Skip to main content
Fig. 2 | BMC Cancer

Fig. 2

From: Chemotherapy-induced release of circulating-tumor cells into the bloodstream in collective migration units with cancer-associated fibroblasts in metastatic cancer patients

Fig. 2

Fluctuation of CAF level in Met-pa receiving chemotherapy treatment. a Scatter dot plot represents baseline CAF counts found in blood samples from Met-pa across a spectrum of cancer types (median ± SD, N = 44 from 45 patients). b Immunofluorescence photomicrographs of CAFs isolated from blood samples (CD45 is yellow, α-SMA is red, cytokeratin is green and DAPI is blue). Scale bar is 40 μm. c Box and whisker charts show the fold change in CAF counts after the patients received 1 and 2 cycles of chemotherapy (median ± range, N = 58 from 23 patients). No significant increase of CAF counts (P < 0.7436) after chemotherapy treatment was determined using a Friedman test. d Box and whisker plots represents CAF counts with respect to the clinical outcome of Met-pa (median ± range, N = 44 from 44 patients). Significance of CAF level (**P = 0.0017) in the cancer prognosis was calculated using a Kruskal-Wallis test. e Box and whisker plots represent the fold change of CTC/CAF counts in the Met-pa (median ± range, N = 44 from 44 patients). Significance of CTC:CAF ratio (**P = 0.0057) in the cancer prognosis was calculated using a one-way ANOVA test. f Survival curve represents the overall survival percentage of Met-pa based on the CAF count at baseline using the mean value for CAF counts (N = 44 from 44 patients). Significant effect of CAF counts (*P = 0.0223) in predicting the survival probability for Met-pa was determined using a Log-rank (Mantel-Cox) test. g Immunofluorescence photomicrographs of CAFs incorporated in CTC aggregates (CD45 is yellow, α-SMA is red, cytokeratin is green and DAPI is blue). Scale bar is 40 μm

Back to article page