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Abstract

Background: Constitutive activation of the ERK pathway, occurring in the vast majority of melanocytic neoplasms,
has a pivotal role in melanoma development. Different mechanisms underlie this activation in different tumour
settings. The Grey phenotype in horses, caused by a 4.6 kb duplication in intron 6 of Syntaxin 17 (STX17), is
associated with a very high incidence of cutaneous melanoma, but the molecular mechanism behind the
melanomagenesis remains unknown. Here, we investigated the involvement of the ERK pathway in melanoma
development in Grey horses.

Methods: Grey horse melanoma tumours, cell lines and normal skin melanocytes were analyzed with help of
indirect immunofluorescence and immunoblotting for the expression of phospho-ERK1/2 in comparison to that in
non-grey horse and human counterparts. The mutational status of BRAF, RAS, GNAQ, GNATT and KIT genes in Grey
horse melanomas was determined by direct sequencing. The effect of RAS, RAF and PI3K/AKT pathways on the
activation of the ERK signaling in Grey horse melanoma cells was investigated with help of specific inhibitors and
immunoblotting. Individual roles of RAF and RAS kinases on the ERK activation were examined using si-RNA based
approach and immunoblotting.

Results: We found that the ERK pathway is constitutively activated in Grey horse melanoma tumours and cell lines
in the absence of somatic activating mutations in BRAF, RAS, GNAQ, GNAT1 and KIT genes or alterations in the
expression of the main components of the pathway. The pathway is mitogenic and is mediated by BRAF, CRAF and
KRAS kinases. Importantly, we found high activation of the ERK pathway also in epidermal melanocytes, suggesting
a general predisposition to melanomagenesis in these horses.

Conclusions: These findings demonstrate that the presence of the intronic 4.6 kb duplication in STX17 is strongly
associated with constitutive activation of the ERK pathway in melanocytic cells in Grey horses in the absence of
somatic mutations commonly linked to the activation of this pathway during melanomagenesis. These findings are
consistent with the universal importance of the ERK pathway in melanomagenesis and may have valuable
implications for human melanoma research.
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Background

Deregulation of the extracellular signal-regulated kinase
(ERK) pathway through hyperactivation is strongly associ-
ated with melanomagenesis [1,2], with constitutively acti-
vated ERK1/2 being found in the majority of melanocytic
neoplasms [3]. However, it appears that the underlying
mechanisms for the ERK activation differ between differ-
ent entities. While the most common cause for ERK acti-
vation in human cutaneous melanoma is the presence of
somatic mutations in BRAF and RAS kinases [4], these
mutations are nearly absent in human uveal melanoma,
where activation of the pathway has been linked to som-
atic mutations in closely related GTPases GNAQ and
GNA11 in 83% of the cases [5]. These mutations are also
present in 63.2% of blue nevi [5]. Activating mutations in
and/or gene copy number increases of a receptor tyrosine
kinase KIT, found in 39% of mucosal and 36% of acral
melanoma [6], are a plausible cause of the ERK pathway
activation in these tumour cells [7,8]. Examples of other,
less common, mechanisms underlying hyperactivation of
the ERK pathway in melanocytic neoplasms include acti-
vating mutations in MEK kinases [9], overexpression of
wild-type BRAF [10] and decreased expression of negative
regulators of the pathway [11,12].

Grey horses exhibit a fascinating pigment cell disorder
phenotype manifested by gradual loss of coat pigmenta-
tion, vitiligo-like skin depigmentation and a high incidence
of melanoma. It is estimated that ~80% of Grey horses
older than 15 years have melanomas, while this is a rare
condition in horses with other coat colors [13]. The pri-
mary tumours arise in the dermis of the glabrous skin
under the tail, in the perianal and genital regions, lips and
eyelids, but could also occur internally [13,14]. Although
most of the melanomas have a long initially benign growth
period, up to 66% of these tumours may become malig-
nant with metastases formation in other organs [15].
Despite the unusual clinical behaviour, the Grey horse
melanomas (GHM) share common features with certain
human cutaneous melanomas and malignant blue nevi,
suggesting similarities in pathogenesis [16].

We have previously demonstrated that the causative
mutation for the Grey horse phenotype encompassing
the dramatically increased risk of melanoma develop-
ment is a 4.6 kb duplication in intron 6 of Syntaxin 17
(STX17) ([17]; referred to as Grey mutation thereafter).
This dominant mutation constitutes a cis-acting regula-
tory mutation that upregulates the expression of both
STX17 and the neighboring gene NR4A3 encoding
Nuclear Receptor subfamily 4, group A, member 3. It is
still an open question if upregulation of STX17 or NR4A3
expression is crucial, or if both events are required for
the phenotypic effects associated with Grey phenotypes.
We have recently demonstrated that the duplicated region
contains a weak melanocyte-specific enhancer that becomes
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a strong enhancer when duplicated [18]. The tissue speci-
ficity is explained by the presence of two perfect binding
sites for MITF (microphthalmia-associated transcription
factor) within the duplicated sequence. This interpretation
is strongly supported by results from transgenic zebrafish
where the horse duplicated sequence could drive melanocyte-
specific reporter expression and this activity was inhibited
by silencing MITF using morpoholinos [18]. Furthermore,
we have observed a positive correlation between the copy
number of the Grey mutation and the melanoma progres-
sion, suggesting that the mutation might constitute a
melanoma-driving element [19]. While the causative gen-
etic link between the Grey mutation and development of
Grey horse melanoma is well established, the molecular
mechanism behind this link remains uncharacterized as
well as it is not known whether additional somatic muta-
tions are required for tumourigenesis.

Given the importance of the ERK pathway in melano-
magenesis, we assessed its involvement in melanoma
development in Grey horses. We found that the ERK
pathway is constitutively activated in Grey horse melan-
oma tumours and cells in the absence of somatic onco-
genic mutations in BRAF, RAS, GNAQ, GNAI11 and KIT
that are associated with activation of this pathway in the
majority of human melanocytic tumours. This increased
ERK signaling is growth promoting and proceeds via
B-, CRAF and KRAS kinases. Importantly, the ERK path-
way was found to be highly activated in all epidermal
melanocytes, suggesting a general predisposition to mela-
nomagenesis in these horses.

Methods

Cell cultures and drug treatments

The human BL [20], Mel-Ho [21] and M5 [22] and horse
HoMel-L1 and HoMel-A1 [21] melanoma cell lines were
cultured in RPMI-1640 supplemented with 10% fetal bo-
vine serum, 2 mm L-glutamine, 100 units/ml penicillin and
100 pg/ml streptomycin at 37°C and 5% CO,. The horse
cell lines were derived from melanoma tumours excised as
part of a treatment procedure at the Federal stud Piber vet-
erinary clinic (Koflach, Austria) and therefore their estab-
lishment did not require ethics committee approval. For
the drug treatment assays, U0126, LY294002 (Cell Signal-
ing Technology, MA, USA) and L779450 (Calbiochem,
Darmstadt, Germany) were dissolved in DMSO and added
to the culture medium at final DMSO concentration of
0.1%. Cells were seeded in triplicates and the drug effect
on cell growth was measured by Alamar Blue assay (Invi-
trogen AB, Carlsbad, CA, USA) after three days of culture.
DMSO-treated cells served as control.

Analysis of BRAF, RAS, GNAQ, GNA11 and KIT mutations
DNA was prepared using the DNeasy Blood & Tissue kit
(Qiagen, Valencia, CA, USA). Exons 11 and 15 of BRAF
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and exons 1-6 of NRAS were sequenced in the human
and horse cell lines and melanomas. In addition, exon 1
and 2 of HRAS, exons 1-3 of KRAS, and exon 5 of
GNAQ were sequenced in Grey horse melanoma cell
lines and tumours. The human amplicons were obtained
as described by [4]. The primers and PCR conditions
used to obtain the horse amplicons are given in the
Additional file 1: Supplementary Methods.

Western blot

Cells were lysed in a buffer containing 50 mM Tris
(pH 7.5), 100 mM NaCl, 1 mM EDTA, 10% glycerol,
20 mM sodium fluoride, 2.5 mM sodium pyrophosphate,
1 mM sodium orthovanadate and 0.5% Triton X-100 with
a protease- and phosphatase-inhibitor cocktails (Roche
Diagnostics, Mannheim, Germany). Immunoblotting was
performed with the following primary antibodies: rabbit
polyclonal anti-ERK1/2 (C-16), anti-MEK1/2 (12-B), anti-
BRAF (C-19), anti-NRAS (C-20), anti-SPROUTY2 (H-120),
mouse monoclonal anti-a-tubulin (10D8; Santa Cruz),
rabbit monoclonal anti-P-ERK1/2 (D13.14.4E XP; Thr**%/
Tyr*®) and rabbit polyclonal anti-RKIP (¥ 4742; Cell
Signaling).

Tissue immunofluorescence

Paraffin-embedded Grey horse primary melanoma tumours
(n = 17) and skin biopsies (n = 7) were obtained from
In Histo veterinary pathology laboratory (Korneuburg,
Austria) and Federal stud Piber veterinary clinic (Koéflach,
Austria), respectively. Analogous preparations of non-Grey
horse primary melanomas (n = 12) and skin biopsies (n = 5)
were obtained from IDEXX veterinary pathology labora-
tory (Alfortville, France) and Alfort School of Veterinary
Medicine (Maisons-Alfort, France), respectively. The age
of horses used for sampling ranged from 4 to 18 years.
Although all collected samples underwent the same stand-
ard fixation/embedding procedure, we included additional
samples of non-Grey skins (n = 7) from Koflach, Austria
and melanoma (n = 2) and skins from Grey (n = 2) and non-
grey (n = 2) horses from University Animal Hospital (SLU,
Uppsala, Sweden) in order to rule out potential differences
between the sampling’s sources and fixation proceedures. All
the tissue samples used (both tumour and skin) were
not obtained specifically for this study, but collected as part
of a treatment procedure and/or for diagnostic purposes,
and therefore this research meets the ethical standards
for this kind of experimentation. Deparaffinised 5 um sec-
tions were incubated at 4°C overnight with the following
primary antibodies: mouse monoclonal anti-MITF from
Invitrogen as melanocyte marker, rabbit monoclonal anti-
P-ERK1/2 and rabbit polyclonal anti-ERK1/2 (the same as
for the Western blot); followed by the respective fluorescent
AlexaFluor-488 and AlexaFluor-555 secondary antibodies
(Invitrogen).
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Image acquisition

Tissue immunolabelling experiments were performed
using the same samples in different experiments to get
comparable controls. Acquisition time was identical for
the skin and melanoma series for each antibody. Carl
Zeiss ApoTome microscope (Carl Zeiss, GmbH, Jena,
Germany) 0.7 pm optical sections were processed with
Zeiss-Axiovision program. Cultured cells confocal im-
ages were acquired using a Carl Zeiss LSM 510 Meta
confocal laser scanning microscope and an Apochromat
63x oil objective with NA 1.4.

Quantification of the immunofluorescence signal
AxioVision .zvi images were analyzed by counting the
number of MITF positive cells in one optical image of
the z stack together with the number of these cells also
positive for P-ERK1/2 or ERK1/2. Two 40x fields per
sample were quantified. Samples were analyzed blindly
by two authors (CC, GE). Statistical differences between
the means of Grey and non-grey horse samples taken in
pairs were evaluated using a Student’s t-test adapted to
sample numbers below 30. A P-value <0.05 was consid-
ered as statistically significant (*).

siRNA experiments

5 x 10* of HoMel-A1 or HoMel-L1 cells were transfected
with 50 pmol siRNAs (Ambion) using 5 pl Lipofectami-
neTM 2000 (Invitrogen) in 1 ml Opti-MEM I (Invitrogen)
per well in 12-well plates. The following siRNAs were
used: pooled duplex 1 sense, 5'- GGAGCUCCUUCAU
CUCCAALtt-3" and duplex 2 sense, 5'- CGACUUCUGCC
UUAAGUUULtt-3" for ARAF; pooled duplex 1 sense, 5'-
CCACAUCAUUGAGACCAAALt-3"; duplex 2 sense, 5'-
CAAUAGAACCUGUCAAUAULtt-3" and duplex 3 sense,
5'-GGAAUCGAAUGAAAACUCULtt-3" for BRAF; pooled
duplex 1 sense, 5'-GGACUUUUCUUCAGAGAUALt-3;
duplex 2 sense, 5'-GGACUGGAGUAAUAUCAGALtt-3’
and duplex 3 sense, 5'-CCAACACUCUCUACCGAAALtt-
3" for CRAF. The dinucleotide “tt” was added to all siR-
NAs to improve the stability after transfection. After 48 h,
medium was changed to RPMI-1640 with 10% FBS. Quan-
titative PCR and Western blot were performed 72-96 h
post-transfection. Biological triplicates were used for each
siRNA treatment.

Quantitative PCR

Total RNA was isolated from 1 x 10° cells/ transfection
using the RNeasy Mini Kit (Qiagen, CA) according to
manufacturer’s protocol. The isolation included DNase
treatment with the RNase-Free DNase Set (Qiagen, CA).
1 pg of total RNA was used to generate cDNA with the
Advantage® RT-for-PCR Kit (Clontech Laboratories, Inc.,
Mountain View, CA, USA). SYBR Green quantitative
PCR amplifications were performed on a Applied
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Biosystems 7900HT Sequence Detection System (Applied normalized to the endogenous housekeeping gene B2M
Biosystems, Life Technologies, Carlsbad, CA, USA). The and siNEG transfections for every cell line were used as
primers used were ARAF_F 5'-CCGGCTCATCAAGGGG  a calibrator to evaluate the change in relative quantity.
CGA-3', ARAF R 5'-GGACCCTGAGGGGTTAGCGG-

3’, BRAF_F 5'-TGGATCCATTTTGTGGATGGCACC-3’, Statistical analyses

BRAF R 5'-AGGGCTCTGATGCACTGCGG-3’, B2M_F  Statistical analyses were performed using the unpaired,
5'-GGCGGTTCTGAAAAACGAAAG-3',B2M_R5-TCG  two-tailed Student’s t-test.

AGCCTGACCAGAGCAT-3’, Eq KRAS_F 5'-CATGAGG

ACTGGGGAGGGCTT-3’, E KRAS_R 5'-AGCATCCTC  Results

CACTCTCTGTCTTGTC-3', Eq HRAS_F 5'-GACATCC  ERK1/2 activation in Grey horse melanomas
ACCAGTACAGGGAGCA-3', Eq HRAS R 5'-CACCTC  Given the importance of the MAPK/ERK pathway
TGGGCCCTGCATCT-3". The CRAF and NRAS primers activation in melanoma development, we examined
were included in a ready-to-use mix from Qiagen, RT> the levels of the activated (phosphorylated) ERK1/2
qPCR Primer Assay (Qiagen, CA). Reactions were car- (P-ERK1/2) in primary cutaneous melanoma tumours
ried out in a 10 pl volume containing 1X SYBR Green from Grey (n = 19) and non-Grey (n = 12) horses of dif-
PCR Master Mix (Applied Biosystems, Life Technolo- ferent breeds from three geographic locations across
gies, Carlsbad, CA, USA), 0.7 uM of each primer and Europe by indirect immunofluorescence, using an anti-
3 ul cDNA. The thermal profile was 95°C for 10 min ~ MITF antibody to mark melanocytic lineage [23]. All the
followed by 40 cycles of 95°C for 15 s and 60°C for tumours expressed nuclear and occasionally cytoplasmic
1 min. The relative mRNA expression levels were P-ERK1/2, however, both signals were by far more
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Figure 1 Activation of the ERK pathway in melanoma of Grey horses. (A) Double immunofluorescence staining was performed for P-ERK1/2
(green in al-a2, c1-c2) or total ERK1/2 (green in b1-b2, d1-d2) and a nuclear melanocytic marker, MITF (red in a2, b2, 2, d2) in melanoma

tissue sections from non-grey and Grey horses; a3, b3, ¢3, d3, corresponding bright field images of the sections. Arrows and arrowheads indicate
representative cells for the corresponding stains. Scale bar, 10 um. (B) Quantification of P-ERK1/2 and ERK1/2 immunofluorescent signals in
relation to the total number of MITF* cells in melanoma tissue sections from non-grey (n = 12; dark grey bars) and Grey (n = 19; light grey bars)
horses shown as the mean + s.e. of three independent experiments. **P <0.001. (C) Western blot analysis of P-ERK1/2 levels in GHM vs. human
melanoma cell lines with @"%RAS (BL), Y*O"BRAF (Mel-Ho) and “"RAS “'BRAF (M5). (D) Quantification of total ERK1/2-normalized P-ERK1/2 protein
levels in the cell lines listed in (C). The mean + s.e. of three independent Western blots are shown.
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abundant in the GHM samples (80.2% +8.5 vs. 7.6%
+21.3 in Grey and non-grey MITF" cells, respectively;
Figure 1A, B). Although non-grey melanomas were
much more heterogeneous for the P-ERK1/2 staining
than the Grey counterparts, the quantitative difference
between the signals reached statistical significance
(P <0.001). The total ERK1/2 signal was similarly het-
erogeneous in both Grey and non-grey samples (71.2 +
17.4 vs. 50.5% +13.0 in MITF" cells of the respective
melanoma type; Figure 1A, B). In line with the elevated
P-ERK1/2 levels in the GHM tissues, high P-ERK1/2
levels were detected in two GHM cell lines, HoMel-L1
and HoMel-Al, established from a primary and meta-
static melanoma tumour of a Grey Lipizzaner and Ara-
bian horse, respectively [24]. The P-ERK1/2 levels were
comparable to those seen in human melanoma cell
lines with oncogenic BRAF or NRAS mutations, in
contrast to a cell line with wild-type BRAF and NRAS
(Figure 1C, D; Table 1). ERK1/2 was activated even in the
absence of serum and serum addition had a minimal
stimulatory effect on the P-ERK1/2 levels (Additional
file 2: Figure S1A, B).

MEK/ERK module is required for growth of Grey horse
melanoma cells

To assess the involvement of the ERK pathway in prolif-
eration of the GHM cells, we treated the HoMel-L1 and
HoMel-A1 cell lines with U0126, a specific inhibitor of
MEK1/2 and therefore ERK phosphorylation. Western
blot analysis showed an expected decrease in P-ERK1/2
in both cell lines upon the treatment (Figure 2A). The
treatment also largely reduced cell viability in both cell
lines (Figure 2B). As judged from the calculated ICsq
values, HoMel-L1 appeared more sensitive to the MEK1/2
inhibition than HoMel-A1l (P <0.05) and at least as sensi-
tive as the human ?*'®NRAS line BL (Figure 2C). Both
GHM cell lines were less sensitive to the U0126 treatment
than the human Y*°**BRAF line Mel-Ho, although, this
did not reach statistical significance for HoMel-L1. In con-
trast, cell viability of the human “"BRAF Y'RAS line M5
was only weakly inhibited by the treatment (Figure 2B).
These results demonstrate that ERK signaling is an im-
portant component for GHM cell growth; however the in-
complete inhibition by U0126 suggests that additional
ERK-independent mechanisms are involved.

Table 1 Genotypes of the melanoma cell lines used in
this study

Melanoma cell line

Horse Human
Gene HoMel-A1 HoMel-L1 BL Mel-Ho M5
NRAS WT WT Q61R WT WT
BRAF WT WT WT VV60OE WT
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Figure 2 The ERK pathway is growth-promoting in Grey horse
melanoma cells. (A) Grey horse and human melanoma cell lines
were cultured in the presence of DMSO as vehicle control (=)

or 10 uM MEK1/2 inhibitor U0126 (+) for 12 h following a 2 h
serum-free preincubation. The effect of U0126 on ERK1/2 activation
was analyzed by Western blot. Similar results were obtained in
three independent experiments. (B) The effect of U0126 on cell
growth was measured in relation to DMSO-treated control by
Alamar Blue assay 72 h post-treatment. The data show the mean +
s.e. of a representative experiment of three independent experiments
performed in triplicates. (C) The efficiency of U0126 treatment on cell
growth was determined by calculating the concentration necessary to
achieve a 50% reduction in cell proliferation (ICso). The data represent
the mean + se. of three independent experiments performed in

triplicates. (B, €) *P <0.05; **P <0.01; ***P <0.001.

Activation of ERK pathway in Grey horse melanoma cells
is not linked to common oncogenic alterations

To test whether the constitutive ERK1/2 activation was
due to the presence of oncogenic mutations commonly
associated with ERK1/2 activation in melanocytic neo-
plasms, we screened the horse cell lines and seven add-
itional GHM tumours for mutations in exons 11 and 15
of BRAF, the full coding regions of N-, K- and HRAS,
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Table 2 KIT polymorphisms in tumour DNA of Grey
horses

ucsc Polymorphism Exon Seq Protein Study
(cDNA)?

chr3:77739479 c2112A>G 14 TAAA/GAAC silent 1

chr3:77737226 c2181C>T 15 TGNC/T)GTA  silent 2

chr3:77731814 c2613C>T 19 AGT(C/T)GAT  silent 2

chr3:77731334 c2739C>T 20 ATT(C/TAAG  silent 1

“Numbering refers to accession number AF055037.

1 [25].

2 [26].

exon 4 and 5 of GNAQ and GNA11, and exons 9-21 of
KIT. In all the genes except KIT, no mutations were
found, indicating the wild-type status of the genes in this
melanoma type. In KIT; four single nucleotide polymor-
phisms (SNPs) were found in exon 14, 15, 19 and 20
(11% each) in each of 4 different tumours (Table 2).
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However, these SNPs were silent on the protein level
and present in the constitutional DNA from both Grey
and non-Grey horses of different breeds (Table 2), and
therefore were considered as common germline poly-
morphisms with no link to the Grey phenotype.

Another possible mechanism for a constitutive activa-
tion of the ERK pathway may involve overexpression of
a component of the pathway or underexpression of its
negative regulator. To address this possibility we com-
pared expression levels of the key kinases and two major
negative regulators of the pathway, SPROUTY2 and
RKIP, in the GHM vs. human melanoma cell lines with
activated ERK1/2 due to oncogenic BRAF or NRAS
mutations. We found no substantial differences in the
levels of ERK1/2 (Figure 1C), MEK1/2, BRAF, NRAS
(Figure 3A and Additional file 3: Figure S2A) between
the horse and human melanoma cells. The levels of
SPROUTY?2 and RKIP in the horse lines were not lower
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Figure 3 The effects of upstream signaling pathways on ERK1/2 activation in Grey horse melanoma cells. (A) Levels of NRAS, BRAF,
MEK1/2, SPROUTY2 and RKIP expression in Grey horse vs. human melanoma cell lines analyzed by Western blot. (B) The effects of PI3 kinase/AKT
and RAF pathways on ERK1/2 activation were analyzed using inhibitors LY294002 (50 pM) and L779450 (10 puM), respectively. The cell lines were
cultured 19 in the presence of DMSO as vehicle control or with the indicated concentrations of the inhibitors for 12 h following a 2 h serum-free
preincubation and their effect on ERK1/2 activation was analyzed by Western blot. Similar results were obtained in three independent experiments.
(C) The effect of the RAF kinase inhibitor L779450 (10uM) on cell growth of GHM cell lines was measured in relation to DMSO-treated control by Alamar
Blue assay 72 h post-treatment. The mean + s.e. of three independent experiments performed in triplicates is presented. ***P <0.001. (D) The efficiency of
779450 (10pM) treatment on cell growth was determined by calculating the concentration necessary to achieve a 50% reduction in cell proliferation
(ICs0). The data represent the mean + s.e. of three independent experiments performed in triplicates.




Jiang et al. BMC Cancer 2014, 14:857
http://www.biomedcentral.com/1471-2407/14/857

than those in the human lines (Figure 3A and Additional
file 3: Figure S2A). Together, these results suggest that
neither oncogenic mutations in the components of the
ERK pathway nor alteration in their expression or of that
of the pathway’s major negative regulators is likely to be
responsible for the constitutive activation of ERK1/2 in
GHM cells.

ERK1/2 activation is BRAF, CRAF and KRAS-dependent in
Grey horse melanoma cells

In order to identify upstream signaling components in-
volved in the constitutive ERK1/2 activation in GHM
cells we used specific inhibitors against RAF (L779450),
RAS (farnesyl thiosalicylic acid, FTS) and PISK/AKT
(LY294002) proteins. Only the L779450 treatment
was able to reduce P-ERK1/2 levels, suggesting involve-
ment of RAF kinases in the control of ERK activation
(Figure 3B and Additional file 3: Figure S2B; FTS treat-
ment not shown). The treatment attenuated cell growth
in both cell lines (Figure 3C, D) to the levels comparable
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to those attained by the U0126 treatment, supporting a
role of RAF kinases in GHM cell growth through ERK1/
2 activation. We also examined the contribution of indi-
vidual RAF isoforms on ERK1/2 activation by RNA si-
lencing (siRNA). While no considerable reduction in
ERK1/2 activation was achieved by ARAF depletion,
BRAF and CRAF silencing each reduced the level of
ERK1/2 phosphorylation (Figure 4A-E). Since RAS ki-
nases are known upstream activators of wild-type RAF
kinases, the failure of the FTS treatment to affect the
P-ERK1/2 levels was somewhat unexpected. We there-
fore decided to directly manipulate the levels of RAS
kinases by siRNA-based approach to address their po-
tential contribution to the ERK1/2 pathway in GHM
cells. The initial experiment with combined depletion of
NRAS, HRAS and KRAS indicated their involvement in
the signaling (Figure 5B, C left panels). Further investi-
gation of individual contribution of the RAS isoforms
indicated KRAS as major RAS activator of the ERK sig-
naling in these cells (Figure 5B-E).
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Figure 4 ERK1/2 activation is B- and CRAF-dependent in GHM cells. (A) Fold change of ARAB, BRAF and CRAF mRNA after silencing with
specific siRNAs in HoMel-A1 and HoMel-L1 cells as compared to scrambled control siRNA (siNeg). Fold changes are expressed as a range, with the
standard deviation of the AACT value incorporated into the fold change calculation. (B, D) Contribution of individual RAF kinases to ERK1/2
activation in HoMel-A1 and HoMel-L1 cells after silencing with specific siRNAs or scrambled control siRNA as assessed by Western blot analysis.
Representative images of one of three independent experiments are shown. (C, E) Quantification of total ERK1/2-normalized ARAF, BRAF, CRAF
and P-ERK1/2 protein levels in individual silencings. Shown are the mean + s.e. of three independent experiments.
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Figure 5 ERK1/2 activation is mediated by KRAS in GHM cells. (A) Fold change of NRAS, HRAS and KRAS mRNA after silencing with specific
SiRNAs in HoMel-A1 and HoMel-L1 cells in comparison to scrambled control siRNA (siNeg). Fold changes are expressed as in Figure 4A. (B, D)
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by Western blot analysis. Representative images of one of two independent experiments made in biological triplicates are shown. (C, E) Quantification
of total ERK1/2-normalized NRAS, HRAS, KRAS and P-ERK1/2 protein levels in individual silencings. Shown are the mean + s.e. of the two independent
experiments.
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ERK pathway is activated already in skin melanocytes of
Grey horses

The absence of the oncogenic mutations commonly
linked to the activation of the ERK pathway in melano-
mas, the strong association of the Grey mutation with
the melanoma predisposition [17] and the notion that
the Grey mutation has an effect throughout melanocyte
development [18], prompted us to test if the ERK path-
way was already activated at the level of normal skin me-
lanocytes in Grey horses. We analyzed expression of
both phosphorylated and total ERK1/2 in skin samples
from Grey (1 =9) vs. non-grey horses (1 =12) of different
breeds from the same and different geographic locations,
as was done for the melanoma samples. A high percent-
age of MITF" epidermal melanocytes positive for the
P-ERK1/2 was detected in all Grey horse skins (75.8%
+10.0) in sharp contrast to non-grey horse skins, where
the phosphorylated ERK was absent (Figure 6A, B). The
activated ERK1/2 was detected both in the cytoplasm
and the nucleus in Grey melanocytes. Percentage of the
total ERK1/2 positive cells was 99.5% +0.5 in Grey and

77.1% %11.3 in non-grey skins (Figure 6A, B). Interest-
ingly, keratinocytes from Grey but not non-grey horses
were also positive for P-ERK1/2 (Figure 6A). The stain-
ing pattern of both P-ERK1/2 and ERK1/2 was highly re-
producible in samples coming from different studs and
prepared in different laboratories.

Discussion

Constitutive activation of the ERK pathway is present in
the overwhelming majority of melanocytic tumours
characterized to date and has been assigned a pivotal
role in melanomagenesis. Distinct oncogenic aberrations
in the components of the pathway or in the upstream
signaling cascades have been linked to activation of the
pathway in different melanocytic neoplasms. In this
study, we detected activated ERK1/2 in 100% of the ex-
amined cutaneous melanomas and cell lines of Grey
horses as well as in cutaneous melanomas of non-grey
horses, thus recapitulating the universal importance of
this pathway in melanomagenesis. The levels of the acti-
vated ERK1/2 were significantly higher in the Grey horse
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Figure 6 Activation of ERK pathway in skin melanocytes of Grey horses. (A) Double immunofluorescence staining was performed for
P-ERK1/2 (green in al-a2, c1-c2) or ERK1/2 (green in b1-b2, d1-d2) and MITF (red in a2, b2, c2, d2) in skin tissue sections from non-grey and Grey
horses; a3, b3, ¢3, d3, bright field images of the sections. Dotted lines, skin basal membrane; e, epidermis; d, dermis. Scale bar, 10 um. Note an
increase in P-ERK1/2 signal (arrow heads in c1-c2) in the surrounding keratinocytes in Grey horse skin. (B) Quantification of P-ERK1/2 and ERK1/2
immunofluorescent signals in relation to the respective total number of MITF™ cells in skin tissue sections from non-grey (n =9; dark grey bars)
and Grey (n =12; light grey bars) horses shown as the mean + s.e. of three independent experiments. ***P <0.001.

Grey skin

samples, most likely reflecting a difference in the under-
lying molecular phenotype and/or melanoma stage. In
contrast to the majority of human melanocytic neo-
plasms, where activation of ERK is linked to the pres-
ence of somatic activating mutations in either RAS,
BRAF, GNAQ/GNA11I or KIT, these mutations were not
found in our GHM samples. The ERK activation was
neither linked to changes in the expression of main
components of the pathway (i.e. NRAS, BRAF, MEK1/2
and ERK1/2) nor its major negative regulators (i.e.
SPROUTY2 and RKIP). Pharmacological inhibition of
the MEK/ERK module in GHM cell lines demonstrated
that this pathway provides a growth-promoting signal in
these cells. The signal was found to be mediated by both
BRAF and CRAF kinases as demonstrated by pharmaco-
logical inhibition and siRNA-assisted depletion of the
proteins. In melanomas harboring activated BRAF, activa-
tion of MEK/ERK is achieved by this isoform [27], while in
melanomas with oncogenic RAS, the activating signal to
ERK is passed by the W'CRAF, due to deregulation of its
inhibition [28]. In melanomas with Y TNRAS and ¥ "BRAF
proteins, ERK activation is usually achieved via * 'BRAF
from the activating upstream signals [29]. The involvement
of both “'BRAF and “'CRAF kinases in the ERK

signaling has been previously observed in human melano-
cytes [30], but is rather unusual in a melanoma context.
Depletion of individual RAS isoforms by specific siRNAs
identified KRAS as another upstream activator of the ERK
pathway, with the signal proceeding most likely via RAF ki-
nases. Further studies are needed to find out whether
KRAS is involved in the activation of both BRAF and
CRAF isoforms as well as to identify the upstream activat-
ing signaling component(s).

As we have shown previously, the Grey mutation is
the primary cause of the Grey horse phenotypes includ-
ing melanoma [17]. Furthermore, experiments using
transgenic zebrafish suggested that the Grey mutation is
active throughout melanocyte development [18]. These
notions, combined with the absence of commonly found
ERK-activating mutations, prompted us to examine if
the Grey-associated activation of the ERK pathway was
already present at the level of skin melanocytes. We in-
deed found high levels of P-ERK1/2 in all epidermal me-
lanocytes examined regardless of horse age, in sharp
contrast to the non-grey counterparts. While normal
skin melanocytes do not show measurable amounts of
P-ERK, its expression increases as melanocytes undergo
neoplastic transformation [31,32]. The elevated levels of
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activated ERK1/2 in normal skin melanocytes in Grey
horses (even before the melanoma onset) therefore sug-
gest their general predisposition to melanoma genesis.
The notion that only a portion of melanocytes with acti-
vated ERK will develop melanoma, suggests that the
ERK activation is an initial event in GHM genesis and
additional alterations are needed for progression to mel-
anoma. Grey horse melanomas are always dermal, how-
ever, evidence for their origin in dermal melanocytes is
missing and migrating epidermal melanocytes has been
suggested as a source of the tumours [16]. Our observa-
tion of the ERK activation in epidermal melanocytes
supports the latter hypothesis, although we have not per-
formed a thorough analysis of the P-ERK1/2 expression
in the dermal melanocytes. Interestingly, we also ob-
served ERK activation in the surrounding keratinocytes.
Further studies are necessary to clarify the melanocyte-
keratinocyte interactions in Grey horses.

Conclusions

This study demonstrates that the 4.6 kb duplication in
STX17 in Grey horses is a novel mutation associated
with constitutive activation of the ERK pathway in mela-
nocytic cells. We have recently reported the presence of
a higher copy number of the Grey mutation in more ag-
gressive Grey horse melanomas [19], suggesting that the
duplicated sequence may constitute a melanoma-driving
element. Further studies are underway to provide evi-
dence for the direct mechanistic link of the STX17 du-
plication to the ERK pathway activation and melanoma
development.

The present study also shows that somatic activating
BRAF, RAS, GNAQ, GNAI1 and KIT mutations, fre-
quently observed in human melanomas, are not required
for melanoma development in Grey horses. The consti-
tutive ERK activation in Grey horse melanoma therefore
strengthens it as a model for the human counterparts
where mutations with similar to the Grey mutation’s ef-
fects may be contributing to melanoma development
particularly in the cases lacking common somatic onco-
genic mutations.
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Additional file 1: Supplementary Methods.

Additional file 2: Figure S1. Effect of serum addition on ERK1/2
activation in GHM cells. (A) After overnight serum starvation, HoMel-A1
(A) and HoMel-L1 (L) cells were serum-stimulated for the indicated time
periods and analyzed by Western blot for P-ERK1/2 and ERK1/2. (B)
Quantification of total ERK1/2-normalized P-ERK1/2 protein levels shown
as the mean + s.e. of three independent Western blots.

Additional file 3: Figure S2. Supplimentary data to Figure 3A and B.
(A) Quantification of tubulin-normalized NRAS, BRAF, MEK1/2, RKIP and
SPROUTY2 protein levels in the horse and human melanoma cell lines
shown as the mean + s.e. of three independent Western blots. (B)
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Quantification of total-ERK1/2-normalized P-ERK1/2 levels in HoMel-A1
and HoMel-L1 cells treated with inhibitors for PI3 kinase/AKT (LY294002,
50 uM) and RAF kinases (L779450, 10 uM) expressed as % of DMSO
control. The cell lines were cultured in the presence of DMSO as vehicle
control or with the indicated concentrations of the inhibitors for 12 h
following a 2 h serum-free preincubation and their effect on ERK1/2
activation was analyzed by Western blot. The mean + s.e. of three
independent Western blots are shown.
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