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Simplifying the detection of MUTYH mutations by
high resolution melting analysis
Isabel López-Villar1*, Rosa Ayala1, Jan Wesselink2, Juan Diego Morillas3, Elena López4, José Carlos Marín3,
José Díaz-Tasende3, Sara González5, Luis Robles6, Joaquín Martínez-López1

Abstract

Background: MUTYH-associated polyposis (MAP) is a disorder caused by bi-allelic germline MUTYH mutation,
characterized by multiple colorectal adenomas. In order to identify mutations in MUTYH gene we applied High
Resolution Melting (HRM) genotyping. HRM analysis is extensively employed as a scanning method for the
detection of heterozygous mutations. Therefore, we applied HRM to show effectiveness in detecting homozygous
mutations for these clinically important and frequent patients.

Methods: In this study, we analyzed phenotype and genotype data from 82 patients, with multiple (>= 10)
synchronous (19/82) or metachronous (63/82) adenomas and negative APC study (except one case). Analysis was
performed by HRM-PCR and direct sequencing, in order to identify mutations in MUTYH exons 7, 12 and 13, where
the most prevalent mutations are located. In monoallelic mutation carriers, we evaluated entire MUTYH gene in
search of another possible alteration. HRM-PCR was performed with strict conditions in several rounds: the first one
to discriminate the heteroduplex patterns and homoduplex patterns and the next ones, in order to refine and
confirm parameters. The genotypes obtained were correlated to phenotypic features (number of adenomas
(synchronous or metachronous), colorectal cancer (CRC) and family history).

Results: MUTYH germline mutations were found in 15.8% (13/82) of patients. The hot spots, Y179C (exon 7) and
G396D (exon 13), were readily identified and other mutations were also detected. Each mutation had a
reproducible melting profile by HRM, both heterozygous mutations and homozygous mutations. In our study of
82 patients, biallelic mutation is associated with being a carrier of ≥10 synchronous polyps (p = 0.05) and there is
no association between biallelic mutation and CRC (p = 0.39) nor family history (p = 0.63). G338H non-pathogenic
polymorphism (exon 12) was found in 23.1% (19/82) of patients. In all cases there was concordance between HRM
(first and subsequent rounds) and sequencing data.

Conclusions: Here, we describe a screening method, HRM, for the detection of both heterozygous and
homozygous mutations in the gene encoding MUTYH in selected samples of patients with phenotype of MAP. We
refine the capabilities of HRM-PCR and apply it to a gene not yet analyzed by this tool. As clinical decisions will
increasingly rely on molecular medicine, the power of identifying germline mutations must be continuously
evaluated and improved.

Background
MAP is a disorder caused by bi-allelic germline MUTYH
mutations, characterized by multiple colorectal adeno-
mas. Mutations are distributed over the MUTYH locus,
most of the changes found are missense mutations, of
which Y179C and G396D, located in MUTYH exons

7 and 13 respectively, pose approximately 73% of muta-
tions found in western populations [1,2]. Analysis of
82 selected patients was performed by HRM-PCR and
direct sequencing, in order to identify mutations in
MUTYH exons 7, 12 and 13. We also analyzed the pre-
valence of a non-pathogenic polymorphism, located in
exon 12: G338H [3]. We evaluated the ability of HRM
[2] for genotype at specific positions and also unknown
mutations. HRM has become an alternative for screen-
ing for molecular diagnosis. In normal application
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HRM-PCR, discriminates heteroduplexes, which melt at
lower temperatures than homoduplexes [2]. However,
mutant homozygotes have been reported on the germ-
line MUTYH gene [1]. The importance of identifying
these mutations is based on the fact that MAP repre-
sents a syndrome predisposing colorectal cancer with an
autosomal recessive pattern. In fact, these mutations are
responsible for as many as 40% of cases with attenuated
familial adenomatous polyposis without mutations in
the APC gene. In this regard, downstream assays are
limited in clinical decision-making and outcome [4-6].
Thus, this application provides a platform for detection
of germline mutations in MUTYH gene. HRM-PCR was
performed in several rounds with specific primers: the
first one discriminating heteroduplex and homoduplex
patterns and the next ones, in order to refine the tight
conditions. Biallelic MUTYH mutations have also been
found to be appended with 93-fold excess risk of color-
ectal cancer, with practically complete penetrance by
60 years of age [1].

Methods
Patients
This study was a collaboration amongst 3 research
Departments from 12 De Octubre Hospital: Gastroenter-
ology, Oncology and Molecular Biology. In this study,
we analyzed phenotype and genotype data from 82
patients, with multiple (>= 10) synchronous (19/82) or
metachronous (63/82) adenomas and negative APC
study (except one case). The patients, listed in Table 1,
were collected and analyzed for the presence of
MUTYH mutations. Included were average ages at pre-
sentation of polyps (ranging from 17 to 88), type of
polyps (≥10) metachronous (63/82) or synchronous (19/
82), family history and, if any, location, stage and age at
presentation of colorectal cancer (CRC). In this case, the
occurrence of CRC staging was classified according to
the modified Astler-Coller guide and immunohisto-
chemistry was performed to rule out deficient mismatch
repair (MMR) proteins: MLH1, MSH2, MSH6 and
PMS2. All subjects signed informed consent forms after
collection of blood specimens and this study was
approved by the Internal Ethics Committee of 12 De
Octubre University Hospital.

DNA samples
We extracted genomic DNA from peripheral blood of
82 selected patients from the Endoscopy Department of
the 12 De Octubre Hospital. We isolated genomic DNA
with the automatic Blood Extraction Kit based on mag-
netic bed technology according to manufacturer proto-
col (Masswell Promega, Madison, WI USA). We
measured DNA concentration using a NanoDrop 1000
spectrophotometer (NanoDrop Technologies Inc., Wil-
mington, DE, USA) and we diluted the samples to a
final concentration of 10 ng/μl.

Primers used for HRM-PCR, identification of the assay
conditions
We evaluated 3 amplicons corresponding to MUTYH
exons 7, 12 and 13. The primers used for amplification
of MUTYH gene segments via HRM-PCR are listed in
Table 2, along with the amplicon size. The primers were
designed to be annealed at 60°C using Primer Express
software (Applied Biosystems, Foster City, CA) to calcu-
late melting temperature (Tm). The primers used for
amplification of the remaining MUTYH gene are listed
in Table 3.
First we designed primers to flank the coding regions

of MUTYH exons and analyzed each amplicon in order
to ensure that it contained a single melting domain
using the Poland program http://www.biophys.uni-dues-
seldorf.de/local/POLAND/poland.html. We included
intronic SNPs, close to the exon boundary, always
respecting the condition of amplicons under 300 bp.
This was possible as the size of MUTYH exons allowed
this design. All primer sequences were analyzed (http://
genome.ucsc.edu/cgi-bin/hgPcr) to adjust the likelihood
that interferences would not co-amplify with the target
sequence melting curves.
In monoallelic mutation carriers, we evaluated by

HRM-PCR and sequencing entire MUTYH gene in
search of another possible alteration.

HRM-PCR
This was performed and monitored in a Light Cycler
480 machine (Roche Diagnostics, Penzberg, Germany).
HRM-PCR was performed in several rounds, the first
one discriminating heteroduplex and homoduplex

Table 1 Phenotypic features of 82 patients

Type of Adenomas CRC Family
history

Patients with multiple ≥ 10) polyps
synchronous

Patients with multiple (≥ 10) polyps
metachronous

Yes No Yes No

23.2%
19/82

76.8%
63/82

48.8%
40/82

51.2%
42/82

34.1%
28/82

65.9%
54/82

Mean age at presentation 63.7 years Mean age at presentation 61.0 years Mean age at presentation 57.1
years

López-Villar et al. BMC Cancer 2010, 10:408
http://www.biomedcentral.com/1471-2407/10/408

Page 2 of 9

http://www.biophys.uni-duesseldorf.de/local/POLAND/poland.html
http://www.biophys.uni-duesseldorf.de/local/POLAND/poland.html
http://genome.ucsc.edu/cgi-bin/hgPcr
http://genome.ucsc.edu/cgi-bin/hgPcr


patterns. First round: we amplified DNA fragments
(MUTYH exons 7, 12 and 13) from 5-10 ng genomic
DNA. Full reactions contained final concentrations of
reagents as follows: 2 mM MgCl2, 0.12 μΜ forward and
reverse primers listed in Table 2, 2 × HRM Master
(containing ResoLight dye) and DNA. Full HRM-PCR
cycling and melting conditions were as follows: 95°C,10
min; 40 cycles of (95°C, 10 s; 60°C fluorescence reading,
10 s; 72°C, 15 s) then melting of (95°C, 1 min; 40°C, 1
min; 60°C, 1 s; 95°C 25 acquisitions per °C). We per-
formed several rounds in each exon, using re-extracted
DNA samples and the same concentration of arrange-
ments and conditions. For reproducibility, the analyst
repeated the procedures on three different days.

HRM analyses were performed on the latest Software
(v.1.5) and the results were blinded to the sequencing
data. The melting curves were normalized and tempera-
ture shifted, to permit samples to be compared. Signifi-
cant differences in fluorescence from the horizontal
baseline, previously selected, were indicative of muta-
tions. For an evaluation of the mutation detection
obtained via HRM-PCR, mutation-containing DNA was
amplified using the full HRM-PCR program. In order to
remove background fluorescence we subjected raw fluor-
escence data to normalization and temperature shifting.
The probability that the observed melting temperature
(Tm) separation of alternative homozygotes was assessed
using the nonparametric Mann-Whitney test. We started

Table 2 MUTYH HRM and sequencing primer sequences

Exon Primer name Sequence Amplicon size (base pairs)

7 7F 5’-GGGACTGACGGGTGATCTCT-3’ 186 bp

7R 5’-TTGGAGTGCAAGACTCAAGATT-3’

12 12F 5’-AGCCCTCTTGGCTTGAGTA-3’ 297 bp

12R 5’-TGCCGATTCCCTCCATTCT-3’

13 13F 5’-AGGGCAGTGGCATGAGTAAC-3’ 296 bp

13R 5’-GGGTCAAGGGGTTCAAATAG-3’

Table 3 MUTYH sequencing primer sequences

Exon Primer name Sequence Amplicon size (base pairs)

1 1F 5’-GCGGTGTACAACGGAACTTG-3’ 292 bp

1R 5’-ATCCCCGACTGCCTGAACC-3’

2 2F 5’-CTGCTTTGGCTGGGTCTTT-3’ 262 bp

2R 5’-CGCACCTGGCCCTTAGTAAG-3’

3 3F 5’-CTGCTGTGTCCCAAGACC-3’ 299 bp

3R 5’-CAACCCCAGATGAGGAGTTAGG-3’

4 4F 5’-GACCTACCATGGAGAAGACG-3’ 252 bp

4R 5’-GGGTTGGCATGAGGACACTG-3’

5 5F 5’-GGGCAGGTCAGCAGTGTC-3’ 189 bp

5R 5’-TACACCCACCCCAAAGTAGA-3’

6 6F 5’-TACTTTGGGGTGGGTGTAGA-3’ 185 bp

6R 5’-AAGAGATCACCCGTCAGTCC-3’

8 8F 5’-CCAGGAGTCTTGGGTGTCTT-3’ 240 bp

8R 5’-AGAGGGGCCAAAGAGTTAGC-3’

9 9F 5’-AACTCTTTGGCCCCTCTGTG-3 196 bp

9R 5’-GAAGGGAACACTGCTGTGAAG-3’

10 10F 5’-GTGCTTCAGGGGTGTCTGC-3’ 262 bp

10R 5’-TGTCATAGGGCAGAGTCACTCC-3’

11 11F 5’-TAAGGAGTGACTCTGCCCTATG-3’ 251 bp

11R 5’-GCCAAGAGGGCTTTAGGG-3’

14 14F 5’-TTGGCTTTTGAGGCTATATCC-3’ 256 bp

14R 5’-CATGTAGGAAACACAAGGAAGTA-3’

15 15F 5’-TGAAGTTAAGGGCAGAACACC-3’ 207 bp

15R 5’-GTTCACCCAGACATTCGTTAGT-3’

16 16F 5’-AGGACAAGGAGAGGATTCTCTG-3’ 298 bp

16R 5’-AGACCCCCATCTCAAAAA-3’
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HRM analyses with sensitivity 0.3 and it was adjusted in
the following rounds.
In monoallelic mutation carriers, we evaluated entire

MUTYH gene in search of another possible alteration,
by HRM-PCR: Full reactions contained final concentra-
tions of reagents as follows: 2 mM MgCl2, 0.12 μΜ
forward and reverse primers listed in Table 3, 2 ×
HRM Master (containing ResoLight dye). Full HRM-
PCR touch-down cycling and melting conditions were
as follows: 95°C,10 min; 40 cycles of (95°C, 10 s;
(65°C-58°C step size 0,5°C and step delay 1 cycle,
fluorescence reading), 10 s; 72°C, 15 s) then melting of
(95°C, 1 min; 40°C, 1 min; 60°C, 1 s; 95°C 25 acquisi-
tions per °C). The analyst repeated the procedures on
three different days.

DNA sequencing
We sequenced all samples, to evaluate the detection of
MUTYH mutations and correlate these with HRM results.
Amplifying DNA fragments from 50-100 ng. Reactions
contained final concentrations of reagents as follows: 0.8
mM MgCl2, 0.7 μΜ forward and reverse primers listed in
Table 2 and Table 3, 1 × Taq polymerase fast start (Roche
Diagnostics, Penzberg, Germany) and DNA. PCR cycling
and conditions were: 95°C, 10 min; 35 cycles of (95°C,
30 s; 60°C, 30 s; 72°C, 30 s) and 72°C, 10 min. PCR
products were purified with ExosapIT (GE Healthcare)
followed by sequencing reaction with Big Dye Terminator
v3.1 (Applied Biosystems, Foster City, CA) according to
the manufacturer’s protocol. The sequencing products
were purified using AutoSeq G-50 Dye Terminator
(GE Healthcare) before running on a 3130 Genetic Analy-
ser (Applied Biosystems, Foster City, CA).

Downstream assays
HRM genotyping of MUTYH gene was performed at the
12 De Octubre Hospital for genomics genotyping Core
Facility.

Statistical analysis
The statistical program used for the analysis was SPSS
version 15.0. The association between categorical vari-
ables was made by c2 test and Fisher exact test and
odds ratio was used to measure the strength of the asso-
ciation. The association between continuous variables
was conducted by comparing means using the T test of
Student or Mann-Whitney. The significance level was at
<or equal to 0.05.

Results
MUTYH germline mutations were found in 15.8 percent,
i.e. 13/82 of the patients. Biallelic MUTYH germline muta-
tions were found in 8.5%, i.e. 7/82 which also showed an
attenuated polyposis phenotype. Monoallelic MUTYH
germline mutations were found in 7.3% i.e. 6/82 of the
patients. In monoallelic mutation carriers, we performed
HRM-PCR and sequenced entire MUTYH gene in search
of another possible alteration: another mutation was
detected in two cases (2/8 entire gene studied cases).
The hot spots: Y179C (exon 7) and G396D (exon 13)

were found, as well as the five mutations already reported
E410GfsX43 (exon 13), R426C (exon 13), R354GfsX40
(exon 12), V232F (exon 9) and V22M (exon 2).
G338H polymorphism (exon 12) was also analyzed in

the cohort of 82 subjects and it was found in 23.1%, i.e.
19/82.
The two most frequent mutations reported to date [7]

(Y179C and G396D) were detected in quite a number of
the mutated cases, the frequency of these alleles being
61.5%, i.e. 8/13. Amongst the other mutations found [8],
the E410GfsX43 (exon 13) accounted for 23.0%, i.e.
3/13, of the mutant alleles reported (Table 4).
Phenotypic and genotypic features in the 7 patients

carriers of biallelic MUTYH germline mutations are
shown in Table 5, collecting the variables: type of
detected mutation, type of adenomas, family history,
analysis of G338H non-pathogenic polymorphism and,

Table 4 MUTYH mutation prevalence for 82 patients with multiple adenomas (≥10), determined via HRM-PCR and via
sequencing

Wild type
(%)

Homozygous
(%)

Heterozygous
(%)

Mutations founded Y179C (exon 7) 96.4 (79/82) 1.2 (1/82) 2.4 (2/82)

G396D (exon 13) 92.7 (76/82) 1.2 (1/82) 6.1 (5/82)

E410GfsX43 (exon 13) 95.1 (78/82) 0.0 (0/82) 4.9 (4/82)

R426C (exon 13) 97.6 (80/82) 0.0 (0/82) 2.4 (2/82)

V232F (exon 9) 98.8 (81/82) 0.0 (0/82) 1.2 (1/82)

V22M (exon 2) 98.8 (81/82) 0.0 (0/82) 1.2 (1/82)

R354GfsX40 (exon 12) 98.8 (81/82) 0.0 (0/82) 1.2 (1/82)

Polymorphism tested G338H (exon 12) 76.8 (63/82) 0.0 (0/82) 23.2 (19/82)

López-Villar et al. BMC Cancer 2010, 10:408
http://www.biomedcentral.com/1471-2407/10/408

Page 4 of 9



in the case of colorectal cancer (CRC), stage and age at
presentation. In our study biallelic mutation is asso-
ciated with being a carrier of synchronous polyps (p =
0.05) and there is no association between biallelic
mutation and colorectal cancer (p = 0.39) nor family
history (p = 0.63).
Phenotypic and genotypic features in the 6 patients

carrying monoallelic MUTYH germline mutations show
that monoallelic mutations have no association with
being a carrier of synchronous polyps (p = 0.66) nor col-
orectal cancer (p = 0.79) and also no association
between monoallelic mutations and family history
(p = 0.38) (Table 6).
In relation to the 19 carriers of G338H polymorphism

[9] we found no association with any of the following
variables: synchronous adenomas (p = 0,76), CRC
(p = 0,79) and family history (p = 0,11) in this selected
group. (Table 7).
To assess the ability to differentiate between alleles, by

high resolution melting technique [10-12], PCR products
(first and subsequent rounds) were processed by latest
Software (v.1.5) and the results were blinded to the
sequencing data [13-15]. First round HRM-PCR (exon 7

with sensitivity of 0.3 and exon 13 with sensitivity of
0.45) discriminated between heteroduplex, wild homo-
duplex and mutant homoduplex patterns. Several
rounds were carried out, as a confirmatory method and
to set up the appropriate sensitivity of each exon. For
reproducibility, the analyst repeated the procedures on
three different days, with equivalent results. We did not
have any false calls.
In relation to MUTYH exon 7, the results are listed in

Figure 1: mutations were clearly distinct from the wild
type controls in the first round. Melt curves of each
mutation heterozygote, homozygote, were plotted
against the wild types.
Similar to the previous analysis, Figure 2 includes dif-

ferent plot and sequence traces for MUTYH exon 13;
First round: mutations clearly distinct from the wild
type controls; but R426C heterozygote and G396C het-
erozygote have identical heteroduplex melting patterns
(this differed in the subsequent sequencing).
In Figure 3 different plot and sequence traces are indi-

cated for MUTYH exon 12 mutations.
In all cases there was concordance between HRM and

sequencing data. (Figures 1, 2 and 3).

Table 5 Phenotypic and genotypic features in the 7 patients carriers of biallelic MUTYH germline mutations

Patients with biallelic germline
mutations

Number of adenomas (≥10)
synchronous or metachronous

CRC Family
history

Polymorphism
G338H

Patient 1 Y179C (exon 7) homozygous Polyps synchronous Age 58 No No No

Patient 2 V22M (exon 2) E410GfsX43 (exon 13)
double heterozygote

Polyps synchronous Age 42 No Yes No

Patient 3 R426C (exon 13) E410GfsX43 (exon
13) double heterozygote

Polyps synchronous Yes Age diagnosis
Astler-Coller A

Yes 50 No

Patient 4 R426C (exon 13) R354GfsX40 (exon
12) double heterozygote

Polyps metachronous Age 67 No No Yes

Patient 5 Y179C (exon 7) E410GfsX43 (exon
13) double heterozygote

Polyps synchronous Yes Age diagnosis
Astler-Coller B1

No 63 No

Patient 6 G396D (exon 13) V232F (exon 9)
double heterozygote

Polyps synchronous Age 82 No No No

Patient 7 G396D (exon 13) homozygous Polyps synchronous Age 58 No No No

Table 6 Phenotypic and genotypic features in the 6 patients carriers of monoallelic MUTYH germline mutations

Patients with monollelic
germline mutations

Number of adenomas (≥ 10)
synchronous or metachronous

CRC Family
history

Polymorphism
G338H

Patient 1 Y179C (exon 7) heterozygote Polyps synchronous Age 43 No Yes No

Patient 2 G396D (exon 13) heterozygote Polyps metachronous Age 42 Yes Age diagnosis
Astler-Coller A

Yes 40 No

Patient 3 R426C (exon 13) heterozygote Polyps synchronous Age 74 No No No

Patient 4 G396D (exon 13) heterozygote
(MUTYH and APC
genes are mutated) In APC gene
L126S heterozygous

Polyps synchronous Age 51 No Yes Yes

Patient 5 G396D (exon 13) heterozygote Polyps metachronous Age 70 No Yes No

Patient 6 E410GfsX43 (exon 13)
heterozygote

Polyps metachronous Age 39 No Yes No
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Discussion
We found MUTYH germline mutations in 15.8 percent,
i.e. 13/82 of the patients with multiple adenomas. This
percentage is obtained from the analysis of three exons,
7,12 and 13 in the 82 cases and the posterior analysis of
entire MUTYH gene in monoallelic mutation carriers.
We believe it feasible that this percentage would be
slightly increased if we analyze the entire gene in the
82 cases[1]. We gathered information from the most
prevalent hot spots at that moment in Spain.
The average age at diagnosis of CRC in studied

families was 57 years (ranging from 24 to 86).

In contrast, classical FAP (familial adenomatous
polyposis) patients, as is described in the literature
[16-18], show a CRC onset 10 years earlier than MAP
(mean age at presentation 39 versus 53 respectively)
[16].
It appears that disease symptoms in the 7 MAP

patients are not as severe as those observed in APC dri-
ven FAP. The mutations found along the MUTYH gene
were as follows: the hot spots Y179C and G396D; and
as well as the five mutations already reported. The high-
est prevalence of mutations corresponds to the hot spots
mentioned above.

Table 7 Phenotypic and genotypic features in the 19 patients carriers of polymorphism G338H (exon 12)

Type of adenomas CRC Family history
In 9 cases no information was
available

Patients with multiple (≥ 10) polyps
synchronous

Patients with multiple (≥ 10) polyps
metachronous

Yes No Yes No

31,6%
6/19

68,4%
13/19

52,6%
10/19

47,4%
9/19

26,3%
5/19

26,3%
5/19

Figure 1 Different plot and sequence traces for MUTYH exon 7 mutations. (a) The melting profile with sensitivity 0,3. The figure shows that
mutations were clearly distinct from the wild type controls. Melt curves of each mutation (red: Y176C heterozygote, green: Y179C homozygote
were plotted against the wild types (blue). (b) Sequencing electropherograms show a Y179C heterozygous mutation, a Y179C homozygous
mutation and a wild type.
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Figure 2 Difference plot and sequence traces for MUTYH exon 13 mutations. (a) Difference plot and sequence traces for MUTYH exon 13
mutations. (a) The melting profile with sensitivity 0,45. The figure shows that mutations were clearly distinct from the wild type controls. R426C
heterozygote and G396D heterozygote have identical heteroduplex melting patterns. Melt curves of each mutation (green: G396D homozygotes,
pink: E410GfsX43 heterozygotes, blue: R426C heterozygotes and G396D heterozygotes, grey: double heterozygote G396D and E410GfsX43 against
the wild type (red). (b) Sequencing electropherograms show a G396D heterozygous mutation, a G396D homozygous mutation and a wild type.

Figure 3 Different plot and sequence traces are indicated for MUTYH exon 12 mutations. (a1) (a2) The melting profile with sensitivity 0,3.
The figures shows that mutations were clearly distinct from the wild type controls. Melt curves of each mutation, green: R354GfsX40
heterozygotes, red: G338H non-pathogenic heterozygotes polymorphism against the wild type (blue). (b) Sequencing electropherograms show a
G338H heterozygous polymorphism and a wild type.
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In the study of G338H non-pathogenic polymorphism
(exon 12) our data indicate no association with attenuated
familial adenomatous polyposis (MAP) in this selected
group.
By discriminating between distinctive individuals based

on their featured high-resolution melting curves[11], one
of the most challenging tasks is the discrimination of
amplicons differing by homoduplexes. HRM is a rapid
and informative toll, but requires specific primers and
refines the sensitivity post-PCR analysis in case of differ-
ing homoduplexes. We demonstrate that this tool,
HRM, can also be used to detect homozygous mutations
in MAP patients. In this way, homozygous mutations
show a mutated homoduplex by HRM which is perfectly
discriminated against wild type homoduplex and against
mutated heteroduplex. (Figures 1, 2 and 3).
A HRM pre-screening assay of exons 7, 12 and 13

could be integrated into the laboratory routine, so that a
large number of samples can be screened for identifica-
tion of samples of interest.
We estimate that by using HRM as a screening method,

the number of sequencing reactions requiring MUTYH
mutation detection can be reduced by up to 80% thus
resulting in substantial time and cost savings[13]. Sequen-
cing is reduced, because once HRM-PCR is optimized for
this gene, only abnormal patterns are sequenced. This
shows the high resolving power of HRM, compared with
direct sequencing[14]. Hence HRM can be used to combat
unknown mutation-detection technologies. We refine the
capabilities of HRM-PCR and apply it to a gene not yet
analyzed by this method[15].
The combination of real-time PCR and high-resolu-

tion melting curve analysis provides an approach to suc-
cessfully scan exons 7, 12 and 13 of MUTYH gene for
these clinically important and frequent mutations.

Conclusions
In conclusion, we describe a screening method HRM, to
detect heterozygous and homozygous mutations in the
gene encoding MUTYH in selected samples of patients
with phenotype of MAP. As clinical decisions will
increasingly rely on molecular medicine, the power of
identifying germline mutations must be continuously
evaluated and improved.
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