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Abstract

Background: Studies of several tumour types have shown that expression profiling of cellular protein extracted
from surgical tissue specimens by direct mass spectrometry analysis can accurately discriminate tumour from
normal tissue and in some cases can sub-classify disease. We have evaluated the potential value of this approach
to classify various clinico-pathological features in colorectal cancer by employing matrix-assisted laser desorption
ionisation time of-flight-mass spectrometry (MALDI-TOF MS).

Methods: Protein extracts from 31 tumour and 33 normal mucosa specimens were purified, subjected to MALDI-Tof
MS and then analysed using the ‘GenePattern’ suite of computational tools (Broad Institute, MIT, USA). Comparative
Gene Marker Selection with either a t-test or a signal-to-noise ratio (SNR) test statistic was used to identify and rank
differentially expressed marker peaks. The k-nearest neighbours algorithm was used to build classification models
either using separate training and test datasets or else by using an iterative, ‘leave-one-out’ cross-validation method.

Results: 73 protein peaks in the mass range 1800-16000Da were differentially expressed in tumour verses adjacent
normal mucosa tissue (P < 0.01, false discovery rate < 0.05). Unsupervised hierarchical cluster analysis classified
most tumour and normal mucosa into distinct cluster groups. Supervised prediction correctly classified the tumour/

normal mucosa status of specimens in an independent test spectra dataset with 100% sensitivity and specificity
(95% confidence interval: 67.9-99.2%). Supervised prediction using ‘leave-one-out’ cross validation algorithms for
tumour spectra correctly classified 10/13 poorly differentiated and 16/18 well/moderately differentiated tumours

(P = < 0.001; receiver-operator characteristics - ROC - error, 0.171); disease recurrence was correctly predicted in 5/6
cases and disease-free survival (median follow-up time, 25 months) was correctly predicted in 22/23 cases

(P = < 0.001; ROC error, 0.105). A similar analysis of normal mucosa spectra correctly predicted 11/14 patients with,
and 15/19 patients without lymph node involvement (P = 0.001; ROC error, 0.212).

Conclusions: Protein expression profiling of surgically resected CRC tissue extracts by MALDI-TOF MS has potential
value in studies aimed at improved molecular classification of this disease. Further studies, with longer follow-up
times and larger patient cohorts, that would permit independent validation of supervised classification models,
would be required to confirm the predictive value of tumour spectra for disease recurrence/patient survival.

Background

Colorectal cancer (CRC) is the second commonest
malignancy and has a five-year survival rate of approxi-
mately 50% [1,2]. The majority of patients, particularly
with early stage disease (Dukes’ A, Stage I), are treated
with surgery [3]. For more advanced disease (Dukes’
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C and D, Stage III or IV) surgery combined with adju-
vant chemotherapy has proven survival benefits [4-6].
However, the disease outcome is very variable and prog-
nosis and prediction of treatment response based on
conventional disease staging criteria is not reliable [6,7].
There has therefore been considerable interest in the
development of more robust prognostic and predictive
disease markers for patient stratification with the ulti-
mate aim of tailoring treatment to the individual patient
[8,9].
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Markers based on circulating carcinoembryonic anti-
gen (CEA) levels and various tumour-associated gene
mutations including microsatellite instability (MSI), loss
of heterozygosity of 18q, deleted in colorectal cancer
(DCC), mutations in KRAS, BRAF and PIK3CA genes
have all been shown to be of some prognostic or predic-
tive value (reviewed in [8,10]). In particular, the muta-
tional status of KRAS, BRAF and PIK3CA genes has
recently been proposed as a reliable marker for predict-
ing responders to new targeted agents for the epidermal
growth factor receptor (EGFR) [11,12]. In addition, gene
expression profiling studies of both mRNA [13] and
microRNA [14] have revealed tumour-associated gene
expression signatures that form the basis for a molecular
classification of disease sub-types that define disease
course and treatment response (reviewed in [8]). These
studies on gene mutations and RNA expression have
been paralleled by analysis of the tumour cell proteome,
most commonly employing the technique of two-dimen-
sional difference gel electrophoresis (2D-DIGE) to iden-
tify proteins that are differentially expressed in tumour
verses normal mucosa tissue (reviewed in [15]). An
expanding list of candidate prognostic markers have
emerged from these studies including for example,
cathepsin D, S100A4 and APAF-1 [15].

As an alternative to 2D-DIGE, studies of other tumour
types have also employed the technique of direct protein
expression profiling of tumour/normal tissue by surface
enhanced laser desorption ionisation time-of-flight mass
spectrometry (SELDI-TOF) or by matrix-assisted laser
desorption ionisation time of-flight-mass spectrometry
(MALDI-TOF) mass spectrometry [16,17]. This
approach, which is most commonly associated with the
development of serum-based diagnostic markers, offers
a number of advantages over 2D-DIGE. Although the
technique yields no information on the actual identities
of proteins, the reproducible spectral profiles that are
relatively simple to generate in high throughput studies
allow robust classification models of different proteome
populations to be built. For example, studies of lung
[18], breast [19], head and neck cancer [20] have all
shown that the spectral profiles of tumour and normal
tissue can be accurately discriminated and in some cases
sub-classified by direct protein profiling using SELDI/
MALDI-TOF mass spectrometry. Only one previous
study has reported on the detection of differences
between normal mucosa, adenoma and colorectal carci-
noma by using SELDI-TOF MS [21].

In the present study, we have evaluated the potential
value of protein expression profiling of CRC tissue by
MALDI-TOF mass spectrometry. In addition to compar-
ing tumour with adjacent normal mucosa, we have
investigated whether spectral profiles of tumour tissue
can be used to classify various clinico-pathological
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features of disease. Since previous 2D-DIGE studies
have reported abnormalities of protein expression pro-
files in tumour-adjacent normal tissue [22], we have also
extended this analysis to normal mucosa tissue.

Methods

Clinical specimens

Tissue samples were collected from a total of 36
patients with confirmed CRC at the time of surgical
resection at Colchester General Hospital, Essex UK. All
specimens were obtained following informed consent in
accordance with local UK NHS Ethics Committee
approval (protocol reference: MH 528). Surgically
excised specimens were washed extensively in ice-cold
150 mM NaCl and samples of normal colonic mucosa
(>10 ¢cm from tumour margin) and tumour tissues were
excised using a scalpel and then snap frozen and trans-
ferred to a - 80°C freezer. The total time from surgical
resection to snap freezing of specimens was <30 mins.

Protein extraction and purification

Frozen tissue samples (approximately 250 mg) were ground
using a mortar and pestle and then lysed for 30 mins at 4°C
in 1.0 ml of 10 mM Tris-HCI pH 7.5, 200 mM NacCl con-
taining Protease inhibitor cocktail (Roche Pharmaceuticals)
and 1% N-octyl-B-D-glucopyranoside (Sigma Aldrich). The
cell lysate was then centrifuged at 12,000 x g for 30 mins
and the supernatant representing the solubilised fraction
was removed. Protein was further purified by reversed
phase hydrophobic interaction chromatography using a
commercially available super-paramagnetic microparticle
kit (MB-HIC-CS8, Bruker Daltonics). Briefly, 10 ul of 30-35
mg/ml protein solution was adsorbed to 10 pl of beads after
addition of 20 pl kit binding buffer. After three washes with
200 pl 0.1% trifluoroacetic acid, protein was eluted in 20 pl
of 50% (v/v) acetonitrile (Fisher Scientific) Eluted protein
was stored at 4°C for no more than 1 hr prior to matrix co-
crystallisation.

MALDI-TOF mass spectrometry

To facilitate reproducible co-crystallisation of protein
with matrix solution, a modification of the slow crystal-
lisation method [23] was used. Briefly, 20 ul of purified
protein was mixed with 20 pl of acetonitrile containing
0.1% trifluoroacetic acid, saturated with sinapic acid
(Sigma Aldrich). A 20 pl aqueous solution containing
diammonium citrate (200 mM) and nitrotetracetic acid
(0.1%) was added and crystal formation was allowed to
proceed for 2-3 hrs. Crystallised matrix-protein samples
were spotted onto a stainless steel MALDI target plate
and spectra were acquired using a MALDI-TOF mass
spectrometer (Reflex IV; Bruker Daltonics) with the fol-
lowing instrument settings: ion source 1, 20 kV; ion
source 2, 16.65 kV; lens voltage, 9.5 kV; pulsed ion
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Table 1 Clinico-pathological features of patient specimens

Tumour 'NM Age Gender Dukes’ TNM stage Differentiation Vascular “LNs LNs Patient status  >Follow-up

stage invasion harvested pos time

- 00INM 78 B pT3, pNO, pRO  Poor Absent 15 0 Well & symptom 48
free

0027 002NM 91 B pT3, pNO, pRO  Moderate Absent 9 0 Deceased 35
(recurrence)

003T 003NM 75 cl pT3, pN1, pRO  Poor Absent 10 3 Well & symptom 36
free)

004T 004NM 74 @ pT4, pN1, pR2  Poor Present 11 3 Deceased <1
(recurrence)

005T 005NM 76 B pT3, pNO, pRO  Poor Absent 6 0 Well & symptom 49
free

- 006NM 69 A pT2, pNO, pRO ~ Well Absent 11 0 Well & symptom 40
free

- 007NM 52 cl pT3, pN1, pRO  Poor Absent 23 3 Well & symptom 48
free

008T 008NM 63 cl pT4, pNO, pRO  Poor Absent 10 0 Deceased 40
(recurrence)

009T 009NM 68 B pT3, pNO, pRO  Poor Absent 8 8 Well & symptom 36
free

011T 0TINM 77 @ pT4,p N1, pRO  Poor Absent 15 3 Well & symptom 40
free

016T 016NM 61 Q2 pT2, pN2, pRO  Moderate Present 14 5 Well & symptom 43
free

017T 017NM 65 B pT3, pNO, pRO  Moderate Absent 14 0 Well & symptom 39
free

020T 020NM 65 B pT3, pNO, pRO  Poor Absent 12 0 Well & symptom 36
free

021T 021INM 72 B pT4, pN1, pRO  Moderate Present 5 1 Well & symptom 28
free

023T 023NM 59 B pT3, pNO, pRO  Moderate Absent 10 0 Well & symptom 20
free

0247 024NM 41 () pT4, pN1, pRx ~ Well Absent 15 2 Deceased 30
(recurrence)

025T - 82 B pT4, pNO, pMx, Poor Absent 7 0 Deceased 13

pRx (recurrence)

026T 026NM 76 A pT2, pNO, pRO  Moderate Absent 5 0 Deceased 36
(recurrence)

028T 028NM 86 cl pT3, pN1, pRO  Moderate Absent 12 0 Well & symptom 36
free

0297 029NM 71 B pT3, pNO, pRO ~ Well Absent 32 0 Well & symptom 36
free

031T 031NM 82 2 pT3, pN2, pRO  Poor Present 11 3 Well & symptom 36
free

0327 032NM 69 B pT4, pNO, pRO Moderate Absent 11 0 Well & symptom 23
free

033T 033NM 72 @ pT4, pN1, pRO  Moderate Absent 8 1 Well & symptom 22
free

0347 034NM 58 cl pT4, pN1, pRO Moderate Absent 5 3 Well & symptom 25
free

- 035NM 77 B pT3, pNO, pRO  Poor Absent 7 0 Well & symptom 25
free

036T - 81 B pT3, pNO, pRO  Moderate Absent 13 0 Well & symptom 21
free

037T  037NM 77 B pT3, pNO, pRO Well Absent 7 0 Well & symptom 19

free
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Table 1 Clinico-pathological features of patient specimens (Continued)

038T 038NM 76 F A pT2, pN1, pRO  Poor Absent 5 1 Well & symptom 20
free

0397 039NM 75 F B pT3, pNO, pRO  Moderate Absent 16 0 Well & symptom 23
free

20127 2012NM 62 M cl pT3, pN1, pRO  Poor Present 18 3 Well & symptom 20
free

2018T 2018NM 83  F A pT1, pNO, pRO  Moderate Absent 6 0 Deceased 2
(unrelated)

2022T  2022NM 56 M B pT3, pNO, pRO ~ Well Present 20 0 Well & symptom 20
free

2044T  2044NM 82 M A pT2, pNO, pRO  Moderate Absent 10 0 Well & symptom 21
free

- 2080NM 72 F A pT2, pNO, pRO  Moderate Absent 5 0 Well & symptom 21
free

20847 - 383 M B ypT3, ypNO, Poor Absent 10 0 Well & symptom 20

ypRO free

2085T 2085NM 78  F @ pT3, pN1, pRO  Moderate Absent 11 1 Deceased <1

(unrelated)

'NM = normal mucosa; °LN = lymph node; >follow-up time in months

extraction, 200 ns. Ionisation was achieved by irradiation
with a nitrogen laser (e = 337 nm) operating at 25 Hz
and 20% laser power. For matrix suppression, we used a
high gating factor with signal suppression up to 1500
Da. Mass spectra were detected in linear positive mode.
Detector gain was set at 1600 V, sample rate at 1.0 and
electronic gain at 100 mV with real-time smoothing.
Spectra were acquired in duplicate from 500 laser shots
delivered as 5 x 100 pulses and were internally cali-
brated using ‘FlexAnalysis’ spectral processing software
(Version 2.0; Bruker Daltonics) with reference marker
peaks at 2426.9Da, 6109.5 Da and 12471.6 Da. External
calibration used the following reference standards: bom-
besin (1620.86 Da), somatostatin (3149.57 Da), insulin
(5734.51 Da), ubiquitin I (8565.76 Da), cytochrome ¢
(12,360.97 Da) and myoglobin (16,952.30 Da).

Spectral processing and analysis

Calibrated spectra were exported as ASCII files and were
digitally processed by smoothing, de-noising, baseline
subtraction and normalisation (by total ion current)
using the ‘SpecAlign’ suite of spectral computational
tools [24,25]. Validation of the reproducibility of the
resulting mass spectrometry profiles and elimination of
‘outliers’ was accomplished as described elsewhere [26].
Duplicate spectra with a cross-correlation function of
< 0.950 were discarded. From the initial cohort of speci-
mens, representing matched tumour and adjacent normal
mucosa from 36 patients, a total of 64 spectra represent-
ing 31 tumours and 33 normal mucosa were obtained
(see Table 1). Of the 5 tumour and 3 mucosa specimens
that were excluded from analysis, 2 tumour and one
mucosa failed to yield reproducible spectra on repeated

protein preparations. The remaining 3 tumour and 2
mucosa specimens consistently gave spectra of poor
quality (outliers), presumably as a result of specimen
deterioration. Matching peaks were aligned across spec-
tra by using the combined Fast Fourier Transform/Peak
matching method [25] and modelled peak areas for the
entire set of spectra were exported as a single csv file.

Subsequent spectral analysis was implemented in the
‘GenePattern’ suite of software tools (Broad Institute,
MIT, USA) [27]. Hierarchical clustering used Euclidean
correlation as the column distance measure with pair-
wise average linkage as the clustering method. Compara-
tive Gene Marker Selection [28,29] with either a t-test
or a signal-to-noise ratio (SNR) test statistic was used to
identify and rank differentially expressed marker peaks
and to assign Bonferroni-corrected P and false discovery
rate (FDR) values [28-30]. The k-nearest neighbours
(KNN) algorithm [29] was used to build a classification
model for tumour vs normal using separate training and
test datasets. For this purpose, two thirds of the spectra,
comprised of a representative proportion of tumour and
normal spectra, were randomly assigned to a training
dataset, with the remaining third being used as an inde-
pendent test dataset. Spectra were randomly assigned
using the GenePattern ‘SplitDatasetTrainTest’” module
[27]. Alternatively the ANN algorithm was used in an
iterative, ‘leave-one-out’ cross-validation mode. Other
statistical analysis used the SPSS software.

Results

Spectral profiles in tumour and normal mucosa tissues
Table 1 summarises the clinico-pathological data for the
36 CRC patients from whom specimens were obtained.
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Figure 1 Unsupervised hierarchical cluster analysis of tumour and normal mucosa spectra.
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Figure 2 Probability distribution of marker peaks
distinguishing tumour from normal mucosa. Spectra from all 64
tumour and normal tissue samples were analysed by Comparative
Gene Marker Selection [28] using the SNR test statistic to identify
peaks (features) that discriminate tumour from normal tissue. The
feature P histogram shows the number of peaks (occurrences) that
fall within binned P values.

In most cases, spectra of adequate quality from match-
ing pairs of tumour and adjacent normal mucosa were
obtained. However, some tissue protein preparations
consistently yielded spectra of poor quality or that were
poorly reproducible (see Methods section); these were
excluded from the analysis. The resulting 64 spectra,
representing 31 tumour and 33 normal mucosa speci-
mens, generated a total of 265 protein peaks in the
mass range 1800-16000Da. Illustrative examples of raw
MALDI-TOF spectral profiles are shown in additional
file 1. Although the overall intensity profile of individual
protein peaks was very heterogeneous across different
specimens, unsupervised hierarchical cluster analysis
classified most tumour and normal mucosa into distinct
cluster groups (Figure 1) consistent with major differ-
ences in the tumour verses normal protein expression
profiles.

To quantitatively evaluate the differences between the
protein expression profiles of tumour verses normal tis-
sue, the Comparative Gene Marker Selection algorithm
[28] was applied to the spectral data-set to determine the
level of significance of difference between tumour and
normal for each protein peak. Figure 2 shows the fre-
quency distribution (occurrences) of protein peak
P values (Feature P) that were binned in increments of
0.05. Above P = 0.05, the representation of protein peaks
was fairly evenly distributed. However, nearly 100 peaks
gave a P value < 0.05, indicating that a sizable fraction of
proteins detected by MALDI-TOF mass spectrometry
discriminate between tumour and normal colonic tissue.
Applying a threshold of P < 0.01, FDR < 0.05, the expres-
sion profile of a total of 73 protein peaks was significantly
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different between tumour and normal tissue with 57
being up-regulated in normal tissue and 16 being up-
regulated in tumour tissue. Figure 3 shows a heat-map
profile of these ‘marker peaks’ and additional file 2 sum-
marises their statistical features.

To rigorously demonstrate that tumour and normal
mucosa tissue could be distinguished using their protein
spectral profiles, the 64 spectra were randomly split into
separate training and test datasets. The training spectra
dataset was used to optimise a kNN algorithm [29] for
predicting tumour or normal status. As summarised in
additional file 3, the model correctly predicted the status
of specimens in the independent test spectra dataset
with 100% sensitivity and specificity (95% confidence
interval: 67.9-99.2%).

Classification of clinico-pathological characteristics from
tumour spectra

To determine whether the protein expression profiles
of tumour tissue could be used to predict individual
clinico-pathological characteristics of patients (Table
1), the kNN algorithm was used to optimise a series of
classification models. Since the limited numbers of
datasets precluded analysis by using independent train
and test spectra, the ANN algorithm was used in an
iterative, ‘leave-one-out’ cross-validation mode. Table 2
summarises the results of this analysis. The predictive
model for distinguishing poorly differentiated from
well/moderately differentiated tumours gave a recei-
ver-operator characteristics (ROC) error of 0.171, cor-
rectly classifying 10/13 poorly differentiated and 16/18
well/moderately differentiated tumours (P = < 0.001).
Additional file 4 summarises the ANN algorithm
results and Figure 4A shows the expression profiles of
the top two ranked discriminating peaks. The ANN
model for disease recurrence also gave a low ROC
error (0.105 - see Table 2A). As summarised in addi-
tional file 5, the model correctly predicted 5/6 patients
with recurrent disease and 22/23 who are disease-free
(P = < 0.001). Figure 4A shows the expression profiles
of the top two ranked marker peaks for classifying dis-
ease outcome.

Classification of clinico-pathological characteristics from
normal mucosa spectra

In a similar analysis of normal mucosa spectra (Table 3),
only the characteristic of lymph node involvement gave
a low ROC error (0.212). As shown in Table 3 and in
additional file 6, the kANN algorithm correctly predicted
11/14 patients with, and 15/19 patients without lymph
node involvement (P = 0.001). Figure 4B shows the
expression profiles of the top two ranked marker peaks
for classifying the characteristic of lymph node
involvement.
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Figure 3 Heat map profile of marker peaks discriminating tumour from normal mucosa. The expression profiles and m/z values of the top
73 ranked peaks identified by Comparative Gene Marker Selection [28] (P = < 0.01, FDR = < 0.05) are depicted for all 64 tissue specimens.
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Table 2 Performance of predictive models for classification of clinico-pathological characteristics in tumour tissue

CHARACTERISTICS "Advanced Dukes’ Poorly differentiated Lymph node Invasiveness ’Disease recurrence
stage involvement
Number of features 5 2 4 9 10
Positive prediction rate 6/12 10/13 5/13 3/7 5/6
Sensitivity 0.500 0.769 0.385 0429 0.833
3 0.223-0.777 0.460-0.938 0.151-0.677 0.118-0.798 0.364-0.991
Positive predictive value 0.750 0.833 0.625 0.750 0.833
c 0.356-0.955 0.509-0.971 0.259-0.898 0.219-0.986 0.364-0.991
Negative prediction rate 17/19 16/18 15/18 23/24 22/23
Specificity 0.894 0.889 0.833 0.958 0.957
@ 0.654-0.981 0.639-0.981 0.577-0.956 0.768-0.998 0.760-0.998
Negative predictive value 0.739 0.842 0.652 0.852 0.957
@] 0.513-0.889 0.585-0.958 0428-0.828 0.654-0.951 0.760-0.998
Absolute error 0.258 0.161 0.355 0.161 0.069
“4ROC error 0302 0.171 0.391 0.307 0.105
Fisher's exact test P =0.020 P =< 0001 P=0133 P = 0027 P =< 0001

'Includes Dukes’ C1 and C2; 2 Median follow-up time for recurrent disease patients: 33 months; median follow-up time for disease-free patient: 27 months
(analysis excludes patients who died through surgical complications - see Table 1); 3Cl = 95% confidence interval; “ROC = receiver-operator characteristics

The KNN algorithm [29] was used in ‘leave-one-out’ cross-validation prediction with the number of features (marker peaks) specified. Marker peaks were selected
using a t-test statistic except for lymph node involvement and invasiveness characteristics of tumour tissue where the SNR test statistic was used.

Discussion

Although previous studies employing 2D-DIGE analysis
of CRC tissues have documented a number of proteins
that are either up- or down-regulated in tumour verses
normal mucosa [15], the extent to which protein expres-
sion profile differences can be detected by direct
MALDI-TOF analysis in CRC was not previously known.
Analysis of complex protein mixtures by MALDI-TOF
MS is inherently limited by the resolution afforded by
this type of instrument. Also, only a minor fraction of
protein species are efficiently ionisable and therefore
detectable. However, our results show that, in common
with similar studies in some other solid tumour types
[18-20], MALDI-TOF MS readily detects a sizable frac-
tion of protein marker peaks whose expression level is
significantly different between tumour and normal
mucosa. By using an optimised kANN training model, the
classification of tumour and normal tissue was correctly
predicted with 100% sensitivity and specificity (95% con-
fidence interval: 0.679-0.992) in an independent test data-
set. This performance compares favourably with other
studies, for example in head and neck squamous cell car-
cinoma, in which supervised prediction using SELDI-
TOF spectral data correctly classified healthy mucosa
and tumour tissue with an accuracy of 94.5% and 92.9%
respectively [20].

In further evaluating the potential value of spectra
generated from tumour tissue for classifying various
clinic-pathological characteristics of disease, we observed
low ROC errors with the ANN predictive models for dif-
ferentiation (0.171) and disease recurrence (0.105). Since

histological differentiation stage is a characteristic that is
intrinsic to the tumour tissue (and would most closely
reflect the actual tumour cell proteome), the ability of
the spectra to discriminate well/moderately differen-
tiated from poorly differentiated histologies is perhaps
unsurprising. The good performance of the predictive
model for disease recurrence is consistent with data
from several microarray expression profiling studies that
have clearly demonstrated associations between patterns
of tumour-associated gene expression and prognosis/
treatment response [8,13,14]. However, given that in our
study, only six patients had succumbed to recurrent dis-
ease at the time of data analysis (median follow-up time
for recurrent disease patients: 33 months; median fol-
low-up time for disease-free patient: 27 months), our
results should be interpreted with caution. It is also
important to emphasise that because of the relatively
small number of tumour specimens, rigorous validation
of correlations with disease recurrence and histological
differentiation stage in an independent ‘test’ datsaset
was not possible in our study.

Several lines of evidence indicate that the normal
mucosa from surgically resected CRC tumour specimens
display abnormalities in gene and protein expression.
These abnormalities have been attributed to precancer-
ous ‘field effect’ changes in tumour-adjacent mucosa
and have been reported to affect protein expression
[22], CpG island gene methylation [31] and gene micro-
array expression profiles [32]. Indeed one study has
reported that gene expression profiling of non-neoplas-
tic mucosa may predict clinical outcome of CRC
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Table 3 Performance of predictive models for classification of clinico-pathological characteristics in normal mucosa tissue

CHARACTERISTICS "Advanced Dukes’ Poorly differentiated Lymph node Invasiveness ’Disease recurrence
stage involvement
Number of features 7 5 3 6 7
Positive prediction rate 8/13 8/14 11/14 3/7 0/5
Sensitivity 0.615 0.571 0.786 0429 0.000
3 0.322-0.849 0.296-0.812 0.488-0.943 0.116-0.798 0.000-0.537
Positive predictive value 0.500 0444 0.733 0.500 0.000
c 0.255-0.749 0.224-0.686 0448-0911 0.139-0.860 0.000-0.945
Negative prediction rate 12/20 9/19 15/19 23/26 25/26
Specificity 0.600 0474 0.789 0.885 0.962
@ 0.364-0.800 0.252-0.705 0.539-0.930 0.687-0.970 0.784-0.998
Negative predictive value 0.706 0.600 0.833 0.852 0.833
@] 0.440-0.886 0.329-0.825 0.577-0.956 0.654-0.951 0.645-0.937
Absolute error 0.394 0485 0212 0212 0.194
“4ROC error 0392 0477 0212 0.343 0519
Fisher's exact test P=0139 P = 0267 P = 0.001 P = 0.082 P =0839

'Includes Dukes’ C1 and C2; 2 Median follow-up time for recurrent disease patients: 33 months; median follow-up time for disease-free patient: 27 months
(analysis excludes patients who died through surgical complications - see Table 1); 3Cl = 95% confidence interval; “ROC = receiver-operator characteristics

The KNN algorithm [29] was used in ‘leave-one-out’ cross-validation prediction with the number of features (marker peaks) specified. Marker peaks were selected
using a t-test statistic except for lymph node involvement and invasiveness characteristics of tumour tissue where the SNR test statistic was used.

patients [32]. These findings are reminiscent of reports
from studies of other solid tumour types, most strikingly
in hepatocellular carcimoma in which gene expression
patterns of non-neoplastic liver tissue were predictive of
patient survival, whereas tumour tissue gene expression
signatures were of no prognostic value [33]. It was
therefore of interest in our study to determine whether
the protein expression profiles of normal mucosa could
be used to classify any clinico-patholgical characteristics.
Although we found no evidence for predictive value for
disease relapse (ROC error, 0.519), the ANN model of
normal mucosa spectra for lymph node involvement did
give a low ROC error (0.212); the corresponding ANN
model for tumour spectra did not show predictive value
(0.391). One plausible scenario to explain the predictive
value of normal mucosa spectra for lymph node involve-
ment is that paracrine/inflammatory mechanisms, invol-
ving proximal affected lymph nodes, may induce
changes to the microenvironment of tumour-adjacent
mucosa.

As an essential pre-requisite for marker validation, it
would be highly desirable in future studies to determine
the identities of candidate marker peaks in tumour tis-
sue that discriminate different histological differentiation
stages and predict disease recurrence. Our findings also
indicate that similar studies using the alternative
approach of liquid chromatography coupled to tandem
mass spectrometry (LC-MS/MS) in CRC are warranted.

Conclusions

In summary, our study has shown that direct protein
expression profiling of surgically resected CRC tissue by
MALDI-TOF mass spectrometry has potential value in
studies aimed at improved molecular classification of
this disease. Further studies, with longer follow-up times
and larger patient cohorts, that would permit indepen-
dent validation of predictive models, would be required
to confirm the predictive value of tumour spectra for
disease recurrence/patient survival.

Additional material

Additional file 1: Examples of raw MALDI-TOF spectral profiles.
lllustrative examples shown for 2012NM and 020T

Additional file 2: Summary of marker peaks discriminating tumour
from normal mucosa. Compilation of m/z values, ranking and statistics
for 73 marker peaks.

Additional file 3: Performance of predictive model for
discriminating tumour and normal mucosa. Summary of results of
optimised k-NN algorithm on an independent test dataset.

Additional file 4: Performance of model for predicting poor
differentiation based on tumour spectra. Summary of results of ‘leave-
one-out’ cross-validation k-NN algorithm.

Additional file 5: Performance of model for predicting disease
recurrence based on tumour spectra. Summary of results of ‘leave-
one-out’ cross-validation k-NN algorithm.

Additional file 6: Performance of model for predicting lymph node
involvement based on mucosa spectra. Summary of results of ‘leave-
one-out’ cross-validation k-NN algorithm.
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