Skip to main content

Table 3 Accuracy and predictive value between four models

From: A prediction model based on DNA methylation biomarkers and radiological characteristics for identifying malignant from benign pulmonary nodules

Cross Validation Model Sensitivity Specificity PPV NPV Accuracy AUC
4-fold on training cohort KNN 0.83 0.86 0.90 0.80 0.83 0.84
SVM 0.89 0.85 0.89 0.86 0.87 0.92
RF 0.88 0.85 0.89 0.85 0.87 0.91
RL 0.91 0.83 0.88 0.89 0.87 0.93
Validated in an independent cohort KNN 0.93 0.84 0.9 0.9 0.89 0.88
SVM 0.93 0.93 0.91 0.91 0.93 0.96
RF 0.91 0.93 0.89 0.89 0.92 0.95
RL 0.91 0.88 0.88 0.91 0.9 0.96
  1. KNN K-nearest neighbors, SVM support vector machine, RF random forest, RL logistic regression, AUC area under the curve, PPV positive predictive value, NPV negative predictive value