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Penetration of anticancer drugs through tumour
tissue as a function of cellular packing density
and interstitial fluid pressure and its modification
by bortezomib
Rama H Grantab1,2 and Ian F Tannock1,2*
Abstract

Background: Limited penetration of anticancer drugs in solid tumours is a probable cause of drug resistance. Our
previous results indicate that drug penetration depends on cellular packing density and adhesion between cancer
cells.

Methods: We used epithelioid and round cell variants of the HCT-8 human colon carcinoma cell lines to generate
tightly and loosely packed xenografts in nude mice. We measured packing density and interstitial fluid pressure
(IFP) and studied the penetration of anti-cancer drugs through multilayered cell cultures (MCC) derived from
epithelioid HCT-8 variants, and the distribution of doxorubicin in xenografts with and without pre-treatment with
bortezomib.

Results: We show lower packing density in xenografts established from round cell than epithelioid cell lines, with
lower IFP in xenografts. There was better distribution of doxorubicin in xenografts grown from round cell variants,
consistent with previous data in MCC. Bortezomib pre-treatment reduced cellular packing density, improved
penetration, and enhanced cytotoxcity of several anticancer drugs in MCC derived from epithelioid cell lines.
Pre-treatment of xenografts with bortezomib enhanced the distribution of doxorubicin within them.

Conclusions: Our results provide a rationale for further investigation of agents that enhance the distribution of
chemotherapeutic drugs in combination with conventional chemotherapy in solid tumours.
Background
Solid tumours have a complex microenvironment that
includes malignant cells, several types of normal cells
and an extracellular matrix (ECM), all of which may in-
fluence sensitivity to anticancer drugs. In order for a
drug to be effective, it must be delivered through the
tumour’s tortuous and leaky vasculature, cross vessel
walls into the interstitium, and penetrate multiple layers
of cells to reach all of the cancer cells in a cytotoxic con-
centration. Limited distribution of several chemothera-
peutic agents has been shown in multi-cellular models
in tissue culture and in experimental and human
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tumours and is a probable cause of clinical drug resist-
ance [1-8].
Multilayered cell cultures (MCC) can be established by

growing tumour cells on collagen-coated microporous
Teflon membranes, and have been used to quantify tis-
sue penetration of anticancer drugs [3, 6, 9, 10]. MCC
can be grown from various tumour cell lines, have a
symmetrical planar structure, and an ECM similar
(though not identical) to corresponding tumours grown
in vivo [9-11]. Using MCC established from colon car-
cinoma cell lines with differences in cellular adhesion
and packing density, we observed greater penetration
and cytotoxicity of anticancer drugs in loosely packed
MCC [3]. Improved tissue penetration of paclitaxel and
doxorubicin has been observed in tumour histocultures
and xenografts following pre-treatment that induced
apoptosis and reduced tumour packing density [12-14].
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Pre-treatment with anti-adhesive agents, such as hyalur-
onidase or antibodies targeted to cellular adhesion mole-
cules, can also enhance sensitivity of solid tumours to
chemotherapeutic drugs by disrupting cell-cell adhesion
[15, 16].
Pre-clinical and clinical studies have shown that inhib-

ition of the 26S proteasome may enhance sensitivity to
chemotherapy and radiation therapy [17-20]. The 26S
proteasome is a large multi-catalytic structure respon-
sible for the degradation of cellular proteins involved in
cell cycle progression, cell survival, transcriptional activ-
ity, and cell signalling. The proteasome inhibitor borte-
zomib, approved for the treatment of multiple myeloma,
has been shown to inhibit growth of some solid tumours
[21-23]. Bortezomib can disrupt cell-cell adhesion in
multi-cellular spheroids derived from prostate and ovar-
ian cancer cells, and its efficacy in multilayer systems is
similar to or greater than that observed in monolayers
[24]. Pre-treatment with bortezomib has been shown to
enhance cytotoxicity of conventional anticancer drugs
for solid tumours, including irinotecan in colon carcin-
oma xenografts, and gemcitabine in non-small cell lung
carcinoma xenografts [17, 18]. Bortezmib’s mechanism
of action in solid tumours is uncertain, but its ability to
enhance effects of chemotherapy and radiation therapy
may be due to inhibition of cell-adhesion mediated drug
resistance (CAM-DR) through effects on the tumour
microenvironment [24]. Bortezomib also inhibits angio-
genesis in prostate and pancreatic cancer xenografts [19,
25], and alters tumour response to hypoxia, by suppres-
sion of HIF-1α, in cervical carcinoma xenografts and
human colorectal cancer [26].
The identification of microenvironmental factors that

impair drug transport is instrumental in the develop-
ment of agents that can modify the tumour microenvir-
onment to enhance chemotherapeutic efficacy. The
present study uses MCC and tumour xenografts, derived
from established human colon carcinoma cell lines, to
address the hypothesis that limited drug penetration in
tumour xenografts can decrease chemotherapeutic cyto-
toxicity and that modification of the tumour environ-
ment by bortezomib might improve the penetration of
anti-cancer drugs through tumour tissue.

Methods
Cell lines
Experiments were undertaken using the HCT-8Ea and
HCT-8E11 human colon carcinoma cell sub-lines which
have usual epithelioid phenotypes. The HCT-8 E11 and
Ea sublines are hemizygous for the α-E-catenin gene
(CTNNA1). A transition from the eipthelioid HCT-8
E11 subline to the round morphotype HCT-81R1 sub-
lines is due to a mutation in the second allele of
CTNNA1I and loss of adherens junctions. Although the
HCT-8Ra sublines have been shown to express α-E-cate-
nin, they fail to form tight intracellular junctions [27].
The HCT-8Ea and HCT-8Ra cell lines were provided by
Dr. W.R. Wilson (University of Auckland, New Zealand)
and the HCT-8E11 and HCT-81R1 cell lines by Dr. M.
Bracke (Ghent University Hospital, Ghent, Belgium);
these cells were grown respectively as monolayers in α-
MEM (Gibco, Burlington, ON, Canada) or RPMI
medium (Gibco, Burlington, ON). Media were supple-
mented with 10% foetal bovine serum (FBS; Hyclone,
Logan, Utah) and cultures were maintained at 37 °C in a
humidified atmosphere of 95% air plus 5% CO2. Cells
were re-established from frozen stock every ~4 months
and assessed periodically for the presence of
mycoplasma.

Drugs and reagents
Ethylene glycol tetra-acetic acid (EGTA) was purchased
from Sigma Chemicals and bortezomib was kindly pro-
vided by Millennium Pharmaceuticals (Cambridge, Mas-
sachusetts). 6-[3H]-5-fluorouracil (specific activity
10 μCi/mmol) was purchased from Moravek Biochem-
icals Inc. (Brea, MA). [3H]-gemcitabine (specific activity
14Ci/mmol) and [14C]-doxorubicin (specific activity
25 μCi/mmol) were purchased from Amersham Pharma-
cia Biotech (Amersham, UK), and [14C]-sucrose (specific
activity 50 μCi/mmol) was obtained from Perkin Elmer
Life Sciences Inc. (Boston, MA). Unlabeled doxorubicin
(Pharmacia, Mississauga, ON, Canada), gemcitabine (Eli
Lily, Toronto, ON, Canada), and 5-fluorouracil (Mayne
Pharma, Montreal, PQ, Canada) were obtained from the
Princess Margaret Hospital Pharmacy as their clinical
formulations.

Growth and characterization of MCC
Semi-porous Teflon membrane culture inserts (Milli-
pore, Bedford MA) were coated with Collagen Type III
as described previously [28]. Exponentially-growing cells
were allowed to attach for 4-8 h and the membranes
were then submerged in a large volume of stirred α-
MEM (HCT-8 Ea sublines) or RPMI (HCT-8E11 sub-
lines) medium containing 1 mM pyruvate, supplemented
with 10% FBS, and allowed to grow for 5-7 days at 37 °C.
Uniformity of MCC growth was assessed using a light
microscope, and only MCC with uniform growth were
used in experiments. To determine the number of cells
in MCC, one or more of them was selected at random,
trypsinized, and the cells counted using a Coulter
counter.
To characterize MCC, they were fixed in 10% neutral

buffered formalin for 24 h and then processed through
graded concentrations of ethanol, placed in xylene over-
night and then embedded in paraffin. Four-micron sec-
tions were stained with haematoxylin and eosin, or with
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DAPI to quantify packing density. Multiple images from
each DAPI-stained MCC section were acquired using an
Olympus Upright microscope with a Photometrics Cool-
snap HQ2 camera; the number of nuclei per unit surface
area was then quantified in each image using Media Cy-
bernetics Image Pro PLUS software. Packing density is
presented as percentage nuclear area for all cell lines
and treatment conditions without taking into account
differences in nuclear size. In order to ensure that
changes in packing density were not isolated to the sur-
face of MCC, packing density analysis was conducted by
subdividing the MCL into 3 regions horizontally: the
surface of the MCC, the middle, and the bottom of the
MCC adjacent to the Teflon membrane.

Penetration of anticancer drugs in MCC
The penetration of anticancer drugs through MCC was
determined after pre-treatment with either the calcium-
chelating agent EGTA to inhibit cell adhesion, or with
bortezomib. MCC derived from HCT-8Ea and E11 cell
lines were pre-treated with 5, 10, or 50 mM of EGTA for
30, 60, or 90 min in order to determine optimal treat-
ment conditions for inducing change in packing density
with little or no toxicity (as determined by clonogenic
assays). For studies with bortezomib, MCC were incu-
bated for 24 h with 1 μM bortezomib (this dose was
selected based on the maximum reduction of packing
density with minimum cytotoxicity as determined by
clonogenic assays), and then incubated with PBS for 30-
60 min to wash away residual drug.
To study penetration of radio-labelled anticancer

drugs through MCC, they were dissolved in 2 × α-MEM
and mixed in a 1:1 ratio with 1% agar solution to prevent
convection. A volume of 0.5 mL was added to one side
of the MCC (compartment 1), and initial drug concen-
trations (using a combination of radio-labelled and
unlabelled drug) were: 10 μM doxorubicin, 77 μM 5-
fluorouracil and 100 μM gemcitabine. These concen-
trations approximate those achieved in serum after
in vivo administration and permit sensitive detection of
the drug in compartment 2, which contained 18 mL of
stirred culture media. Experiments were conducted at
37 °C in vials exposed to 95% air/5% CO2. The penetra-
tion of drug through the MCC as a function of time was
assessed by liquid scintillation counting of samples with-
drawn from compartment 2, and is presented as a ratio
of C/C∞, where C is the measured drug concentration
and C∞ is the calculated drug concentration at equilib-
rium between the two drug compartments. [14C]-sucrose
was included at a concentration of 3 μM in all experi-
ments as an internal standard, with the exception of
those conducted with [14C]-doxorubicin. Only MCC
with a maximum variation of ±20% in sucrose penetra-
tion for a given experimental condition were used in
data analysis. Experiments were conducted 3-6 times
with MCC ranging in cell number from 3-5 × 106. Drug
penetration at 6 h was calculated as the ratio of the con-
centration of drug in compartment 2 in treated MCL to
the concentration of the drug in compartment 2 in non-
treated MCL.

Clonogenic assays
Cytotoxicity of bortezomib in monolayers or MCC was
assessed alone or in sequence with doxorubicin or gemci-
tabine. Cultures were exposed to varying concentrations
of bortezomib for 24 h, and washed in PBS for 30-
60 min. After treatment, MCC were disaggregated with
trypsin and washed. Serial dilutions were plated in 5 mL
media, incubated for 10-14 days at 37 °C in 95% air/5%
CO2, and stained with methylene blue. Colonies contain-
ing more than about 50 cells were counted, and surviv-
ing fraction was calculated as the ratio of mean number
of colonies after treatment to the mean number of col-
onies for the control condition: data are presented as
means and standard errors for at least 3-replicate
experiments. Comparisons between treatment and con-
trol conditions were analyzed using t-tests and the
mean cell survival is presented as the ratio of colonies
at a particular drug concentration to colonies in the un-
treated condition. A one way ANOVA was conducted
to test for differences in mean cellular packing density
between these horizontal regions using Microsoft Excel
2007. Statistical comparisons to assess treatment effi-
cacy in clonogenic assays were conducted using one
way analysis of variance (ANOVA) followed by the
Newman-Kleus post-hoc test (PRISM v5, GraphPad
Inc., San Diego, USA).

Xenografts
Six to eight week-old Swiss male nu/nu mice were
housed five per cage in the animal colony at Princess
Margaret Hospital, and were provided with sterile water
and food ad libitum. All procedures were approved by
the Institutional Animal Care Committee. Tumours
were generated by injecting 106 exponentially growing
cells from each cell line subcutaneously into the flanks
of mice. Animals were divided randomly into groups;
those receiving drug treatment were injected i.p. with
0.5 or 1.0 mg/kg of bortezomib. Control animals were
injected with equal volumes of saline.
To evaluate cellular packing density, mice were killed

humanely 24 or 72 h after bortezomib treatment.
Tumours were excised, fixed in formalin and embedded
in paraffin. Packing density was assessed in 5 μm DAPI-
stained sections using the procedure described above for
MCC. Microvascular density (MVD) was assessed by
selecting areas of interest that contained CD31+ regions
surrounded by tumour cells with nuclear staining. MVD
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was assessed as percentage positive CD31+ staining
(pixel intensity 255) per unit area using Media Cybernet-
ics Image Pro Plus Software (Version 6.0).
To evaluate effects of drugs to delay tumour growth,

mice bearing palpable HCT-8 Ea and E11 tumours
(~5 mm in diameter) were divided randomly into treat-
ment groups. Treatments were administered i.p. and
consisted of either 1 mg/kg of bortezomib, 8 mg/kg of
doxorubicin, 1 mg/kg of bortezomib followed 72 h later
by 8 mg/kg of doxorubicin, or saline. The dose of borte-
zomib and the 72-h time point were chosen based on a
prior study showing that these conditions lead to
increased apoptosis (Ling et al., 2003), and on our
experiments showing that they lead to reduced intersti-
tial fluid pressure. Mice bearing HCT-8 1R1 and Ra
tumours were randomly divided into treatment groups
and administered 8 mg/kg of doxorubicin i.p or saline.
Tumour diameter was measured every second day up to
9 days. Tumour measurements were converted to
tumour volume (V) using the formula: V=W2×Y/2;
where W and Y are the smaller and larger perpendicular
diameters respectively. T-tests were used to assess the
differences in mean tumour volume after doxorubicin
treatment between tumours derived from HCT-8 E and
R subtypes and also between bortezomib pre-treated and
non-treated xenografts (p< 0.05 was considered statisti-
cally significant). Differences between tumour volume in
various treatment groups were assessed using tumour
volume data from day 11 using a t-test.
Measurement of interstitial fluid pressure
Interstitial fluid pressure (IFP) was measured in tumours
24 or 72 h after bortezomib injection using the wick-in-
needle technique [29]. Measurements were conducted
in anaesthetized animals with tumours ranging from 7-
10 mm in diameter. The “wick”, a multi-filamentous
cotton thread, was placed in the distal portion of a 23-
guage needle with a custom-ground 1-2 mm side port.
The needle was connected to a pressure transducer
(model P23XL, Viggo-Spectramed, Oxnard CA) and an
electronic data acquisition and recording system (Model
MP100, World Precision Instruments, Sarasota, FL) via
polyethylene tubing (Becton Dickinson, Franklin Lakes,
NJ). The system was calibrated before each experiment
by varying the position of the needle tip a known dis-
tance above or below a reference elevation. The entire
system was flushed with heparin sulfate/saline solution
(1:10) prior to and following each measurement. T-tests
were used to assess the differences in mean IFP after
between tumours derived from HCT-8 E and R sub-
types and also between bortezomib pre-treated and
non-treated xenografts (p< 0.05 was considered statis-
tically significant).
Distribution of doxorubicin in tumours
The distribution of doxorubicin was studied in xeno-
grafts measuring 5-8 mm in diameter with and without
prior treatment with bortezomib, as described previously
[8]. Bortezomib (1 mg/kg) or diluent were administered
i.p. 72 h prior to doxorubicin, which was injected i.v. at
a dose of 30 mg/kg to facilitate fluorescence detection.
Animals were killed 10-15 min post doxorubicin injec-
tion and tumours were excised and placed immediately
in optimum cutting temperature compound, frozen in li-
quid nitrogen, and stored at -70 °C prior to sectioning
and immunohistochemical staining. Two 10 μm-thick
cryostat sections were cut from each tumour (sections
~50 μm apart), mounted on glass slides and air dried.
Doxorubicin fluorescence (which might include a

component from fluorescent metabolites) was detected
using an Olympus Upright BX50 microscope with a
Photometrics Coolsnap HQ2 camera and a 100 W HBO
mercury light source equipped with 530-560 nm excita-
tion and 573-647 nm emission wavelength filter sets.
Tissue sections were tiled using a motorized stage. Blood
vessels in tissue sections were recognized by expression
of CD31 on endothelial cells. After imaging for doxo-
rubicin, tissue sections were fixed in acetone, washed in
PBS, and blocked with a protein-blocking reagent (ID
Labs, Inc., London, ON, Canada). Tissue sections were
then stained with a rat anti-CD31 (1/100) antibody for
one hour in a humidified chamber, washed in PBS and
stained with a Cy3-conjugated goat anti-rat IgG sec-
ondary antibody (1/400). CD31-stained sections were
re-imaged using the same method used to capture
doxorubicin fluorescence.
Composite images were generated by overlaying those

for doxorubicin and blood vessels using Media Cyber-
netics Image Pro Plus Software (Version 6.0). Doxorubi-
cin staining was converted to an 8-bit grey-scale with
fluorescence intensities ranging from 1-254, while blood
vessels stained with anti-CD31 were represented by an
intensity of 255. Regions for data analysis were selected
by excluding artefact, fluorescence, and necrosis, and
objects <5 μm in diameter were removed. Readings
from regions without nuclear staining provided average
background fluorescence for each tumour section. The
pixel area was 0.4 μm2, and the distance to the nearest
blood vessel for each pixel within a selected area of
interest (AOI) was measured by customized algorithms.
Doxorubicin intensity (I) relative to background was
averaged over all pixels at a given distance (L) from the
nearest blood vessel and plotted as a function of that
distance. Doxorubicin distribution in each AOI was
determined by calculation of the area under the intensity
vs. distance graph and differences between cells lines
and treatments were assessed using a t-test (p< 0.05
was considered statistically significant).
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Results
Modification of packing density and drug penetration by
EGTA
The calcium chelating agent EGTA was used to disrupt
E-cadherin mediated cell-cell adhesion in MCC. To de-
termine the optimal treatment conditions for inducing a
significant change in packing density with little or no
toxicity, MCC derived from HCT-8Ea and E11 cell lines
were pre-treated with 5, 10, or 50 mM of EGTA for 30,
60, or 90 min. As determined by clonogenic assays, ex-
posure of MCC to 10 mM EGTA for 90 min caused no
toxicity to either cell line; at this dose mean packing
density (+/-SD) was reduced from 50 ± 7.3% to 40 ± 1.6%
and from 40 ± 6.8% to 31 ± 4.5%, in MCC derived from
HCT-8Ea and HCT-8E11 cells respectively (p = 2.2 × 10-9

and p = 8.1 × 10-6 for HCT-8Ea and HCT-8E11 cells re-
spectively). The changes in packing density were uni-
form throughout the MCC and not limited to the MCC
Figure 1 Effects of EGTA (10 mM) or bortezomib (1uM) pre-treatment
5-Fluorouracil (panels B and D) through MCC derived from HCT-8Ea (
presented as the ratio of radio-labeled drug concentration in compartmen
penetration of gemcitabine or 5-fluorouracil through MCC without pre-trea
(■). Data points represent the mean of 3 or more experiments ± SEM.
surface (p = 0.78 and p = 0.82 for HCT-8Ea and HCT-
8E11 cells respectively). The penetration of all anticancer
agents was greater in EGTA-modified than in control
MCC. EGTA pre-treatment improved penetration of 5-
fluorouracil and gemcitabine (measured at 6 h) by ~3.3-
4.4 fold in MCC derived from HCT-8Ea cells and by
~1.5-1.9 fold in MCC derived from HCT-8E11 cells
(Figure 1). EGTA also led to ~2-fold increase in pene-
tration of doxorubicin (p = 0.02 for HCT-8E11, p = 0.002
for HCT-8Ea; data not shown).

Bortezomib treatment, packing density and cytotoxicity
We did not observe significant alterations in cellular
packing density in MCC derived from HCT-8 colon car-
cinoma cell lines using sub-cytotoxic doses of bortezo-
mib, but doses that induced less than 50% cell kill
decreased cellular packing density (Table 1). Further-
more, assessment of packing density by partitioning of
on penetration of gemcitabine (panels A and C) and
panels A and B) and HCT-8E11 cell lines (panels C and D). Data are
t 2 to expected drug concentration at equilibrium. Panels shows
tment (�), and following pre-treatment with EGTA (▲) or bortezomib



Table 1 Change in packing density of MCC (mean +/–
standard deviation) at 24 h after exposure to varying
concentrations of bortezomib

Bortezomib concentration (μM) MCC Packing Density
(% nuclear area)

HCT-8Ea HCT-8E11

0 53.2 ± 5.5 50.8 ± 3.8

0.25 50.9 ± 6.2 48.6 ± 3.2

0.50 50.2 ± 5.6 46.6 ± 4.1

1.0 44.6 ± 5.7* 42.5 ± 3.8*

2.5 45.9 ± 5.6* MCC disaggregated

MCC derived from both cell lines disaggregate when treated with 5 μM of
bortezomib. Packing density changes were shown to be significant after pre-
treatment with 1 μM of bortezomib (p = 1.3 × 10-7 and p= 1.8 × 10-6 for HCT-
8Ea and HCT-8E11 derived MCC respectively as assessed using a t-test).
* p≤0.05 for comparison with control conditions.
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the DAPI-stained MCC images into three equal horizon-
tal image sections showed the changes in packing dens-
ity to be uniform throughout the MCC (p = 0.86 and
p = 0.73 for HCT-8Ea and HCT-8E11 cells respectively).
Cells treated in monolayer for 24 h were more sensitive
to bortezomib-induced cytotoxicity than those treated in
MCC: a one-log cell kill was achieved in monolayer with
250nM and 500nM for HCT-8Ea and HCT-8E11 cells
respectively, while similar cytotoxicity in MCC required
bortezomib doses greater than 2.5 μM.

Bortezomib and penetration of other anti-cancer drugs
For studies of drug penetration, MCC were exposed for
24 h to 1 μM bortezomib or its diluent; this dose
induced modest cell kill and led to the greatest change
in packing density. Bortezomib pre-treatment improved
penetration of 5-fluorouracil by ~1.7-fold and gemcita-
bine by ~3-fold in MCC derived from HCT-8Ea cells
and increased penetration of both drugs by ~2-fold in
MCC derived from HCT-8E11 cells at 6 h (Figure 1).
Penetration of doxorubicin was also increased by about
1.8-fold at 6 h (p = 0.02 for HCT-8Ea, p = 0.005 for
HCT-8E11, data not shown).

Influence of bortezomib on sensitivity to other anticancer
drugs
Monolayer cultures and MCC were treated with either
10 μM of doxorubicin or 20 μM of gemcitabine for
24 h, with or without a 24-h pre-treatment with borte-
zomib (250nM in monolayer and 1 μM in MCC). Bor-
tezomib pre-treatment decreased the cytotoxicity of
doxorubicin and gemcitabine for HCT-8Ea cells in
monolayer (p = 0.012 and p = 0.001 respectively) but
had no significant affect on cytotoxicity of either drug
for HCT-8E11 cells (Figure 2, panels A and C).
ANOVA conducted for monolayer and MCC derived
from HCT-8 Ea and E11 cell lines show significant
influence on cytotoxicity for bortezomib pre-treatment
followed by doxorubicin or gemcitabine treatment
(p = 0.018 and p = 0.034 respectively). Post-hoc analysis
using the Newman-Keuls Multiple Comparison Test
showed significant differences between monolayer and
MCC cultures with respect to pre-treatment with borte-
zomib; bortezomib pre-treatment was shown to enhance
doxorubicin and gemcitabine cytotoxicity significantly in
MCC and not in monolayer cultures.

Packing density and interstitial fluid pressure in
xenografts
Significant differences in cellular packing density were
observed between HCT-8Ea and RA xenografts (68 ± 2.4
vs. 53 ± 4.0, p = 0.003), and between HCT-8E11 and 1R1
xenografts (66 ± 1.9 vs. 59 ± 4.2, p = 0.01). Pre-treatment
with bortezomib did not have a significant effect on cel-
lular packing density in xenografts (Table 2). Mean inter-
stitial fluid pressure was higher in xenografts grown
from the epithelioid cell lines (9.5 ± 1.4 mmHg in HCT-
8Ea vs. 6.7 ± 1.9 mmHg in Ra, p = 0.0005;
10.0 ± 3.5 mmHg in HCT-8 E11 vs. 5.0 ± 1.1 mmHg in
1R1, p = 0.00001). A significant decrease in IFP was
observed in HCT-8E11 xenografts at 72 h after treat-
ment with 1.0 mg/kg of bortezomib (p = 0.0006), with a
non-significant trend to reduce IFP in HCT-8Ea xeno-
grafts (p = 0.053) (Table 2). Microvascular density was
shown to be greater in the HCT-8Ra than HCT-8 Ea
xenografts (p< 0.0001); in contrast, MVD was greater in
the HCT-8E11 derived xenografts than the HCT-81R1
tumours (p< 0.0001; Table 3). A non significant trend
towards reducing MVD was shown in HCT-8 E11 and
HCT-8Ea xenografts treated with bortezomib (p = 0.1
and p = 0.6 respectively). Bortezomib pre-treatment did
not appear to change blood vessel morphology as the
gross morphology of tumor xenografts derived from
HCT-8Ea remained short and thin post treatment while
HCT-8E11 vessels maintained their long and thin
morphology.

Effects of bortezomib on distribution of doxorubicin in
xenografts
Composite colour images of doxorubicin relative to
blood vessels in xenografts are shown in Figure 3. As
reported previously [8], doxorubicin fluorescence
decreased with increasing distance from blood vessels
(Figures 4 A and 4 C). The overall drug availability in
areas of interest was measured by the area under the
fluorescence intensity/distance curve up to 100 μm
(Table 3). The distance at which background-subtracted
doxorubicin fluorescent intensity decreased to half its
original value (L) was greater in HCT-8 Ra and 1R1
xenografts than that in HCT-8Ea and E11 tumours.
Doxorubicin distribution in the xenografts derived from



Figure 2 Influence of bortezomib pre-treatment on sensitivity to doxorubicin or gemcitabine in monolayers (panels A and C) or MCC
(panels B and D) derived from HCT-8Ea (panels A and B) or HCT-8E11cells (panels C and D). Monolayers and MCC were pre-treated with
250 nm or 1 μM bortezomib (BZ) or diluents for 24 h respectively, followed by treatment with doxorubicin (Dox, 10 μM in monolayer or 100 μM
in MCC) or gemcitabine (Gem, 20 μM in monolayer or 125 μM in MCC) for 24 h. Data represent the ratio of the number of colonies measured in
a given treatment condition to colonies in the untreated condition (mean values from 3 experiments). Bortezomib pre-treatment decreased the
cytotoxicity of doxorubicin and gemcitabine for HCT-8Ea cells in monolayer (p = 0.012 and p= 0.001 respectively) but had no significant affect on
cytotoxicity of either drug for HCT-8E11 cells (Figure 2, panels A and C).
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the loosely-packed HCT-8R sub-lines was approximately
2-fold greater than that observed in the corresponding
epithelioid HCT-8E sub-lines. Pre-treatment with borte-
zomib enhanced doxorubicin distribution in HCT-8Ea
(n = 9, p = 0.024) and HCT-8E11 (n = 12, p = 0.054) xeno-
grafts (Figures 3, 4 A and 4 C, Table 3).

Effect of drugs on tumour growth
No significant differences in tumour growth were
observed between xenografts derived from epithelioid
and round cell variants without treatment. All sub-lines
Table 2 Packing density (expressed as the percentage of tota
pressure (IFP) in tumour xenografts and the effect of treatme

Bortezomib Treatment
Time and Dose

HCT-8Ea xenografts

Packing Density

No Treatment 68.3 ± 2.4

24 h after 0.5 mg/kg 68.8 ± 1.7

24 h after 1.0 mg/kg 68.8 ± 3.4

72 h after 0.5 mg/kg 68.2 ± 2.1

72 h after 1.0 mg/kg 67.8 ± 2.9

Data indicate mean +/- standard deviation for 7-9 animals per treatment group.
* p≤0.05 for comparison with control conditions.
were rather resistant to maximal tolerated doses of
doxorubicin; however, greater delay in growth was
observed for the loosely packed HCT-81R1 tumour
xenografts than their tightly packed HCT-8E11 counter-
parts (p< 0.001). Similar patterns of tumour growth
delay were observed between HCT-8Ra and HCT-8Ea
derived xenografts (p = 0.004) (Figures 4 B & D). Neither
bortezomib nor doxorubicin treatment alone influenced
growth of HCT-8Ea and HCT-8E11 xenografts (based
on data after 11 days). A trend towards reduced tumour
growth rates was observed in animals receiving
l area occupied by cell nuclei) and interstital fluid
nt with bortezomib

HCT-8E11 xenografts

IFP Packing Density IFP

9.5 ± 1.4 66.2 ± 1.9 10.0 ± 3.5

9.2 ± 3.7 64.5 ± 4.7 7.1 ± 2.1

7.3 ± 1.1 65.3 ± 3.3 7.1 ± 3.2

8.8 ± 2.5 66.3 ± 2.8 5.8 ± 2.4

6.6 ± 2.3 62.1 ± 4.8 5.1 ± 1.8*



Table 3 Mean Doxorubicin distribution in xenografts

Tumour type and treatment Distance from blood
vessel at which fluorescence
falls to 50% its original value (L)

Doxorubicin distribution (μm× I) Microvascular Density

HCT-8Ea 24 ± 5 785 ± 190 3.0 ±0.5

HCT-8Ra 31 ± 6 1476± 370* 6.0 ± 0.8

HCT-8Ea & Bortezomib pre-treatment 29 ±7 1140± 190* 2.6 ± 0.3

HCT-8E11 29 ± 8 990 ± 220 4.1 ± 0.4

HCT-81R1 43 ± 11 2097± 248** 2.8 ± 0.2

HCT-8E11 & Bortezomib pre-treatment 35 ± 9 1170± 200** 3.8 ± 0.6

Drug distribution is represented by the area under the curve representing doxorubicin intensity vs. distance from the nearest blood vessel up to 100 μm. Data
were obtained from 10-12 animals and represent mean ±packing density. The distance from blood vessel at which fluorescence falls to 50% its original value (L),
presented as mean ± standard deviation was significantly greater in the HCT-8 Ra and 1R1 xenografts than that observed in HCT-8 Ea and E11 tumours (p = 0.003
for HCT-8Ra and Ea and p= 0.008 for HCT-81R1 and E11 tumour xenografts; paired T-tests). This distance was greater in tumor xenografts pre-treated with
bortezomib (p = 0.035 and p = 0.048 in HCT-8Ea and HCT-8E11 tumour xenografts pre-treated with bortezomib) than in control.
* p≤0.05 for comparison with HCT-8Ea tumor xenografts.
** p≤0.05 for comparison with HCT-8E11 tumor xenografts.
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bortezomib 72 h prior to doxorubicin compared to those
treated with doxorubicin alone. Doxorubicin treatment
(alone or following bortezomib) was associated with 10-
15% weight loss.

Discussion and conclusions
The present study shows that pre-treatment with the
proteasome inhibitor bortezomib can decrease packing
density in MCC, a tissue culture model for solid
tumours, and improve the penetration of other drugs
through them. Furthermore, through quantification of
the distribution of doxorubicin in tumour xenografts, we
show better drug distribution and cytotoxicity in
tumours derived from loosely packed as compared to
tightly packed sub-lines of HCT-8 human colon carcin-
oma. Bortezomib was also able to modify the
Figure 3 Composite colour images of doxorubicin fluorescence
(pseudo-coloured blue) relative to blood vessels (pseudo-
coloured red) in HCT-8 Ea and Ra, HCT-8E11 and 1R1 tumour
xenografts pre-treated with saline, and for HCT-8Ea and E11
xenografts pre-treated with 1 mg/kg bortezomib (BZ) 72 h
prior to doxorubicin administration. Bar, 100 μm.
distribution of doxorubicin in the tightly packed HCT-8
xenografts, probably by reducing IFP.
Interactions between tumour cells and components

of the ECM can protect solid tumours from toxic stim-
uli [30-33]. Agents that modify or disrupt cell-cell or
cell-matrix adhesion have been used to overcome cell
adhesion-mediated drug resistance (CAM-DR) in multi-
cellular spheroids and xenografts. Hyaluronidase de-
creased resistance of multi-cellular spheroids to several
anticancer drugs including paclitaxel, doxorubicin, and
vinblastine [15, 34], while antibodies against E-cadherin
or β1-integrin were shown to increase drug sensitivity in
spheroids or solid tumours [16, 31, 35]. Our previous
studies have shown greater drug penetration and effi-
cacy in MCC derived from colon carcinoma cell lines
with a defect in alpha-E-catenin and lack of adherens
junctions [3]. Our analyses of doxorubicin distribution
and growth delay of tumour xenografts also show sig-
nificant differences in drug distrubition in epithelioid
and round cell pairs of cell lines, where the penetration
of chemotherapeutic agents was greater through MCC
derived from loosely packed than the tightly packed
sub-lines. The AUC for doxorubicin distribution in the
loosely packed HCT-81R1 and Ra xenografts was ap-
proximately 2-fold greater than that observed in the
tightly-packed HCT-8Ea and HCT-8E11 tumours. Dif-
ferences in tumour drug distribution as a function of
packing density have also been reported by Au et al.
(Kuh et al., 1999; Zheng et al., 2001): high cell density
was shown to reduce the penetration of doxorubicin
and paclitaxel in PC3 and human pharynx FaDu
tumours in histoculture and in vivo.
To assess the ability of anti-adhesive agents to modify

drug penetration, we conducted proof of principle
experiments in MCC, using the calcium chelating agent
EGTA, which disrupts E-cadherin mediated cell adhe-
sion. Pre-treatment with non-toxic doses of EGTA



Figure 4 Intensity of doxorubicin fluorescence (I) plotted against distance from the nearest blood vessel (μm) is shown for HCT-8Ea
and Ra (A) and HCT-8E11/1R1 (C) xenografts. Mean values are shown for ~160 areas of interest from 20 tumours in 10 mice. Upper
curves represent drug penetration through HCT-8R tumors, middle curves represent pre-treatment with bortezomib, while lower curves represent
controls. Growth curves for HCT-8Ea/Ra (B) and HCT-8E11/1R1 (D) xenografts following single treatments with doxorubicin (8 mg/kg) with or
without prior bortezomib (1 mg/kg). Greater growth delay was observed for the loosely packed HCT-81R1 tumour xenografts than their tightly
packed HCT-8E11 counterparts (p = 0.0012) with similar results for HCT-8Ra and HCT-8Ea derived xenografts (p = 0.004). Bortezomib pre-treatment
did not significantly enhance doxorubicin treatment efficacy in tumour xenografts derived from HCT-8Ea and E11 cell lines (p = 0.45 and p= 0.09
respectively). Data represent means and SEM for 10-12 mice.
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significantly decreased cellular packing density, and led
to improvement in drug penetration in MCC derived
from colon carcinoma cell lines.
Bortezomib has been reported to alter the adherence

of multiple myeloma cells to ECM proteins and bone
marrow stromal cells [36], and to disrupt cell adhesion
in spheroids derived from an ovarian cancer cell line
[24]. Bortezomib was also shown to reduce cell adhesion
in squamous cell cancer by down-regulation of the
desmosomal cadherin Dsg-2 [37]. These studies pro-
vided the rationale for evaluation of bortezomib as a
modifier of cell-cell adhesion and cellular packing dens-
ity in solid tumours.
In our studies, reduction of cellular packing density
in MCC might be due either to cell killing by bortezo-
mib or to reduced cell adhesion (or both); enhanced
drug penetration is most likely related to reduced
packing density although we cannot exclude some ef-
fect due to loss of cells from the surface of the MCC
after drug treatment. Interactions between tumour cells
and components of the extracellular matrix (ECM)
have been shown to protect solid tumours from a
number of apoptotic stimuli, and agents that modify
or disrupt cell-cell or cell-matrix adhesion have been
used successfully to overcome cell adhesion-mediated
drug resistance (CAM-DR) in multicellular spheroids
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and xenografts established from a variety of tumours.
Previous studies by Au and colleagues (Kuh et al.,
1999; Zheng et al., 2001) have shown increased pene-
tration of paclitaxel and doxorubicin following a low-
dose pre-treatment with these drugs, and they attribu-
ted this to induction of apoptosis and the subsequent
increase in interstitial space. Several studies have
reported enhanced sensitivity to chemotherapy after
bortezomib treatment, although underlying mechan-
isms have not been elucidated [17-19, 22, 38, 39]. The
anticancer drugs chosen in our study ranged from in-
effective (5-fluorouracil), minimally cytotoxic (gemcita-
bine), to moderately cytotoxic (doxorubicin) for HCT-8
cells in culture. Bortezomib pre-treatment either
reduced or did not change the cytotoxicity of these
drugs in monolayer cultures, while it enhanced cyto-
toxicity in MCC; this result suggests strongly that the
effects of bortezomib to influence sensitivity to other
drugs is dependent on cell contact.
Drugs are transported from the circulatory system

into the interstitial space both by diffusion and by con-
vection. Elevated interstitial fluid pressure has been
shown to limit the efficacy of anticancer drugs by redu-
cing trans-capillary transport and tissue penetration by
convection [40-42]. Agents that reduce tumour IFP
have been shown to improve drug distribution and effi-
cacy in pre-clinical and clinical settings [43-45]. Agents
that reduce IFP have been shown to enhance the trans-
capillary transport of low molecular weight tracers in
experimental rat colon cancer models and NSCLC
xenografts and increase the penetration of monoclonal
antibodies in various tumour xenografts [44, 46]. We
observed a correlation between cellular packing density
and IFP in xenografts derived from HCT-8 sub-lines.
Previous studies have reported that high cell density
around blood vessels can lead to elevated IFP. It has
also been shown that a reduction in tumour cell density
following treatment with paclitaxel (due to the induc-
tion of apoptosis) can decrease IFP. We observed no
significant reduction in cellular packing density in colon
carcinoma xenografts but there was a reduction in IFP
at 72 h after bortezomib administration, and this was
associated with improvement in doxorubicin penetra-
tion. The reduction in IFP after bortezomib treatment
cannot be attributed to a reduction in MVD, as borte-
zomib did not demonstrate a significant anti-angiogenic
activity in HCT-8 derived tumor xenografts. Further-
more, tumor xenografts derived from the HCT-8Ea cell
line showed lower MVD than the HCT-8Ra tumor
xenografts, yet exhibited significantly greater IFP. The
xenografts that were evaluated are quite resistant to
anticancer drugs. Our data show greater doxorubicin
cytotoxicity in the loosely packed HCT-8Ra and HCT-
81R1 than the tightly packed HCT8-Ea and HCT8-E11
xenografts. These data are similar to our observations
of doxorubicin cytotoxicity and drug penetration using
the MCC model and provide further evidence for the
role of tumour physiology and drug penetration in drug
resistance. In addition, our results further support the
use of the MCC model in assessing the role of tumour
physiology and architecture in chemotherapeutic resist-
ance. Our findings suggest a trend towards greater
growth suppression in tumours treated with bortezomib
prior to doxorubicin treatment than those treated with
doxorubicin alone, but future studies will benefit from
using other drugs to which HCT-8 tumours show
greater sensitivity or other tumours that are more sensi-
tive to doxorubicin, in order to assess bortezomib’s po-
tential as a chemo-sensitizer.
In summary, we have provided further evidence for

the role of tumour micro-environment in contributing
to impaired drug distribution and cytotoxicity in solid
tumours. In addition, our studies show that bortezomib
can modify the microenvironment and enhance drug
penetration in xenografts; its potential to enhance the
effects of other anticancer drugs for treatment of solid
tumours merits further investigation.
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