immunohistochemistry in
67 formalin-fixed paraffin-embedded tumour samples from metastatic colorectal cancer patients treated with
irinotecan-based therapy as first-line treatment.

Results: The DEK oncogene is overexpressed in all colorectal cancer cell lines. Knock-down of DEK on DLD1
and SW620 cell lines decreased cell migration and increased irinotecan-induced apoptosis. In addition, low DEK
expression level predicted irinotecan-based chemotherapy response in metastatic colorectal cancer patients with
KRAS wild-type.

Conclusions: These data suggest DEK overexpression as a crucial event for the emergence of an aggressive
phenotype in colorectal cancer and its potential role as biomarker for irinotecan response in those patients with
KRAS wild-type status.
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Background
Colorectal cancer (CRC) is one of the most common
gastrointestinal malignant tumors in the world and it
has one of the highest rates of morbidity and mortality
worldwide. There are about 1.36 million new-onset pa-
tients around the world each year, and 0.7 million CRC
patients died of it in 2012 [1]. The 5-year survival rate
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for colorectal cancer is approximately 55% because of its
invasion and metastasis.
The first-line treatment of metastatic colorectal cancer

(mCRC) is based on fluoropyrimidines (5-fluorouracil/
folinic acid) given in combination with the prodrugs oxa-
liplatin [2-4] and/or irinotecan [5-9].
The active metabolite of irinotecan, SN38, inhibits to-

poisomerase I and prevents DNA from unwinding [10].
Topoisomerase I expression has correlated with irinote-
can response in several studies [11,12] but this proced-
ure is not currently performed as part of the selection of
therapy for mCRC.
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Table 1 Clinical features of metastatic colorectal cancer
patients treated with irinotecan-based therapy

Characteristics Patients (N = 67)

Median age-years (range) 62 (33–79)

Sex

Male 47 (70%)

Female 20 (30%)

Median CEA (range, ng/mL) 16 (0–2066)

Performance status WHO

0 29 (43%)

1 35 (52%)

2 3 (5%)

Site of primary tumor

Colon 35 (52%)

Rectum 32 (48%)

METASTASIS

Liver 31 (47%)

Liver & other 19 (28%)

Other 15 (22%)
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DEK was identified as a fusion protein with the CAN
nucleoporin due to the translocation t(6;9) in a subtype
of acute myeloid leukaemia [13]. It was later described
as a transcription factor overexpressed in multiple neo-
plasms including bladder cancer [14], breast cancer [15],
glioblastoma [16], hepatocellular carcinoma [17], melan-
oma [18], retinoblastoma [19,20], colorectal cancer [21,22]
and other types of cancer, such as oral, ovarian, or uterine
cervical cancer [21,23-25].
It has been reported that DEK promoter is regulated

by E2F1 [21], and its activation leads to transcription of
DEK mRNA. Functionally, DEK is involved in the DNA
repair machinery through interaction with PARP-1 [26],
suppresses cellular senescence, apoptosis, differentiation,
and promotes transformation in vitro and in vivo [27-29].
Furthermore, DEK has been suggested as a potential mar-
ker for bladder cancer [14], an independent predictor for
prognosis in colorectal cancer patients (stages I-III) [22]
and a specific marker to neoadjuvant chemotherapy for
breast cancer [30].
In this study, we analyze the oncogenic role of DEK in

CRC cell lines. As well as, we propose its potential use
as a marker of irinotecan-based chemotherapy response
in metastatic colorectal cancer patients.
This new function of DEK settles this oncogene as a

potential marker for clinical practice, as only 20% to
30% of patients with mCRC respond to irinotecan-based
therapy in first-line treatment. The applicability of DEK
as a tool for improved decision-making in routine diag-
nostic assessment requires further validation.
N.A. 2 (3%)

KRAS

Wild-type 35 (52%)

Mutated 26 (39%)

N.A. 6 (9%)

BRAF

Wild-type 60 (90%)

Mutated 7 (10%)

Biologic treatment

Bevacizumab 23 (34%)

Cetuximab 7 (11%)
Methods
Cell lines
Nine human-derived CRC cell lines obtained from the
American Type Culture Collection (SW620 (CCL-227)
and LOVO (CCL-229) from metastatic foci origin; DLD1
(CCL-221), SW480 (CCL-228), RKO (CRL-2577), WIDR
(CCL-218), LS513 (CRL-2134), HCT15 (CCL-225), and
HCT116 (CCL-247) from primary tumor origin) were cul-
tured with RPMI (Gibco) supplemented with 10% FBS
(Gibco), penicillin (100 U/mL)/streptomycin (100 U/mL)
(Invitrogen, Life Technologies). Two human colon mu-
cosa from frozen tissue were used as controls.
None 37 (55%)

TOPO I expression level

High 21 (31%)

Low 20 (30%)

N.A. 26 (39%)

DEK expression level

High 21 (31%)

Low 46 (69%)

N.A.: not available. Other refers to lung, lymph node and/or
peritoneal metastasis.
Patient samples
A total of 67 mCRC patients who received FOLFIRI regi-
men as first-line treatment were collected for the study.
KRAS mutation status was determined with Cobas® KRAS
Mutation Test (Roche Diagnostics) that offers broad mu-
tation coverage of KRAS codons 12, 13 and 61. We found
35 patients with KRASwt, 26 patients with KRASmut status
and 6 could not be determined because the quality of
DNA was not enough. The clinical-pathological features
of the 67 patients included in the study are summarized in
Table 1.
Clinical samples used in the study were kindly supplied

from the BioBank of the Fundacion Jimenez Diaz-
Universidad Autonoma de Madrid (RD09/0076/00101 -
Spain). This study has been evaluated by The Ethics
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Committee of Clinical Research of Fundacion Jimenez
Diaz (act number 17/14).

Ex-vivo assay
Ex-vivo assays were designed to predict the sensitivity or
resistance of a set of tumors to irinotecan. To perform
these assays, three tumor samples from 3 different pa-
tients were taken after surgical resection. Each sample
was divided in two pieces and transferred onto a 12-well
plate and cultured in DMEM (Gibco) supplemented with
10% FBS, penicillin (100 U/mL)/streptomycin (100 U/mL).
One of the tumor pieces was treated with SN38 (5 nM)
(Sigma-Aldrich), whereas the other half remained untrea-
ted. After 24 hours, the tissues were processed for IHC.

Western blot
Total protein from CRC cell lines and normal mucosa
was extracted with RIPA buffer supplemented with prote-
ase inhibitor cocktail (Roche). Samples were fractionated
by SDS–polyacrylamide gel electrophoresis, transferred to
nitrocellulose membranes (Biorad), and proteins were
detected using specific antibodies for DEK (610948, BD
Biosciences), cleaved-Caspase-3 (9664, Cell Signaling) and
actin (a1978, Sigma-Aldrich). Horseradish peroxidase-
linked sheep anti-mouse (NA931V) antibodies (GE-
Healthcare) were used as the secondary antibodies.
Blots were developed with the Amersham ECL Prime
Western Blotting Detection Reagent (GE-Healthcare).

DEK silencing
Three different siRNAs for DEK were used (Silencer Se-
lect Pre-designed siRNA s15457, s15458, and s15459)
(Ambion, Life Technologies). Gene silencing was per-
formed with 3.5 million cells from two different CRC
cell lines, DLD1 and SW620, by transfecting 600 pmol
of each siRNA or the Silencer Negative Control-1 siRNA
(Ambion, Life Technologies) using Lipofectamine 2000
reagent (Invitrogen, Life Technologies).

Cell viability, apoptosis, and cell cycle
Cell viability was determined using the 3-(4,5-dimethyl-
thiazol-2yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-
2H-tetrazolium (MTS) reduction assay (Promega).
Apoptosis and cell cycle were analyzed after DEK silen-

cing and treatment for 24 hours with the known IC50 dose
of active principle of irinotecan (SN38, 50 nM) [31], oxali-
platin (LOHP, 1 μM) [32] and 5-fluorouracil (5FU, 1 μM)
[33]. Apoptosis was assessed using the Annexin-V-FITC
Apoptosis Detection Kit (BD Biosciences) according to
the manufacturer’s protocol. For cell cycle analysis, cells
were collected by centrifugation, fixed with pre-cooled
70% ethanol for 2 h, incubated with 0.5 mg/mL RNase
(Sigma-Aldrich) at 37°C for 30 min, and stained with propi-
dium bromide (BD Biosciences). Fluorescence was detected
on a FACSCanto II flow cytometer (BD Biosciences) and
analyzed with FACSDiva software (BD Biosciences). All ex-
periments were performed in triplicate.
Wound healing and Boyden chamber migration assay
Cell motility after DEK downregulation was estimated
by wound healing assays. Cells were grown as a monolayer
and an artificial homogenous wound was created with a
sterile plastic 10 μL micropipette tip. The growth of cells
in the wound was measured at 6, 12, and 24 hours.
Migration assays were performed in cell culture in-

serts with 8-μm pores in 24-well plates (Transwells, BD
Biosciences). DLD1 and SW620 cells were seeded at a
density of 5×104 cells per insert in 300 μl RPMI. The re-
cipient wells received 750 μl RPMI supplemented with
20% FBS. The migration was determinated after 24 h.
Afterwards, cells were fixed and stained with toluidine
blue (Sigma-Aldrich). The non-migrated cells on the
upper side of the membrane were removed with a cotton
swab. On each membrane, the cells of 10 randomly se-
lected fields (10X objective) were counted, and the mean
number of cells per visual field was determined. The mi-
gration index was determined as migrated cells ratio rela-
tive to siRNA control transfected cells. Three independent
experiments were done and all experiments were per-
formed in triplicate wells.
Immunohistochemistry
Immunohistochemical staining was conducted in formalin-
fixed paraffin-embedded (FFPE) tumor sections. Biopsies
were cut and incubated with PT-Link (Dako) for 20 min at
95°C in a high pH buffered solution (EnVision Dako kit).
To block endogenous peroxidase holders were incubated
with peroxide (EnVision Flex peroxidase-blocking reagent).
Biopsies were stained for 20 min with a 1:50 dilution
of DEK antibody (610948, BD Biosciences), 1:100 of
cleaved-Caspase-3 (9664, Cell Signaling), 1:150 of Ki-67
(clone SP6, Master Diagnostica) or 1:500 of Topoiso-
merase I (NBP1-95632, Novus Biologicals) followed by
incubation with the appropriate anti-Ig horseradish
peroxidase-conjugated polymer (EnVision, Dako) to de-
tect antigen-antibody. Sections were then visualized with
3,3’-diaminobenzidine as a chromogen for 5 min and
counterstained with haematoxylin.
Immunoreactivity was scored semiquantitatively for

both the intensity and the proportion of cell staining. A
HistoScore (HScore) was calculated as the percentage of
cells positively stained with low, medium or high stain-
ing intensity. The final score was determined after apply-
ing a weighting factor to each estimate. The following
formula was used: HScore = (low%) × 1 + (medium%) ×
2 + (high%) × 3 and the results ranged from 0 to 300.
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Statistical analysis
Mann–Whitney test was used to compare differences be-
tween groups.
Demographic and baseline characteristics of mCRC

patients included in the study were summarized by de-
scriptive statistics.
Statistical association between DEK expression and

progression-free survival was assessed. Patients were di-
vided into expression groups (tertiles: low, medium,
high) based on DEK levels. The third tertile was estab-
lished as the cut-off point, leaving low- and high-risk pa-
tient groups. In the case of topoisomerase I, patients
were stratified in low- or high-risk groups using the me-
dian as cut-off point. Survival curves were estimated
using the Kaplan-Meier method and significant survival
differences between groups were determined by the log-
rank test.
Univariate and multivariate Cox proportional-hazards

analyses were used to assess the association between DEK
expression and patient survival. In the multivariate ana-
lysis only those variables that were statistically significant
in the univariate analysis were considered. A P value <0.05
indicated statistical significance. All statistics were per-
formed with the IBM SPSS statistics 20.0.

Results
DEK downregulation significantly decreased cell viability
and migration
DEK protein levels were analyzed in a panel of 9 human-
derived CRC cell lines and compared with the expression
in 2 non-tumor mucosa tissues. All tested cell lines
showed high DEK expression levels compared to mucosa
tissues (Figure 1). It is highlighting that two out of the
three cell lines showing the highest DEK expression levels
are those with metastatic origin (SW620 and LOVO).
To assess whether DEK is involved in aggressive phe-

notype, we selected DLD1 cell line derived from the pri-
mary tumor and SW620 derived from a metastatic focus,
due to the different origin and different DEK expression
pattern.
To downregulate DEK expression, 3 different siRNA se-

quences were used to transfect DLD1 and SW620 cells.
Figure 1 DEK is overexpressed in CRC. Western blot analysis of a
panel of human derived colorectal cancer cell lines showed higher
DEK expression than human non-tumor mucosa tissues (NT1, NT2).
Proteins were extracted at 24, 48, and 72 hours after trans-
fection. DEK downregulation was confirmed at protein
level by showing a decreased expression from 48 to
72 hours in both cell lines (Figure 2A).
We observed that when DEK was silenced, cell viabil-

ity significantly decreased in both cell lines (P < 0.001)
(Figure 2B).
We then aimed to analyze whether downregulation of

DEK affects migration of DLD1 and SW620 cell lines.
When wound healing assays were performed, a delay of
12 to 24 hours was observed in DEK silenced cells com-
pared to control (Figure 2C). In addition, we observed a
significant reduction in migration ability of both cell
lines, being higher on DLD1 (P < 0.001) than SW620
(P = 0.023) (Figure 2D).
Low DEK expression sensitized to SN38
Silenced DEK cell lines were cultured in the presence of
oxaliplatin active principle, LOHP, irinotecan active
principle, SN38, and 5FU. 72 hours after DEK downreg-
ulation, and 24 hours after treatments, cell cycle and
apoptosis were assessed. No significant effect was ob-
served in the cell cycle analysis (data not shown).
DEK downregulation was not enough to produce sig-

nificant annexin-V induction. However when it was com-
bined with SN38, annexin-V levels significantly increased
in both cell lines (P < 0.05) (Figure 3). This effect was
not observed when DEK silencing was combined with
5FU treatment (Figure 3) or LOHP treatment (data not
shown).
This relation between DEK expression and irinotecan

therapy was confirmed in three tumor samples cultured
ex-vivo with SN38 for 24 hours. Following SN38 treat-
ment, tissues were stained for DEK, Ki-67, and cleaved-
Caspase-3. DEK expression was similar between untreated
and treated samples indicating that SN38 did not affect its
expression. In one of the three patients a substantial re-
duction in Ki-67 and an increase in cleaved-Caspase-3 ex-
pression were observed. This sample corresponds with the
one showing the lowest DEK expression levels. The other
two tumor samples showed higher DEK expression levels
and we did not find differences in any of three analyzed
markers (Figure 4A). These results could suggest that
DEK level is related to irinotecan response.
To assess more deeply the role of DEK level in the in-

duction of the apoptosis, DLD1 and SW620 cells were
transfected with siDEK (siDEKsec57) and cleaved Caspase
3 was detected after 72 hours by Western Blot. After DEK
downregulation both cell lines increased considerably
cleaved Caspase 3 level. Interestingly, cell line with the
lowest DEK level, DLD1, showed the highest induction
after silencing (Figure 4B). This result suggests the in-
volvement of DEK in apoptosis.



Figure 2 DEK downregulation decreases cell viability, migration and invasion. A) Three different siRNAs of DEK (siDEKsec57, sec58 and
sec59) were used to downregulate DEK protein expression in DLD1 and SW620 cell lines. We verified DEK expression levels by western blot at 24,
48, and 72 hours after transfection. B) MTS assay showed that both DLD1 and SW620 cell lines decreased cell viability at 72 hours after DEK
downregulation (P < 0.001). C) Microscope images of wound healing assay showed a reduced cell migration after DEK downregulation in both
cell lines. Images are representative from one experiment and were taken at 6, 12, and 24 hours after scratching. Arrows represent distance
between cell migration heads. D) Cell invasion assays performed in Boyden chamber showed that DEK silencing decreased invasion ability of
both cell lines. All assays were performed with 2 different siRNA sequences (siDEKsec57 and 58).
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DEK is a potential predictive marker of survival in KRASwt

mCRC patients
Based on the previous results suggesting an association
between DEK expression and irinotecan sensitivity, we
hypothesized that DEK expression levels could be related
to the response to irinotecan-based chemotherapy in
mCRC. For this purpose, 67 samples from mCRC patients
receiving irinotecan-based chemotherapy were selected.
Representative images of different DEK expression levels
are shown in Figure 5A.
Association between DEK expression levels and pro-

gression-free survival after first-line irinotecan-based
treatment was analyzed using the Kaplan-Meier method.
Survival analysis demonstrated a trend to shorter pro-
gression-free survival for patients with higher DEK levels
(data not shown). When patients were stratified by KRAS
mutation status, no correlation between DEK expression
and progression-free survival of KRASmut patients was
observed (data not shown). However, a significant as-
sociation with the outcome of patients KRASwt was found
(P = 0.03, data not shown). The third tertile was estab-
lished as the best cut-off point, leaving low- and high-risk
patient groups (P = 0.01, Figure 5B).
Cox regression analysis showed that KRASwt patients

with high DEK expression showed increased risk of pro-
gression [HR 2.82 (95% CI 1.24-6.45), P = 0.01], that
remained significant after multivariate analysis [HR 2.4
(95% CI 1.04-5.58), P = 0.04] (Table 2).
These results suggest that DEK expression could be a

potential predictive marker of sentitivity in KRASwt

mCRC patients receiving irinotecan-based therapy as
single first-line treatment.



Figure 3 Irinotecan response is increased when DEK is silenced. Diagram shows percentage of apoptotic cells stained with Annexin-V after
treatments. DLD1 and SW620 cell lines were DEK knocked-down and treated with SN38 or 5FU separately and compared with control cells
(control siRNA and untreated). Combination of siDEK and SN38 increased apoptosis (P < 0.05) compared to control or DEK silenced in both cell
lines. In addition, combination increased apoptosis (P < 0.05) compared to single SN38 treatment in DLD1 cell line. No significant differences were
observed after 5FU treatment. Results are expressed as the average of downregulation with 2 different siRNA sequences (siDEKsec57 and 58)
in triplicate.
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Discussion
DEK is a non-histone nuclear protein that performs
a transcriptional activity involved in carcinogenesis at
multiples levels. In addition, DEK is able to bind cruci-
form structures and superhelical DNA over linear DNA
and introduces positive supercoils [34-36]. Moreover,
other studies have shown how nuclear DEK is also able
to perform a transcriptional repression of NF-κB path-
way through transcriptional repression of cIAP2 and IL-8
in response to TNFα treatment [37]. However, the effect
of DEK is not only focused on inflammation but also on
neoplasms development and aggressive phenotype main-
tenance. DEK overexpression has been observed in differ-
ent tumors [14-21,23-25,38].
Our results show DEK downregulation in primary

and metastatic CRC human cell lines reduces the mi-
gration ability and cell viability, both involved in main-
tain aggressive phenotype, according to previous studies
[27-29,38].
Irinotecan is a common drug used in clinical practice to

treat CRC patients. It is activated by glucuronidation to
SN38 and it prevents DNA from unwinding by inhibition
of topoisomerase I. After a combination of SN38 treat-
ment and silenced DEK, we observed a significant increase
in annexin-V positive cells compared to those treated only
with SN38 or DEK knock-down. It is important to note
that this effect was not observed after 5FU or LOHP treat-
ments alone or in combination with DEK knock-down.
This suggests that low DEK expression sensitizes to SN38.
Regarding to apoptosis process, we observed how DEK

downregulation activated Caspase 3. This result corre-
lated with ex-vivo assay where an association between
low DEK expression and irinotecan sensitivity by induc-
tion of cleaved Caspase 3 was found. Lin et al. have been
recently reported that silencing of DEK resulted in a de-
crease in cell proliferation and apoptosis induction re-
vealed by an increase in cleaved Caspase 3 and 9 [38].
These results agreed our data and highlight the involve-
ment of DEK in the proliferation of CRC and its poten-
tial role as therapeutic target alone or in combination
with irinotecan.
Topoisomerase I expression was determined in most

of the samples since it has correlated with irinotecan re-
sponse in several studies [11,12] but no association was



Figure 4 Low DEK level sensitizes to irinotecan and induces cleaved Caspase 3 expression. A) Ex vivo assay results for the tumor samples
with the lowest (T1) and the highest (T2) DEK expression levels. SN38 treatment did not affect DEK expression, but a substantial reduction in Ki-67
and an increase in cleaved-Caspase 3 expression were observed in T1. No changes on Ki-67 or cleaved-Caspase 3 appeared in T2. B) Representative
Western Blot of DEK, cleaved Caspase 3 and Actin expression after 72 hours of DEK downregulation in SW620 and DLD1 cells with siDEKsec57 (left
panel). Densitometric data of Western Blot expressed as ratio of DEK/Actin and cleaved Caspase 3/Actin expression (right panel).
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found between topoisomerase I levels and progression-
free survival in this set of patients. Our immunohisto-
chemistry results showed that those mCRC patients with
higher levels of DEK expression presented a tendency of
shorter progression-free survival after first-line treatment
with irinotecan-based chemotherapy. When we stratified



Figure 5 DEK expression is related to irinotecan response and correlates with poor outcome in KRASwt patients. A) Representative IHC
images for low, medium or high staining intensities of DEK expression levels. B) Kaplan-Meier plot shows a significant association between high
DEK level and lower progression-free survival after irinotecan-based treatment in KRASwt patients (P = 0.010).
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patients according to KRAS status, we found that KRASwt

patients with DEK higher expression had poor outcome
independently of topoisomerase I levels. Therefore, these
data suggest that DEK is a potential marker of poor prog-
nosis of mCRC patients with KRASwt status.
The reports that involve DEK as a nuclear protein re-

lated to cell metabolism by changing supercoiled DNA
Table 2 Univariate and multivariate Cox analysis results

UNIVARIATE PFS

95% CI

HR Lower Upper

AGE 0,966 0,936 0,996

CEA 1,002 0,998 1,005

METASTASIS

Liver 1,000

Liver & other 1,786 0,571 5,585

Other 1,872 0,701 4,995

BRAF

wild-type 1,000

mutated 1,119 0,410 3,055

BIOLOGIC TREATMENT

None 1,000

Yes 0,880 0,383 2,022

TOPO I

Low 1,000

High 1,017 0,364 2,845

DEK

Low 1,000

High 2,825 1,238 6,449

Other refers to lung, lymph node and/or peritoneal metastasis.
and maintaining heterochromatin structure along DNA
transcription [36] could explain tumor aggressive behav-
iour and chemoresistance properties. Moreover, we sug-
gest DEK overexpression allows this aggressive phenotype
by stabilizing DNA in CRC cells which agrees with higher
DEK levels on analyzed metastatic cells lines. We propose
that tumor cells induce their apoptosis cascade when two
MULTIVARIATE PFS

95% CI

P HR Lower Upper P

0,025 0,971 0,941 1,002 0,068

0,333

0,398

0,828

0,763

0,974

0,014 0,040

1,000

2,408 1,039 5,579
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events occur. On one hand, DNA transcription is altered
when DEK protein in downregulated and on the other
hand, DNA replication is stopped due to topoisomerase I
inhibition by irinotecan treatment. For all this, we propose
that chemoresistance could be explained by the DNA sta-
bilization properties of DEK.

Conclusions
The overall data presented here clearly point to a new
role of DEK oncogene as a clear factor for the mainten-
ance of the aggressive phenotype in metastatic colorectal
cancer and as a potential marker of irinotecan-based
therapy response for KRASwt patients.
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