Skip to main content
Fig. 1 | BMC Cancer

Fig. 1

From: Compressed collagen and decellularized tissue – novel components in a pipeline approach for the study of cancer metastasis

Fig. 1

Cells adopt different morphologies and migration characteristics in 2D compared to 3D. MDA-MB-231 (MDA) cells adopted a more compact morphology when migrating in collagen (b) than over a collagen coated surface (a). However, HT1080 cells migrating in collagen were more elongated (d) than when migrating over it (c). Microscopy images were taken using a Nikon TiE phase contrast microscope and DS-Fi2 camera, a moveable stage and environmental chamber set at 37 °C with a continuous CO2/O2 supply. NIS Elements software was used for image capture and a Plan × 10/0.25 Ph1 DL lens; scale bars = 50 μm. The differences in aspect ratio are quantified in e where MDA-MB-231 and HT1080 cells are compared both to and in collagen (1 mg/ml). Cell migration speed is compared for cells moving over 2D collagen (2D) compared with cells moving in either 1 mg/ml or 2 mg/ml collagen for both MDA-MB-231 and HT1080 cells in f. Non-parametric Kruskal-Wallis Test with Dunn’s test for multiple comparisons was run for each condition. MDA-MB-231 and HT1080 cells were set up in a 2D/3D assay, and migration speed investigated in three different regions created: 2D, border, 3D. g and h show MDA cells behave differently according to their location and context as do HT1080 cells shown in i and j (2D, two dimensions, 3D, three-dimensional context, B, Border zone between the two contexts). Images show static shots taken from time-lapse movies, scale bars = 100 μm. Statistics were generated using a Two-way ANOVA with Tukey’s multiple comparisons tests using GraphPad Prism 6. Significance is shown: ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001. n = 3

Back to article page