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A novel TCGA-validated programmed cell- 2
death-related signature of ovarian cancer
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Abstract

Background Ovarian cancer (OC) is a gynecological malignancy tumor with high recurrence and mortality rates.
Programmed cell death (PCD) is an essential regulator in cancer metabolism, whose functions are still unknown in OC.
Therefore, it is vital to determine the prognostic value and therapy response of PCD-related genes in OC.

Methods By mining The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Genecards

databases, we constructed a prognostic PCD-related genes model and performed Kaplan-Meier (K-M) analysis and
Receiver Operating Characteristic (ROC) curve for its predictive ability. A nomogram was created via Cox regression.
We validated our model in train and test sets. Quantitative real-time PCR (qRT-PCR) was applied to identify the
expression of our model genes. Finally, we analyzed functional analysis, immune infiltration, genomic mutation, tumor
mutational burden (TMB) and drug sensitivity of patients in low- and high-risk group based on median scores.

Results A ten-PCD-related gene signature including protein phosphatase 1 regulatory subunit 15 A (PPPTR15A),
8-oxoguanine-DNA glycosylase (OGGT1), HECT and RLD domain containing E3 ubiquitin protein ligase family member
1 (HERC1), Caspase-2.(CASP2), Caspase activity and apoptosis inhibitor 1(CAAP1), RB transcriptional corepressor
1(RB1), Z-DNA binding protein 1 (ZBP1), CD3-epsilon (CD3E), Clathrin heavy chain like 1(CLTCL1), and CCAAT/
enhancer-binding protein beta (CEBPB) was constructed. Risk score performed well with good area under curve (AUC)
(AUG; _ ooy =0.728, AUCs _ o, = 0.730). The nomogram based on risk score has good performance in predicting the
prognosis of OC patients (AUC, _yq, =0.781, AUC; _ ¢, =0.759, AUCs _ ., = 0.670). Kyoto encyclopedia of genes and
genomes (KEGG) analysis showed that the erythroblastic leukemia viral oncogene homolog (ERBB) signaling pathway
and focal adhesion were enriched in the high-risk group. Meanwhile, patients with high-risk scores had worse OS. In
addition, patients with low-risk scores had higher immune-infiltrating cells and enhanced expression of checkpoints,
programmed cell death 1 ligand 1 (PD-L1), indoleamine 2,3-dioxygenase 1 (IDO-1) and lymphocyte activation gene-3
(LAG3), and were more sensitive to A.443,654, GDC.0449, paclitaxel, gefitinib and cisplatin. Finally, gRT-PCR confirmed
RB1, CAAP1, ZBP1, CEBPB and CLTCL1 over-expressed, while PPP1R15A, OGG1, CASP2, CD3E and HERC1 under-
expressed in OC cell lines.

Conclusion Our model could precisely predict the prognosis, immune status and drug sensitivity of OC patients.
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Introduction

Ovarian cancer (OC) is the third most common gyne-
cologic malignancy worldwide but accounts for the
highest mortality [1]. The common symptoms are often
deceptive, such as bloating, early satiety, and discomfort
in the stomach [2]. Patients are always diagnosed in the
advanced stages. Although OC has many subtypes, such
as epithelial carcinoma, germ cell tumor, sex cord-stro-
mal tumor, and Krukenberg’s tumor [3], the treatment is
almost consistent. According to NCCN guidelines, the
standard treatment is entirely cytoreduction surgical, fol-
lowed by adjuvant chemotherapy. Maintenance therapies
with poly ADP-ribose polymerase (PARP) inhibitors and
bevacizumab are increasingly widely used [4]. Recent
treatments combined with immune checkpoint block-
ade, PARP inhibition, chemotherapy, and antiangiogenic
drugs have been widely encouraged in clinical trials for
OC patients with advanced and metastatic stages. Still,
the outcomes are inferior [5]. To date, accumulating evi-
dence suggests that the high recurrence rate is thought
to be due to remaining drug-resistant cells and cancer
stem cells (CSC) [6]. In addition, OC cells may undergo
an immunoediting process that orchestrates the interac-
tion between the infiltrating immune cells and ovarian
stromal microenvironment to promote tumor progres-
sion [7]. Despite the considerable advancement in OC
treatment, there was no noticeable improvement in
recurrence and survival rates [8]. Therefore, finding novel
biomarkers to aid in the prognosis prediction and treat-
ment of OC is increasingly essential.

Cell death is a fundamental physiological process in all
living organisms, from embryonic development, organ
maintenance, tumorigenesis, and immune responses
[9]. Cell death occurs in two significant ways—accident
cell death (ACD) and programmed cell death (PCD).
ACD is a biological process that happens to lose con-
trol. However, PCD commanded acceptable regulations
and interplay with various mechanisms. PCD consists
of apoptosis, necroptosis, pyroptosis, ferroptosis, PAN-
optosis, and autophagy (Fig. 1) [10]. PCD is crucial in
modulating the immunosuppressive tumor microenvi-
ronment (TME) and determining clinical outcomes of
treatments [11]. Many scholars have confirmed apopto-
sis and autophagy can collaborate to reverse chemoresis-
tance, reduce metastasis, and improve prognosis in OC
patients [12—14]. Tan C. et al. also found inhibition of
pyroptosis promoted OC tumor progression by regulat-
ing the ASK1/JNK signaling pathway [15]. These studies
provide new insights into crucial player roles of certain
forms of PCD in prognosis prediction and treatment plan
selection. Hence, investigating PCD-related genes may
help clinicians predict survival outcomes and make per-
sonalized treatment plans in OC patients.
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Our study aims to construct a PCD-related gene signa-
ture using The Cancer Genome Atlas (TCGA) database.
We assessed its value in prognosis prediction, potential
target drugs, and immune responses to help clinicians
predict the prognosis and make personalized treatment
plans for OC patients.

Materials and methods

Data source

Clinical information and RNA-seq profiles of OC patients
were downloaded from the TCGA database (https://
www.cancer.gov/, accession number: phs000178). The
clinical features are detailed in supplementary Table S1.
Information about normal ovary tissue was obtained
from GTEx (https://xenabrowser.net/datapages/?cohort
=GTEX&removeHub=143 https%3 A%2 F%2Fxena.tree-
house.gi.ucsc.edu%3A443). All data were downloaded
and collated using Perl language (v5.30.0) and R lan-
guage (v4.1.2). PCD genes were retrieved from the Gen-
eCards database (https://www.genecards.org/Search/
Keyword?queryString=programmed%20cell%20death).
The symbol of mRNAs was annotated using the ensem-
bles human genome browser GRCh38. p13 (http://asia.
ensembl.org/index.html).

Differentially-expressed genes of programmed cell-death
in ovarian cancer

We conducted a differentially-expressed analysis of PCD
genes by comparing 72 normal and 539 tumor tissue with
R package “limma” P<0.05 and|log2FC| > 1. Then, we
performed Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) analysis to search for
potential biological functions and mechanisms. Continu-
ally, we used the STRING database to analyze protein-
protein interaction (PPI). At last, we used Cytoscape to
visualize the relationship of the top ten hub genes.

Cluster analysis

Using Univariate Cox regression analysis, we screened
out DEGs of PCD related to the prognosis of OC patients.
We also identified PCD-related molecule subtypes (two
clusters) using the “ConsensusClusterPlus” package
(maxK=9), which was established on the parameters of
“clusterAlg” selected as “km’, and “distance” selected as
“euclidean” Then we compared the prognosis between
the two clusters. Further, Kaplan-Meier (K-M) analysis
was used to compare the prognosis between the two clus-
ters. Continually, the heatmap displayed the correlation
between clusters and clinical parameters, such as (grade,
age, fustat, and stage), which was analyzed by chi-square
test. Lastly, we analyzed the relationship between clusters
and immune conditions.
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Fig. 1 The main physiological ways included in programmed cell death (PCD)

Predictive model construction

We obtained ten PCD-related genes using multivariate
Cox regression and LASSO analysis and constructed a
prognostic model. The coefficient of the selected genes
was displayed by Graphpad software. Then, we evaluated
the prognostic value using K-M analysis and the ROC
curve. We also validated the reliability and stability of our
model by randomly separating OC patients (entire set
n=378) into a train set (#=190) and a test set (n=188)
based on R package “caret” Furthermore, we estimated
whether our signature was an independent risk factor
by univariate and multivariate Cox analysis and built a

nomogram using “rms” R package. Based on clinicopath-
ological parameters, calibration plots were used to com-
pare the consistency between predicted probabilities of
1-, 3- and 5-year survival.

Functional analysis and immune landscape analysis

Patients were divided into high and low-risk groups
based on the median risk score. We conducted GSEA
to analyze the potential pathways enriched in GO
and KEGG gene sets [16]. The screening conditions
were|normalized enrichment score (NES)| > 1, nomi-
nal (NOM) p-value<0.05 and FDR g-value<0.25. The
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activity of TME, immune infiltrating cells, immune func-
tion, and immune checkpoints were analyzed. In two risk
groups, ESTIMATE was used to calculate the immune
score, stromal score, estimate score, and tumor purity.
The immune infiltrating cells were calculated by single
sample GSEA (ssGSEA) and TIMER database via the
“GSVA” R package. Immune checkpoints were also com-
pared in two groups. Differential functions were analyzed
using the Wilcoxon rank-sum test between two groups.

Gene mutation analysis

Using the “maftools” package, we conducted gene muta-
tion based on somatic mutation data. We then calculated
each OC patient’s TMB and compared it between two
risk groups. Furthermore, we conducted a survival anal-
ysis based on different TMB groups and subgroups. We
also displayed somatic mutations of the selected genes
using the cBioPortal database.

Chemotherapy sensitivity and small molecule drugs

The Genomics of Drug Sensitivity in Cancer (GDSC)
database (www.cancerRxgene.org) is the largest public
resource for information on drug sensitivity in cancer
cells and molecular markers of drug response [17]. The
half maximal inhibitory concentration (ICg,) is com-
monly used to measure drug effectiveness. The R pack-
age pRRophetic (v.0.5, https://osf.io/dwzce/?) was used
to predict drug sensitivity by scoring every sample and
transferring it to ICy, value by calculation, which was
described in previous studies [18, 19]. Then, we used the
Wilcoxon test to compare scores of certain drugs in high
and low-risk groups.

Quantitative real-time polymerase chain reaction

Human ovary cell line IOSE80 was purchased from Zheji-
ang Meisen Cell Technology Co., Ltd. Ovarian cancer cell
lines (A2780 and SKOV3) were donated by Fujian Pro-
vincial Key Laboratory of Tumor Biotherapy. They were
cultured under 37°C, 5% CO,. The total RNA of three
cell lines was refined by instructions of the RNA extrac-
tion kit (Promega, LS1040). cDNAs were composed by
reverse transcription. We used the SYBR Green Maste20r
kit (Roche) for Q-PCR. GAPDH normalized the mRNA
expression level of these ten genes. The sequences of
primers are listed in supplementary Table 2. GraphPad
Prism (v8.0.2) and one-way ANOVA were used for statis-
tical calculation.

Statistical analysis

All data were downloaded and collated using Perl lan-
guage (v5.30.0) and R language (v4.1.2). P<0.05 indi-
cated a statistically significant difference. The survival
outcomes were compared using K-M analysis. Univariate
and multivariate Cox analyses were used to anchor the
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independent risk factors. GraphPad Prism (V.8.0.2) and
one-way ANOVA were used for PCR analysis.

Results

Validation of the differentially-expressed genes

The gene expression data of 537 OC patients were
downloaded from the TCGA database. After filtering
patients with incomplete prognostic information, 378
OC patients were finally selected for our study. Data of 72
normal patients were downloaded from the GTEx data-
base. Also,1254 PCD-related genes were obtained from
the Genecards database. The flow diagram is shown in
Fig. 2. We finally got 628 DEGs of PCD (345 up-regulated
and 283 down-regulated) (P<0.05,|log2FC|>1) (Fig. 3A).
The interaction relationships of these top ten hub genes
are presented in Fig. 3B. Then, we performed KEGG and
GO enrichment analysis. We found those genes were
involved in necroptosis, autophagy, and tumor signaling
pathways such as NF-kappa B signaling and JAK/STAT
(Fig. 3C, D). The PPI network is displayed by Cytoscape
from the STRING database (Fig. 3E).

Two clusters analysis

Using univariate Cox regression analysis, we got 32 prog-
nosis-related genes (Fig. 4A). We divided OC patients
into two clusters (cluster 1 and cluster 2) by perform-
ing consensus clustering (k=2) (Fig. 4B, C, D). We
demonstrated that patients in cluster 2 sustained more
prolonged survival than those in cluster 1 (P<0.05,
Fig. 4E). We found higher expression genes such as
GSKIP, IF127L1, CD38, IF127, STAT1, and Z8P1 in clus-
ter 2 from the clinicopathological parameters heatmap
(Fig. 4F). We also searched the relationship between
different clusters and immune status. We found cluster
2 shared a higher immune score than cluster 1(P<0.05,
Fig. 4G). Immunoinhibitors such as LAG3, PD-L1, and
CTLA4 in cluster 2 were higher (Fig. 4H).

Validation of the predictive signature

By multivariate Cox analysis, we got ten genes, includ-
ing PPPI1R15A, OGG1, HERC1, CASP2, CAAPI,
RB1, ZBP1, CD3E, CLTCL1, and CEBPB (Fig. 5A).
The coefficients are shown in Fig. 5B. The risk score
for each patient was calculated based on the follow-
ing formula: Risk Score=coef (Gene;)xexpression
(Gene;) +coef (Gene,)xexpression (Gene,) +......+ coef
(Gene,)xexpression (Gene,) [20]. We divided patients
into high and low-risk groups according to median risk
score. The correlations of model genes are displayed
in Fig. 5B. We found the expression of CEBPB, RBI,
PPP1R15A, HERC1, OGG1, and CLTCL1 was up-regu-
lated in the high-risk group (Fig. 5C). Further, patients in
the low-risk group had a better prognosis. ROC curves
showed AUC at 1-,3-, and 5- years were 0.683, 0.728, and
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0.73, respectively, in the entire set (Fig. 6A) and 0.667,
0.621, and 0.646, respectively, in the test set (Fig. 6C).
Similar results were consistent with the train and test sets
(Fig. 6B, C). We found that age (P<0.05), clinical stage
(P<0.05), and risk score (P<0.01) could be regarded
as independent risk factors for OC patients (Fig. 7A).
We concluded that our signature was the most valuable
factor of the nomogram (Fig. 7B). The calibration plot
showed the accuracy of the nomogram for predicting 1-,
3- and 5-year survival times (Fig. 7C). The nomogram’s
ROC of 1,3,5-years were 0.781, 0.759, and 0.670, indicat-
ing a relatively good prediction ability (Fig. 7D). Cali-
bration plots showed the reliability and stability of our
nomogram (Fig. 7E).

GESA analysis and immune status estimation

We found ATP biosynthetic process was the primary
physical function in the high-risk group. Also, the
ERBB signaling pathway and focal adhesion were highly
involved in the high-risk group (Fig. 8A). ERBB signaling
pathway is well studied in ovarian cancer. The activation
of ERBB could induce EMT, promote cisplatin resistance,
and indicate poor prognosis in OC patients [21-23].
The cancer immune environment plays an essential part
in tumor progression. Immune infiltrating cells, such as
activated dendritic cells, were negatively correlated with
low-risk scores (P<0.01), while activated mast cells were
conversely (P<0.05) (Fig. 8C). Patients with low-risk
scored had higher CD8" T cells (P<0.05), T cells follicu-
lar helper (P<0.01), and activated CD4" memory T cells
(P<0.05) (Fig. 8D). Subsequently, we found stromal score
was higher in the high-risk group (Fig. 8B). The immune
checkpoints, such as CD274 and PDCD1, were highly
expressed in the low-risk group (Fig. 8E).

Identification of genomic mutation and tumor mutational
burden in the signature

We downloaded the single nucleotide variants (SNV)
data of OC from the TCGA database. The waterfall maps
showed the top 20 gene mutations in high-risk and low-
risk groups. TP53 was the most common mutation in

the two groups (Fig. 9A, B). Higher TMB appeared in
the low-risk group compared with the high-risk group
(P=0.013) (Fig. 9C), and patients with high TMB gained
a longer survival time (Fig. 9D). Figure 9E shows that
patients in the low-risk group with high TMB achieved
the best OS. The most structural mutations of these ten
genes were deep deletion and amplification (Fig. 9F).

Prediction of potential target drugs

We assessed ten potential target drugs, including
A 443,654, GDC.0449, dasatinib, pazopanib, nilotinib,
gefitinib, doxorubicin, docetaxel, paclitaxel, and cispla-
tin. IC;, of A.443,654 (P=0.0062), GDC.0449 (P=0.016),
paclitaxel (P=0.034), gefitinib (P=0.012), and cisplatin
(P=0.0069) in low-risk group were lower than those in
high-risk group, indicating that patients with low-risk
score would benefit more from these drugs (Fig. 10).
And IC, of Dasatinib (P=0.014), Pazopanib (P=0.0001),
Docetaxel (P=0.41), and Nilotinib (P=0.00062) in the
low-risk group were higher than those in high-risk group,
indicating that patients with high-risk score would ben-
efit more from these drugs.

External validation

To validate the expression trend of our model genes,
we conducted qRT-PCR between normal and ovarian
cell lines. We detected higher mRNA levels of CEBPB
and CLTCL1 in SKOV3 and A2780 cell lines (P<0.05).
Also, the mRNA expression of RB1, PPP1R15A, CD3E,
CAAP1, ZBP1 and HERC1 were over-expressed in
SKOV3 cells (P<0.05). They showed no difference or
underestimated in A2780 cells. We also confirmed a
lower expression of OCG1 and CASP2 in A2780 cells
(P<0.05). Most of the trend was consistent with the
model we created (Fig. 11).

Discussion

Despite recent advancements in medicine, clinical out-
comes of OC patients remain poor due to the advanced
stage and chemotherapy resistance [24, 25]. PCD plays
a vital role in various aspects in OC, such as tumor
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development, therapy resistance, and TME [26]. Studies
showed autophagy, ferroptosis, and necroptosis could
influence the malignant biological properties [27-31].
Autophagy can induce cisplatin resistance in OC patients
[32, 33]. Pyroptosis-related genes influence OC tumor
immunity [30, 34]. With the in-depth research on PCD’s
roles in OC, scholars have realized that PCD-related

genes might be helpful prognostic biomarkers and pro-
vide novel therapeutic options.

Our study identified a ten-novel PCD-related gene
signature that can precisely predict the prognosis of OC
patients. Those genes are PPP1R15A, OGG1, HERCI,
CASP2, CAAP1, RB1, ZBP1l, CD3E, CLTCLI1, and
CEBPB. Their main functions are listed in Table 1. OC

patients were randomly separated into low- and high-risk
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Table 1 The biological functions of ten PCD-related genes

Gene Physiological Inflamma- Roles in OC/
functions tion/immune other cancers

responses

PPPTR15A  integrated stress  enhances anti- influences perito-
response regula-  tumor immunity  neal metastasis of
tor [35, 36]. [37] OC [38].

OGG1 DNA repairment  promotes DCs arrests cancer cell
[39, 40]. activation proliferation [43].

[41], related to cooperates with
NFkB-dependent TP53 mutations in
inflammatory OC [44].

[42]. increase OC sus-
ceptibility [45].
induces PARP
resistance [46].

HERC1 neurodevelop- immune re- regulates breast
ment, maintain sponse [47]. cancer metastasis
genomic integrity, [48].
and cell growth
[47].

CASP2 participates in backs up efficient  affects colony
apoptosis process  expression of formation of
and genomic type linterferon  cancer cells and
stability [49]. [50]. chemotherapy

resistance [51].

CAAP1 inhibit apoptosis  interacts with Bor regulates the

pathway [52]. T cells [52]. apoptosis and au-
tophagy in gastric
cancer [53].

RB1 regulates cell enhances im- predicts the poor
cycle progression munotherapy prognosis of OC
[54]. sensitivity [54, 55]. [56, 57].

ZBP1 mediates innate  potential target  regulates cell
immunity, balance forimmune death in OC via
inflammation and  checkpoint the RIP3/MLKL
cell death [58]. blockade inhibi-  pathway [60].

tors [59].

CD3E located on surface adaptive immune a prognostic
of Tlymphocytes  response [61] and  biomarker for OC
[611. conduct T cell re-  patients [63].

ceptor transmis-

sion [62].

CLTCL1 control intracel- ) a favor factor for
lular traffic, tu- breast cancer
morigenesis and [66].
cell proliferation
[64, 65].

CEBPB cell proliferation,  monocyte-to- mediate the PARP

differentiation,
cell death, and
tumorigenesis
[67].

macrophage
differentiation
[68].

resistance in OC
[69].

groups based on the median score. Patients in the low-
risk group had better survival outcomes than those in the
high-risk group, demonstrating its accurate prediction.
The predictive signature had a favorable performance by
internal verification and external validation (qRT-PCR).
However, further investigations are required to elucidate
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how these PCD-related genes impact the prognosis of
OC patients.

It is essential to understand the role model genes
play in OC. By GESA analysis, we found our model
genes enriched in the ErbB signaling pathway. The ErbB
receptor family, also known as the EGF receptor family,
includes the epidermal growth factor receptor (EGFR)
or ErbB1/Herl, ErbB2/Her2, ErbB3/Her3, and ErbB4/
Her4 [70]. Some of our model genes worked via the ErbB
signaling pathways. For example, 8-oxo guanine-DNA
glycosylase (OGG1) had cross-regulation with the ErbB
pathway in thyroid physiopathology [71]. HECT and
RLD domain containing E3 ubiquitin protein ligase fam-
ily member 1 (HERC1) promoted triple-negative breast
cancer by regulating the ErbB pathway [72]. RB tran-
scriptional corepressor 1 (RB1) fostered the development
of breast cancer by PI3K/AKT signaling [73]. EGFR-tar-
geting molecules could redirect the immune response
against tumor cells by tethering effector cells, such as
CD3-epsilon (CD3E) T cells, to the surface of cancer cells
[74]. The other six genes are uninvestigated in the ErbB
pathway. Since the role of the ErbB signaling pathway in
OC tumorigenesis was well-established [75-77], we pre-
sumed our predictive model could affect OC develop-
ment through the ErbB signaling pathway. More work is
needed to understand their mechanisms in OC.

In recent years, our understanding of the mecha-
nisms of cell death and its consequences on immunity
and homeostasis has increased substantially [9]. Our
study showed low-risk group presented a higher level of
immune infiltration cells, such as dendritic cells (DCs)
activated, T cells, CD8 T cells, CD4 memory activated,
and T cells follicular helper. DCs are the most widely
used cellular vaccination therapy in OC patients [78].
Lymphocytes, such as T cells, CD8 T cells, CD4 memory
activated, and T cells follicular helper, are the primary
effector cells in cellular immunity. They produce cyto-
kines in immune responses to mediate inflammation and
regulate other types of immune cells [79]. In addition, the
inflammatory disease, such as endometriosis, is also a
contributor to OC. A system review showed that patients
with endometriosis have a higher risk of developing ovar-
ian cancer [80, 81]. OC is indeed an immunogenic and
inflammatic disease closely tied to those immune cells
mentioned above [82]. Although many clinical trials have
reported, response rates of various antibodies target-
ing PD-1 or PD-L1 ranged from 4 to 15% in OC patients
[83]. Our study found that the low-risk group presented
a higher CD274 (PDL1) and PDCD1 (PD1). Patients with
lower risk scores may benefit from PD-1 or PD-L1 inhibi-
tors, such as nivolumab, pembrolizumab, and dostar-
limab [34].

Since there are few choices left for the recurrence
of OC patients, it is also interesting to consider some
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potential target drugs. Patients in the low-risk group had
higher sensitivity to GDC.0449 and A.443,654. GDC-
0449 can inhibit the Hedgehog, a pathway that regu-
lates OC tumorigenesis and chemotherapy resistance
[84]. Furthermore, it can improve the antitumor activity
of nano-doxorubicin, a common drug for OC patients
[85]. Thus, GDC-0449 might be a promising option in
OC patients with low-risk scores. A-443,654 is a specific
Akt inhibitor. Few studies focus on its role in OC [86].
We found that dasatinib, pazopanib, and nilotinib may
benefit OC patients with high-risk scores. Dasatinib was
reported as an enhancer to paclitaxel to suppress tumor
progression [87]. Pazopanib is now applied in Phase I/II
clinical trials for OC patients [88]. Moreover, nilotinib
candidates for carboplatin and paclitaxel in OC treat-
ments [89]. However, deeper investigations and clinical
trials are still needed to validate the application of these
drugs in OC.

In the present study, the PCD-related gene signature
is a practical prognostic predictor for OC patients. We
demonstrated the association between the risk model
and the tumor microenvironment. We also analyzed
the potential roles of our model in chemoresistance and
immune-related therapy. The PCD-related gene signa-
ture could help clinicians stratify high-risk OC patients
who need individually additional treatment and intensive
follow-up plans. However, our study had some limita-
tions. Firstly, we performed research based on data from
the TCGA database and validated it only by PCR. There
is still a need for more clinical trials and samples to inves-
tigate its potential role in prognosis prediction. Secondly,
we should have conducted fundamental experiments to
explore the potential mechanisms of PCD-related genes
in vivo and in vitro. Thirdly, some potential risk factors,
such as gene mutation and therapies that affected OC
prognosis, were not brought into our nomogram because
of unavailable information in TCGA.

Conclusions and perspectives

We constructed and validated a predictive signa-
ture based on ten PCD-related genes for OC patients
(PPP1R15A, OGG1, HERC1, CASP2, CAAP1, RBI,
ZBP1, CD3E, CLTCL1, and CEBPB). Our model might
help clinicians predict survival outcomes and estimate
the therapy response in OC patients. Future work will
focus on improving prediction abilities and further test-
ing in experimental research and prospective clinical
trials.

Abbreviations

ACD Accident cell death

CAAP1 Caspase activity and apoptosis inhibitor 1
CASP2 Caspase-2

CD3E CD3-epsilon

CEBPB CCAAT/enhancer-binding protein beta
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Cmap Connectivity map

CML Chronic myeloid leukemia
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