Skip to main content
Fig. 6 | BMC Cancer

Fig. 6

From: Drug resistance profiling of a new triple negative breast cancer patient-derived xenograft model

Fig. 6

Cytotoxic responses of oncology drugs in TU-BcX-2 K1 cells plated in 2D differ compared to 3D culture conditions. TU-BcX-2 K1 cells were treated for 72 h with the NCI oncology drug set (1 μM) or DMSO controls. Cells were harvested, stained with Calcein-AM and EthD III and fluorescence used to visualize the live and dead cells. Green = Calcein-AM (live cells), Red = EthD III (dead cells). a Schematic showing oncology drugs that were effective in 2D culture, 3D culture and drugs that were effective in both 2D and 3D conditions. b The histone deacytelase inhibitors panobinostat and romidepsin were most cytotoxic to TU-BcX-2 K1 cells in both 2D and 3D culture. c Small molecule targeted inhibitors that were cytotoxic to TU-BcX-2 K1 in both 2D and 3D culture. The proteasome inhibitors bortezomib and carfilzomib were cytotoxic to both 2D and 3D-plated cells; TU-BcX-2 K1 cells were resistant to receptor tyrosine kinase inhibitors regorafenib and sunitinib in both 2D and 3D culture conditions. d The small molecule targeted inhibitor ixazomib was cytotoxic in 2D-plated TU-BcX-2 K1 cells but did not affect TU-BcX-2 K1 spheres in 3D culture. All data was obtained after adherent TU-BcX-2 K1 cells were treated and subsequently staining with Calcein-AM to highlight live cells (green) or EthD-III to highlight dead cells (red). Cells were treated at 1 μM using the NCI oncology panel. Images were captured at 100X magnification

Back to article page