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Abstract
Background Ovarian cancer (OC) is a gynecological malignancy tumor with high recurrence and mortality rates. 
Programmed cell death (PCD) is an essential regulator in cancer metabolism, whose functions are still unknown in OC. 
Therefore, it is vital to determine the prognostic value and therapy response of PCD-related genes in OC.

Methods By mining The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx) and Genecards 
databases, we constructed a prognostic PCD-related genes model and performed Kaplan-Meier (K-M) analysis and 
Receiver Operating Characteristic (ROC) curve for its predictive ability. A nomogram was created via Cox regression. 
We validated our model in train and test sets. Quantitative real-time PCR (qRT-PCR) was applied to identify the 
expression of our model genes. Finally, we analyzed functional analysis, immune infiltration, genomic mutation, tumor 
mutational burden (TMB) and drug sensitivity of patients in low- and high-risk group based on median scores.

Results A ten-PCD-related gene signature including protein phosphatase 1 regulatory subunit 15 A (PPP1R15A), 
8-oxoguanine-DNA glycosylase (OGG1), HECT and RLD domain containing E3 ubiquitin protein ligase family member 
1 (HERC1), Caspase-2.(CASP2), Caspase activity and apoptosis inhibitor 1(CAAP1), RB transcriptional corepressor 
1(RB1), Z-DNA binding protein 1 (ZBP1), CD3-epsilon (CD3E), Clathrin heavy chain like 1(CLTCL1), and CCAAT/
enhancer-binding protein beta (CEBPB) was constructed. Risk score performed well with good area under curve (AUC) 
(AUC3 − year =0.728, AUC5 − year = 0.730). The nomogram based on risk score has good performance in predicting the 
prognosis of OC patients (AUC1 − year =0.781, AUC3 − year =0.759, AUC5 − year = 0.670). Kyoto encyclopedia of genes and 
genomes (KEGG) analysis showed that the erythroblastic leukemia viral oncogene homolog (ERBB) signaling pathway 
and focal adhesion were enriched in the high-risk group. Meanwhile, patients with high-risk scores had worse OS. In 
addition, patients with low-risk scores had higher immune-infiltrating cells and enhanced expression of checkpoints, 
programmed cell death 1 ligand 1 (PD-L1), indoleamine 2,3-dioxygenase 1 (IDO-1) and lymphocyte activation gene-3 
(LAG3), and were more sensitive to A.443,654, GDC.0449, paclitaxel, gefitinib and cisplatin. Finally, qRT-PCR confirmed 
RB1, CAAP1, ZBP1, CEBPB and CLTCL1 over-expressed, while PPP1R15A, OGG1, CASP2, CD3E and HERC1 under-
expressed in OC cell lines.

Conclusion Our model could precisely predict the prognosis, immune status and drug sensitivity of OC patients.
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Introduction
Ovarian cancer (OC) is the third most common gyne-
cologic malignancy worldwide but accounts for the 
highest mortality [1]. The common symptoms are often 
deceptive, such as bloating, early satiety, and discomfort 
in the stomach [2]. Patients are always diagnosed in the 
advanced stages. Although OC has many subtypes, such 
as epithelial carcinoma, germ cell tumor, sex cord-stro-
mal tumor, and Krukenberg’s tumor [3], the treatment is 
almost consistent. According to NCCN guidelines, the 
standard treatment is entirely cytoreduction surgical, fol-
lowed by adjuvant chemotherapy. Maintenance therapies 
with poly ADP-ribose polymerase (PARP) inhibitors and 
bevacizumab are increasingly widely used [4]. Recent 
treatments combined with immune checkpoint block-
ade, PARP inhibition, chemotherapy, and antiangiogenic 
drugs have been widely encouraged in clinical trials for 
OC patients with advanced and metastatic stages. Still, 
the outcomes are inferior [5]. To date, accumulating evi-
dence suggests that the high recurrence rate is thought 
to be due to remaining drug-resistant cells and cancer 
stem cells (CSC) [6]. In addition, OC cells may undergo 
an immunoediting process that orchestrates the interac-
tion between the infiltrating immune cells and ovarian 
stromal microenvironment to promote tumor progres-
sion [7]. Despite the considerable advancement in OC 
treatment, there was no noticeable improvement in 
recurrence and survival rates [8]. Therefore, finding novel 
biomarkers to aid in the prognosis prediction and treat-
ment of OC is increasingly essential.

Cell death is a fundamental physiological process in all 
living organisms, from embryonic development, organ 
maintenance, tumorigenesis, and immune responses 
[9]. Cell death occurs in two significant ways—accident 
cell death (ACD) and programmed cell death (PCD). 
ACD is a biological process that happens to lose con-
trol. However, PCD commanded acceptable regulations 
and interplay with various mechanisms. PCD consists 
of apoptosis, necroptosis, pyroptosis, ferroptosis, PAN-
optosis, and autophagy (Fig.  1) [10]. PCD is crucial in 
modulating the immunosuppressive tumor microenvi-
ronment (TME) and determining clinical outcomes of 
treatments [11]. Many scholars have confirmed apopto-
sis and autophagy can collaborate to reverse chemoresis-
tance, reduce metastasis, and improve prognosis in OC 
patients [12–14]. Tan C. et al. also found inhibition of 
pyroptosis promoted OC tumor progression by regulat-
ing the ASK1/JNK signaling pathway [15]. These studies 
provide new insights into crucial player roles of certain 
forms of PCD in prognosis prediction and treatment plan 
selection. Hence, investigating PCD-related genes may 
help clinicians predict survival outcomes and make per-
sonalized treatment plans in OC patients.

Our study aims to construct a PCD-related gene signa-
ture using The Cancer Genome Atlas (TCGA) database. 
We assessed its value in prognosis prediction, potential 
target drugs, and immune responses to help clinicians 
predict the prognosis and make personalized treatment 
plans for OC patients.

Materials and methods
Data source
Clinical information and RNA-seq profiles of OC patients 
were downloaded from the TCGA database (https://
www.cancer.gov/, accession number: phs000178). The 
clinical features are detailed in supplementary Table S1. 
Information about normal ovary tissue was obtained 
from GTEx (https://xenabrowser.net/datapages/?cohort
=GTEX&removeHub=143 https%3 A%2 F%2Fxena.tree-
house.gi.ucsc.edu%3A443). All data were downloaded 
and collated using Perl language (v5.30.0) and R lan-
guage (v4.1.2). PCD genes were retrieved from the Gen-
eCards database (https://www.genecards.org/Search/
Keyword?queryString=programmed%20cell%20death). 
The symbol of mRNAs was annotated using the ensem-
bles human genome browser GRCh38. p13 (http://asia.
ensembl.org/index.html).

Differentially-expressed genes of programmed cell-death 
in ovarian cancer
We conducted a differentially-expressed analysis of PCD 
genes by comparing 72 normal and 539 tumor tissue with 
R package “limma”. P < 0.05 and|log2FC| > 1. Then, we 
performed Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) analysis to search for 
potential biological functions and mechanisms. Continu-
ally, we used the STRING database to analyze protein-
protein interaction (PPI). At last, we used Cytoscape to 
visualize the relationship of the top ten hub genes.

Cluster analysis
Using Univariate Cox regression analysis, we screened 
out DEGs of PCD related to the prognosis of OC patients. 
We also identified PCD-related molecule subtypes (two 
clusters) using the “ConsensusClusterPlus” package 
(maxK = 9), which was established on the parameters of 
“clusterAlg” selected as “km”, and “distance” selected as 
“euclidean”. Then we compared the prognosis between 
the two clusters. Further, Kaplan-Meier (K-M) analysis 
was used to compare the prognosis between the two clus-
ters. Continually, the heatmap displayed the correlation 
between clusters and clinical parameters, such as (grade, 
age, fustat, and stage), which was analyzed by chi-square 
test. Lastly, we analyzed the relationship between clusters 
and immune conditions.

https://www.cancer.gov/
https://www.cancer.gov/
https://xenabrowser.net/datapages/?cohort=GTEX&removeHub=143
https://xenabrowser.net/datapages/?cohort=GTEX&removeHub=143
https://www.genecards.org/Search/Keyword?queryString=programmed%20cell%20death
https://www.genecards.org/Search/Keyword?queryString=programmed%20cell%20death
http://asia.ensembl.org/index.html
http://asia.ensembl.org/index.html
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Predictive model construction
We obtained ten PCD-related genes using multivariate 
Cox regression and LASSO analysis and constructed a 
prognostic model. The coefficient of the selected genes 
was displayed by Graphpad software. Then, we evaluated 
the prognostic value using K-M analysis and the ROC 
curve. We also validated the reliability and stability of our 
model by randomly separating OC patients (entire set 
n = 378) into a train set (n = 190) and a test set (n = 188) 
based on R package “caret”. Furthermore, we estimated 
whether our signature was an independent risk factor 
by univariate and multivariate Cox analysis and built a 

nomogram using “rms” R package. Based on clinicopath-
ological parameters, calibration plots were used to com-
pare the consistency between predicted probabilities of 
1-, 3- and 5-year survival.

Functional analysis and immune landscape analysis
Patients were divided into high and low-risk groups 
based on the median risk score. We conducted GSEA 
to analyze the potential pathways enriched in GO 
and KEGG gene sets [16]. The screening conditions 
were|normalized enrichment score (NES)| > 1, nomi-
nal (NOM) p-value < 0.05 and FDR q-value < 0.25. The 

Fig. 1 The main physiological ways included in programmed cell death (PCD)
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Fig. 2 Flowchart for comprehensive analysis of PCD patterns in OC
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activity of TME, immune infiltrating cells, immune func-
tion, and immune checkpoints were analyzed. In two risk 
groups, ESTIMATE was used to calculate the immune 
score, stromal score, estimate score, and tumor purity. 
The immune infiltrating cells were calculated by single 
sample GSEA (ssGSEA) and TIMER database via the 
“GSVA” R package. Immune checkpoints were also com-
pared in two groups. Differential functions were analyzed 
using the Wilcoxon rank-sum test between two groups.

Gene mutation analysis
Using the “maftools” package, we conducted gene muta-
tion based on somatic mutation data. We then calculated 
each OC patient’s TMB and compared it between two 
risk groups. Furthermore, we conducted a survival anal-
ysis based on different TMB groups and subgroups. We 
also displayed somatic mutations of the selected genes 
using the cBioPortal database.

Chemotherapy sensitivity and small molecule drugs
The Genomics of Drug Sensitivity in Cancer (GDSC) 
database (www.cancerRxgene.org) is the largest public 
resource for information on drug sensitivity in cancer 
cells and molecular markers of drug response [17]. The 
half maximal inhibitory concentration (IC50) is com-
monly used to measure drug effectiveness. The R pack-
age pRRophetic (v.0.5, https://osf.io/dwzce/?) was used 
to predict drug sensitivity by scoring every sample and 
transferring it to IC50 value by calculation, which was 
described in previous studies [18, 19]. Then, we used the 
Wilcoxon test to compare scores of certain drugs in high 
and low-risk groups.

Quantitative real-time polymerase chain reaction
Human ovary cell line IOSE80 was purchased from Zheji-
ang Meisen Cell Technology Co., Ltd. Ovarian cancer cell 
lines (A2780 and SKOV3) were donated by Fujian Pro-
vincial Key Laboratory of Tumor Biotherapy. They were 
cultured under 37℃, 5% CO2. The total RNA of three 
cell lines was refined by instructions of the RNA extrac-
tion kit (Promega, LS1040). cDNAs were composed by 
reverse transcription. We used the SYBR Green Maste20r 
kit (Roche) for Q-PCR. GAPDH normalized the mRNA 
expression level of these ten genes. The sequences of 
primers are listed in supplementary Table 2. GraphPad 
Prism (v8.0.2) and one-way ANOVA were used for statis-
tical calculation.

Statistical analysis
All data were downloaded and collated using Perl lan-
guage (v5.30.0) and R language (v4.1.2). P < 0.05 indi-
cated a statistically significant difference. The survival 
outcomes were compared using K-M analysis. Univariate 
and multivariate Cox analyses were used to anchor the 

independent risk factors. GraphPad Prism (V.8.0.2) and 
one-way ANOVA were used for PCR analysis.

Results
Validation of the differentially-expressed genes
The gene expression data of 537 OC patients were 
downloaded from the TCGA database. After filtering 
patients with incomplete prognostic information, 378 
OC patients were finally selected for our study. Data of 72 
normal patients were downloaded from the GTEx data-
base. Also,1254 PCD-related genes were obtained from 
the Genecards database. The flow diagram is shown in 
Fig. 2. We finally got 628 DEGs of PCD (345 up-regulated 
and 283 down-regulated) (P < 0.05,|log2FC|>1) (Fig. 3A). 
The interaction relationships of these top ten hub genes 
are presented in Fig. 3B. Then, we performed KEGG and 
GO enrichment analysis. We found those genes were 
involved in necroptosis, autophagy, and tumor signaling 
pathways such as NF-kappa B signaling and JAK/STAT 
(Fig. 3C, D). The PPI network is displayed by Cytoscape 
from the STRING database (Fig. 3E).

Two clusters analysis
Using univariate Cox regression analysis, we got 32 prog-
nosis-related genes (Fig.  4A). We divided OC patients 
into two clusters (cluster 1 and cluster 2) by perform-
ing consensus clustering (k = 2) (Fig.  4B, C, D). We 
demonstrated that patients in cluster 2 sustained more 
prolonged survival than those in cluster 1 (P < 0.05, 
Fig.  4E). We found higher expression genes such as 
GSKIP, IFI27L1, CD38, IFI27, STAT1, and Z8P1 in clus-
ter 2 from the clinicopathological parameters heatmap 
(Fig.  4F). We also searched the relationship between 
different clusters and immune status. We found cluster 
2 shared a higher immune score than cluster 1(P < 0.05, 
Fig.  4G). Immunoinhibitors such as LAG3, PD-L1, and 
CTLA4 in cluster 2 were higher (Fig. 4H).

Validation of the predictive signature
By multivariate Cox analysis, we got ten genes, includ-
ing PPP1R15A, OGG1, HERC1, CASP2, CAAP1, 
RB1, ZBP1, CD3E, CLTCL1, and CEBPB (Fig.  5A). 
The coefficients are shown in Fig.  5B. The risk score 
for each patient was calculated based on the follow-
ing formula: Risk Score = coef (Gene1)×expression 
(Gene1) + coef (Gene2)×expression (Gene2) +……+ coef 
(Genen)×expression (Genen) [20]. We divided patients 
into high and low-risk groups according to median risk 
score. The correlations of model genes are displayed 
in Fig.  5B. We found the expression of CEBPB, RB1, 
PPP1R15A, HERC1, OGG1, and CLTCL1 was up-regu-
lated in the high-risk group (Fig. 5C). Further, patients in 
the low-risk group had a better prognosis. ROC curves 
showed AUC at 1-,3-, and 5- years were 0.683, 0.728, and 

http://www.cancerRxgene.org
https://osf.io/dwzce/?
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Fig. 3 (A) Volcano plot of 589 up-regulated and 537 down-regulated DEGs in OC (FDR < 0.05 and|logFC| > 1). (B) The interaction relationships between 
the top ten selected genes. (C) GO analysis. (D) KEGG analysis. (E) PPI network according to the STRING database
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Fig. 4 (A) Forest plot by univariate Cox analysis. (B) Consensus clustering matrix when k = 2. (C) Consensus clustering CDF with k valued 2 to 9. (D) Relative 
change in area under CDF curve for k = 2. (E) KM curves of the survival in two clusters. (F) Heatmap of the ten genes between the two clusters and the 
correlations of the clusters and clinical parameters. (G) Differences in TME of two groups. (H) Four common immune inhibitors in two clusters
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0.73, respectively, in the entire set (Fig.  6A) and 0.667, 
0.621, and 0.646, respectively, in the test set (Fig.  6C). 
Similar results were consistent with the train and test sets 
(Fig.  6B, C). We found that age (P < 0.05), clinical stage 
(P < 0.05), and risk score (P < 0.01) could be regarded 
as independent risk factors for OC patients (Fig.  7A). 
We concluded that our signature was the most valuable 
factor of the nomogram (Fig.  7B). The calibration plot 
showed the accuracy of the nomogram for predicting 1-, 
3- and 5-year survival times (Fig.  7C). The nomogram’s 
ROC of 1,3,5-years were 0.781, 0.759, and 0.670, indicat-
ing a relatively good prediction ability (Fig.  7D). Cali-
bration plots showed the reliability and stability of our 
nomogram (Fig. 7E).

GESA analysis and immune status estimation
We found ATP biosynthetic process was the primary 
physical function in the high-risk group. Also, the 
ERBB signaling pathway and focal adhesion were highly 
involved in the high-risk group (Fig. 8A). ERBB signaling 
pathway is well studied in ovarian cancer. The activation 
of ERBB could induce EMT, promote cisplatin resistance, 
and indicate poor prognosis in OC patients [21–23]. 
The cancer immune environment plays an essential part 
in tumor progression. Immune infiltrating cells, such as 
activated dendritic cells, were negatively correlated with 
low-risk scores (P < 0.01), while activated mast cells were 
conversely (P < 0.05) (Fig.  8C). Patients with low-risk 
scored had higher CD8+ T cells (P < 0.05), T cells follicu-
lar helper (P < 0.01), and activated CD4+ memory T cells 
(P < 0.05) (Fig. 8D). Subsequently, we found stromal score 
was higher in the high-risk group (Fig. 8B). The immune 
checkpoints, such as CD274 and PDCD1, were highly 
expressed in the low-risk group (Fig. 8E).

Identification of genomic mutation and tumor mutational 
burden in the signature
We downloaded the single nucleotide variants (SNV) 
data of OC from the TCGA database. The waterfall maps 
showed the top 20 gene mutations in high-risk and low-
risk groups. TP53 was the most common mutation in 

the two groups (Fig.  9A, B). Higher TMB appeared in 
the low-risk group compared with the high-risk group 
(P = 0.013) (Fig. 9C), and patients with high TMB gained 
a longer survival time (Fig.  9D). Figure  9E shows that 
patients in the low-risk group with high TMB achieved 
the best OS. The most structural mutations of these ten 
genes were deep deletion and amplification (Fig. 9F).

Prediction of potential target drugs
We assessed ten potential target drugs, including 
A.443,654, GDC.0449, dasatinib, pazopanib, nilotinib, 
gefitinib, doxorubicin, docetaxel, paclitaxel, and cispla-
tin. IC50 of A.443,654 (P = 0.0062), GDC.0449 (P = 0.016), 
paclitaxel (P = 0.034), gefitinib (P = 0.012), and cisplatin 
(P = 0.0069) in low-risk group were lower than those in 
high-risk group, indicating that patients with low-risk 
score would benefit more from these drugs (Fig.  10). 
And IC50 of Dasatinib (P = 0.014), Pazopanib (P = 0.0001), 
Docetaxel (P = 0.41), and Nilotinib (P = 0.00062) in the 
low-risk group were higher than those in high-risk group, 
indicating that patients with high-risk score would ben-
efit more from these drugs.

External validation
To validate the expression trend of our model genes, 
we conducted qRT-PCR between normal and ovarian 
cell lines. We detected higher mRNA levels of CEBPB 
and CLTCL1 in SKOV3 and A2780 cell lines (P < 0.05). 
Also, the mRNA expression of RB1, PPP1R15A, CD3E, 
CAAP1, ZBP1 and HERC1 were over-expressed in 
SKOV3 cells (P < 0.05). They showed no difference or 
underestimated in A2780 cells. We also confirmed a 
lower expression of OCG1 and CASP2 in A2780 cells 
(P < 0.05). Most of the trend was consistent with the 
model we created (Fig. 11).

Discussion
Despite recent advancements in medicine, clinical out-
comes of OC patients remain poor due to the advanced 
stage and chemotherapy resistance [24, 25]. PCD plays 
a vital role in various aspects in OC, such as tumor 

Fig. 5 (A) Coefficients of the ten genes. (B) The correlations between the ten genes. (C) Heatmap of 10 genes and clinical features
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Fig. 6 The risk score, heatmap, survival status, clinical outcome, survival analysis and ROC curves in the (A) entire set, (B) train set and (C) test set
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Fig. 7 (A) Univariate analysis. (B) Multivariate Cox analysis. (C) Nomogram based on risk score, stage, grade, and age. (D) ROC curves of nomogram. (E) 
Calibration plots show the nomogram for predicting OS of 1-, 3- and 5-year
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Fig. 8 (A) Pathways enriched via GO and KEGG analysis in the high-risk group(B) TME score in different risk score groups. (C,D) Immune molecular expres-
sion. (E) Immune checkpoints. (*P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant)
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development, therapy resistance, and TME [26]. Studies 
showed autophagy, ferroptosis, and necroptosis could 
influence the malignant biological properties [27–31]. 
Autophagy can induce cisplatin resistance in OC patients 
[32, 33]. Pyroptosis-related genes influence OC tumor 
immunity [30, 34]. With the in-depth research on PCD’s 
roles in OC, scholars have realized that PCD-related 

genes might be helpful prognostic biomarkers and pro-
vide novel therapeutic options.

Our study identified a ten-novel PCD-related gene 
signature that can precisely predict the prognosis of OC 
patients. Those genes are PPP1R15A, OGG1, HERC1, 
CASP2, CAAP1, RB1, ZBP1, CD3E, CLTCL1, and 
CEBPB. Their main functions are listed in Table  1. OC 
patients were randomly separated into low- and high-risk 

Fig. 9 (A, B) Waterfall maps of the snv data in the high- and low-risk groups. (C) Differences of TMB in two groups. (D) Survival analysis in high and low 
TMB groups. (E)TMB correlated with risk score groups. (F) Mutation rates of ten genes
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Fig. 11 The mRNA expression of ten genes between IOSE80, A2780 and SKOV3

 

Fig. 10 The differences in common chemotherapy drugs between the high- and low-risk groups from the GDSC database
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groups based on the median score. Patients in the low-
risk group had better survival outcomes than those in the 
high-risk group, demonstrating its accurate prediction. 
The predictive signature had a favorable performance by 
internal verification and external validation (qRT-PCR). 
However, further investigations are required to elucidate 

how these PCD-related genes impact the prognosis of 
OC patients.

It is essential to understand the role model genes 
play in OC. By GESA analysis, we found our model 
genes enriched in the ErbB signaling pathway. The ErbB 
receptor family, also known as the EGF receptor family, 
includes the epidermal growth factor receptor (EGFR) 
or ErbB1/Her1, ErbB2/Her2, ErbB3/Her3, and ErbB4/
Her4 [70]. Some of our model genes worked via the ErbB 
signaling pathways. For example, 8-oxo guanine-DNA 
glycosylase (OGG1) had cross-regulation with the ErbB 
pathway in thyroid physiopathology [71]. HECT and 
RLD domain containing E3 ubiquitin protein ligase fam-
ily member 1 (HERC1) promoted triple-negative breast 
cancer by regulating the ErbB pathway [72]. RB tran-
scriptional corepressor 1 (RB1) fostered the development 
of breast cancer by PI3K/AKT signaling [73]. EGFR-tar-
geting molecules could redirect the immune response 
against tumor cells by tethering effector cells, such as 
CD3-epsilon (CD3E) T cells, to the surface of cancer cells 
[74]. The other six genes are uninvestigated in the ErbB 
pathway. Since the role of the ErbB signaling pathway in 
OC tumorigenesis was well-established [75–77], we pre-
sumed our predictive model could affect OC develop-
ment through the ErbB signaling pathway. More work is 
needed to understand their mechanisms in OC.

In recent years, our understanding of the mecha-
nisms of cell death and its consequences on immunity 
and homeostasis has increased substantially [9]. Our 
study showed low-risk group presented a higher level of 
immune infiltration cells, such as dendritic cells (DCs) 
activated, T cells, CD8 T cells, CD4 memory activated, 
and T cells follicular helper. DCs are the most widely 
used cellular vaccination therapy in OC patients [78]. 
Lymphocytes, such as T cells, CD8 T cells, CD4 memory 
activated, and T cells follicular helper, are the primary 
effector cells in cellular immunity. They produce cyto-
kines in immune responses to mediate inflammation and 
regulate other types of immune cells [79]. In addition, the 
inflammatory disease, such as endometriosis, is also a 
contributor to OC. A system review showed that patients 
with endometriosis have a higher risk of developing ovar-
ian cancer [80, 81]. OC is indeed an immunogenic and 
inflammatic disease closely tied to those immune cells 
mentioned above [82]. Although many clinical trials have 
reported, response rates of various antibodies target-
ing PD-1 or PD-L1 ranged from 4 to 15% in OC patients 
[83]. Our study found that the low-risk group presented 
a higher CD274 (PDL1) and PDCD1 (PD1). Patients with 
lower risk scores may benefit from PD-1 or PD-L1 inhibi-
tors, such as nivolumab, pembrolizumab, and dostar-
limab [34].

Since there are few choices left for the recurrence 
of OC patients, it is also interesting to consider some 

Table 1 The biological functions of ten PCD-related genes
Gene Physiological 

functions
Inflamma-
tion/immune 
responses

Roles in OC/
other cancers

PPP1R15A integrated stress 
response regula-
tor [35, 36].

enhances anti-
tumor immunity 
[37]

influences perito-
neal metastasis of 
OC [38].

OGG1 DNA repairment 
[39, 40].

promotes DCs 
activation 
[41], related to 
NFκB-dependent 
inflammatory 
[42].

arrests cancer cell 
proliferation [43].
cooperates with 
TP53 mutations in 
OC [44].
increase OC sus-
ceptibility [45].
induces PARP 
resistance [46].

HERC1 neurodevelop-
ment, maintain 
genomic integrity, 
and cell growth 
[47].

immune re-
sponse [47].

regulates breast 
cancer metastasis 
[48].

CASP2 participates in 
apoptosis process 
and genomic 
stability [49].

backs up efficient 
expression of 
type I interferon 
[50].

affects colony 
formation of 
cancer cells and 
chemotherapy 
resistance [51].

CAAP1 inhibit apoptosis 
pathway [52].

interacts with B or 
T cells [52].

regulates the 
apoptosis and au-
tophagy in gastric 
cancer [53].

RB1 regulates cell 
cycle progression 
[54].

enhances im-
munotherapy 
sensitivity [54, 55].

predicts the poor 
prognosis of OC 
[56, 57].

ZBP1 mediates innate 
immunity, balance 
inflammation and 
cell death [58].

potential target 
for immune 
checkpoint 
blockade inhibi-
tors [59].

regulates cell 
death in OC via 
the RIP3/MLKL 
pathway [60].

CD3E located on surface 
of T lymphocytes 
[61].

adaptive immune 
response [61] and 
conduct T cell re-
ceptor transmis-
sion [62].

a prognostic 
biomarker for OC 
patients [63].

CLTCL1 control intracel-
lular traffic, tu-
morigenesis and 
cell proliferation 
[64, 65].

(-) a favor factor for 
breast cancer 
[66].

CEBPB cell proliferation, 
differentiation, 
cell death, and 
tumorigenesis 
[67].

monocyte-to-
macrophage 
differentiation 
[68].

mediate the PARP 
resistance in OC 
[69].
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potential target drugs. Patients in the low-risk group had 
higher sensitivity to GDC.0449 and A.443,654. GDC-
0449 can inhibit the Hedgehog, a pathway that regu-
lates OC tumorigenesis and chemotherapy resistance 
[84]. Furthermore, it can improve the antitumor activity 
of nano-doxorubicin, a common drug for OC patients 
[85]. Thus, GDC-0449 might be a promising option in 
OC patients with low-risk scores. A-443,654 is a specific 
Akt inhibitor. Few studies focus on its role in OC [86]. 
We found that dasatinib, pazopanib, and nilotinib may 
benefit OC patients with high-risk scores. Dasatinib was 
reported as an enhancer to paclitaxel to suppress tumor 
progression [87]. Pazopanib is now applied in Phase I/II 
clinical trials for OC patients [88]. Moreover, nilotinib 
candidates for carboplatin and paclitaxel in OC treat-
ments [89]. However, deeper investigations and clinical 
trials are still needed to validate the application of these 
drugs in OC.

In the present study, the PCD-related gene signature 
is a practical prognostic predictor for OC patients. We 
demonstrated the association between the risk model 
and the tumor microenvironment. We also analyzed 
the potential roles of our model in chemoresistance and 
immune-related therapy. The PCD-related gene signa-
ture could help clinicians stratify high-risk OC patients 
who need individually additional treatment and intensive 
follow-up plans. However, our study had some limita-
tions. Firstly, we performed research based on data from 
the TCGA database and validated it only by PCR. There 
is still a need for more clinical trials and samples to inves-
tigate its potential role in prognosis prediction. Secondly, 
we should have conducted fundamental experiments to 
explore the potential mechanisms of PCD-related genes 
in vivo and in vitro. Thirdly, some potential risk factors, 
such as gene mutation and therapies that affected OC 
prognosis, were not brought into our nomogram because 
of unavailable information in TCGA.

Conclusions and perspectives
We constructed and validated a predictive signa-
ture based on ten PCD-related genes for OC patients 
(PPP1R15A, OGG1, HERC1, CASP2, CAAP1, RB1, 
ZBP1, CD3E, CLTCL1, and CEBPB). Our model might 
help clinicians predict survival outcomes and estimate 
the therapy response in OC patients. Future work will 
focus on improving prediction abilities and further test-
ing in experimental research and prospective clinical 
trials.
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