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Abstract
Background  Papillary thyroid carcinoma (PTC) is the most frequent histological type of thyroid carcinoma. Although 
an increasing number of diagnostic methods have recently been developed, the diagnosis of a few nodules is still 
unsatisfactory. Therefore, the present study aimed to develop and validate a comprehensive prediction model to 
optimize the diagnosis of PTC.

Methods  A total of 152 thyroid nodules that were evaluated by postoperative pathological examination were 
included in the development and validation cohorts recruited from two centres between August 2019 and February 
2022. Patient data, including general information, cytopathology, imprinted gene detection, and ultrasound features, 
were obtained to establish a prediction model for PTC. Multivariate logistic regression analysis with a bidirectional 
elimination approach was performed to identify the predictors and develop the model.

Results  A comprehensive prediction model with predictors, such as component, microcalcification, imprinted gene 
detection, and cytopathology, was developed. The area under the curve (AUC), sensitivity, specificity, and accuracy of 
the developed model were 0.98, 97.0%, 89.5%, and 94.4%, respectively. The prediction model also showed satisfactory 
performance in both internal and external validations. Moreover, the novel method (imprinted gene detection) was 
demonstrated to play a role in improving the diagnosis of PTC.

Conclusion  The present study developed and validated a comprehensive prediction model for PTC, and a visualized 
nomogram based on the prediction model was provided for clinical application. The prediction model with imprinted 
gene detection effectively improves the diagnosis of PTCs that are undetermined by the current means.
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Introduction
Thyroid carcinoma (TC) is the most common malig-
nancy in the endocrine system, which has been ranked 
fifth among malignancies in women [1, 2]. Through wide-
spread application of high-resolution ultrasound, the 
detection rate of TC has significantly increased [3]. Pap-
illary thyroid carcinoma (PTC), which is the most com-
mon variety of differentiated TC, has a good prognosis in 
most instances [4]. However, a few aggressive histologic 
variants of PTC may develop recurrence and metastasis, 
remaining the primary threat to the lives of PTC patients 
[5, 6]. Currently, the most frequently used diagnostic pro-
tocol is to first determine whether fine-needle aspiration 
(FNA) biopsy for cytological diagnosis is needed based 
on the sonographic appearance of the nodules prior to 
performing supplemental testing with several molecu-
lar markers in accordance with the cytopathological 
results [7]. Disappointedly, FNA still remains indeter-
minate cytological categories, while molecular testing is 
limited to geographical variation [8]. Therefore, for thy-
roid nodules that cannot be accurately diagnosed with 
existing clinical technologies, the common practice is 
to undertake surgical interventions, such as lobectomy 
or total thyroidectomy, which contribute to overdiagno-
sis and overtreatment in some cases, causing patients to 
take unnecessary risks [9–12]. In view of this, accurately 
distinguishing benign and malignant thyroid nodules 
has become the most crucial question that needs to be 
answered in the initial evaluation, and a novel method 
urgently needs to be developed [13].

Genomic imprinting is an epigenetic mechanism that 
plays a critical role in human development and diseases 
[14]. Under normal conditions, imprinted genes are only 
expressed from the maternal or paternal allele in post-
embryonic somatic cells because one copy is repressed 
by epigenetic markers, such as DNA methylation and 
histone acetylation. However, in some cases, imprinted 
genes may be abnormally activated through demeth-
ylation, resulting in expression from both alleles. This 
phenomenon has been identified as loss of imprinting 
(LOI), which occurs in a variety of human malignan-
cies [15]. Based on this finding, Shen et al. developed 
a novel approach named Quantitative Chromogenic 
Imprinted Gene In Situ Hybridization (QCIGISH) to 
quantify and visualize the allele-specific expression of 
imprinted genes in cell nuclei [16]. Conceptually different 
from other molecular tests which identify genetic muta-
tions, QCIGISH detects epigenetic imprinting alterations 
through LOI which represent the earliest visible change 
in human cancers. LOI can occur early in the process of 
cancer development preceding genetic mutations, thus 
providing a potential window for early cancer detection 
at its more curable stage. Later, this method was utilized 
by Xu et al. in their clinical research, which indicated 

the excellent capability to discriminate malignant from 
benign thyroid nodules [17]. To improve the assessment 
and management of PTC, this new method was used in 
the present study.

Herein, the present study was focused on patients 
recruited from two independent centres to develop and 
validate a comprehensive prediction model for PTC using 
patients’ general information, imprinted gene detection, 
cytopathology, and ultrasound features. The present find-
ings are expected to further improve the clinical treat-
ment effects and prognosis of PTC patients.

Materials and methods
The development and validation of the prediction model 
is reported in light of the TRIPOD checklist [18].

Study design and patients
The retrospective study of two independent centres 
was conducted after its approval by the Ethics Commit-
tee of the Affiliated Hospital of Jiangsu University, and 
informed consent was obtained from all patients. The 
development cohort included consecutive patients from 
the Affiliated Hospital of Jiangsu University, and the 
validation cohort included patients from The Affiliated 
Taizhou People’s Hospital of Nanjing Medical University. 
The patients were admitted to the two centres between 
August 2019 and February 2022. All patients underwent 
ultrasound examination, FNA biopsy, imprinted gene 
detection, and thyroid surgery. Cases with complete data 
were included in the study, except for patients meeting 
the following criteria: (a) history of radiation exposure 
in adolescence or a family history of TC; (b) previous 
subtotal thyroidectomy for TC; (c) postoperative histo-
pathology showing other types of TC apart from PTC; 
(d) cytopathology specimen that was not satisfactory or 
failed to be diagnosed; (e) imprinted gene detection that 
was unable to be diagnosed; and (f ) abnormal thyroid 
function test results.

Model variables and outcome
The candidate model variables included the patients’ 
general information, ultrasound features, cytopathol-
ogy and imprinted gene detection. The general informa-
tion comprised the patients’ age and sex. In accordance 
with the relevant guidelines and literature, the following 
variables were included in the ultrasound features: maxi-
mum diameter, component, echogenicity, margin, shape, 
location, microcalcification and blood flow of the nodule 
[19–21]. MylabTwice (Esaote, Genova, Italia) and LOGIQ 
E8 (General Electric, Boston, United States of America) 
were utilized to perform ultrasound examination, and 
the ultrasonic graphics were reviewed by two experi-
enced radiologists at the respective centres to attain the 
required ultrasound features. Adler grade classifications 
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were conducted to assess blood flow of the nodules, and 
the results were indicated by 4 grades as follows: (0) no 
blood flow signal; [1] one or two spot-like blood flow sig-
nals; [2] two or three spot-like or short strip blood flow 
signals; and [3] sheet-like, striped, or dendritic blood flow 
signals [22]. The reported cytopathology results referred 
to the following Bethesda System: (I) Nondiagnostic; (II) 
Benign; (III) Atypia of undetermined significance; (IV) 
Follicular neoplasm (V) Suspicious for malignancy; (VI) 
Malignant [23]. In the present study, the nodules with 
Category II were classified to the benign group, Category 
III, IV and V to the indeterminate group and Category 
VI to the malignant group [23, 24]. The punctured cytol-
ogy specimens were sent to a professional testing insti-
tution (Lisen Imprinting Diagnostics, Wuxi, China) for 
imprinted gene detection, and the results were divided 
into 5 grades (Grades 0–IV) as follows: Grades 0 and I 
were considered negative, while Grades II, III, and IV 
were considered positive [17].

The outcome of interest was PTC confirmed by post-
operative histopathology. Formalin fixation and paraffin 
embedding (FFPE) nodule specimens were obtained after 
the operation, and the pathological results were con-
firmed by two experienced pathologists independently 
according to the 4th edition of the World Health Orga-
nization (WHO) classification of head and neck tumours 
[25]. When the results were inconsistent, another senior 
pathologist was asked to assess the findings and deter-
mine the final result. During the entire process, the 
pathologists were unaware of the patients’ other exami-
nation results.

Imprinted gene detection
The imprinted gene detection was based on QCIGISH 
technology [16]. The FNA specimens were fixed in 
10% formalin neutral buffer immediately after sam-
pling, mounted on positively charged slides, and dried 
overnight. The sample slides were pretreated follow-
ing the RNAscope sample preparation procedures [26]. 
QCIGISH was performed using probes targeting the 
noncoding intronic regions of nascent RNAs from the 
SNRPN and HM13 imprinted genes [17]. After signal 
amplification and haematoxylin staining, the slides were 
scanned under a 400× bright field microscope. The num-
ber of nuclei containing no signal (no expression = N0), 
one signal (single-allelic expression = N1), two signals 
(biallelic expression = N2), and more than two signals 
(multiallelic expression = N2plus) were counted from at 
least 1,200 nuclei for each sample per gene. The biallelic 
expression (BAE), multiallelic expression (MAE), and 
total expression (TE) were then calculated according to 
the following equations:

	
BAE =

N2

N1+N2+N 2plus
× 100%

	
MAE =

N2plus

N1+N2+N 2plus
× 100%

	
TE =

N1+N2+N2plus

N0+N1+N2+N2plus
× 100%

The QCIGISH grades for each case were calculated 
according to the previously reported diagnostic model, 
and detailed information is provided in the Supplemen-
tary Fig. 1, Additional file 1 [17].

Model development
To develop the prediction model, age and maximum 
diameter were considered continuous variables, while 
the other variables were considered categorical variables. 
First, by performing univariate analysis, variables that 
were significantly different (P < 0.05) between the benign 
and malignant groups were considered potential predic-
tors. Next, the model was established through multi-
variate logistic regression analysis with a bidirectional 
elimination approach. When the model had the minimal 
Akaike information criterion (AIC) value with the best 
goodness of fit, the variables with P < 0.05 were finally 
selected into the Model [27]. Cook’s distance and vari-
ance inflation factor (VIF) were used to detect abnormal 
data and multicollinearity of the variables, respectively. 
The performance of the model was presented using the 
receiver operating characteristic (ROC) curve and area 
under the curve (AUC).

Model validation
The final model was validated using both internal and 
external validation. The enhanced bootstrap method 
(number of repetitions = 100) was utilized to internally 
validate with optimism and mean absolute error. To vali-
date the results externally, the AUC, Brier score, calibra-
tion intercept, calibration curve coupled with calibration, 
and discrimination slopes were plotted or calculated.

Furthermore, we evaluated the robustness of the model 
with respect to the changes in the external validation 
data. Firstly, the R package simFrame was used to arti-
ficially create 10% missing values through the method 
of missing completely at random (MCAR) [28]. Subse-
quently, multiple imputation was performed on the miss-
ing data using the random forest method through the R 
package mice [29]. Finally, the new dataset was evaluated 
by the model to calculate evaluation metrics.
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Model comparison and model visualization
To compare the models with and without variable 
imprinted gene detection, we compared their AUC 
through the DeLong test, and we performed model fit-
ting using the likelihood ratio (LR) test [30]. The clinical 
net benefit was evaluated by the decision curve analysis 
(DCA) curve [31]. In addition, the diagnostic ability was 
compared with net reclassification improvement (NRI) 
and integrated discrimination improvement (IDI) [32]. 
Finally, a nomogram and web-based dynamic nomogram 
were developed to visualize the prediction model.

Statistical analysis
All statistical analyses were performed with SPSS 26.0 
(International Business Machines Corporation, New 
York, United States of America) and R version 4.0.2 (The 
R Foundation for Statistical Computing, Vienna, Austria).

Results
Patient characteristics
In accordance with the exclusion criteria, 44 patients 
were excluded from the development and validation 
cohorts (Fig.  1). The development cohort included 90 
nodules, while the validation cohort included 62 nodules. 

In the development cohort, nodules were divided into 
benign (n = 57) and malignant (n = 33) groups based on 
postoperative histopathological results. The median 
age was 47.0 (i.q.r 40.5–56.0) years in the benign group 
and 48.0 (i.q.r 35.0–53.5) years in the malignant group. 
Female patients made up the majority in both the benign 
(77.2%) and malignant (69.7%) groups. The internal 
echogenicity of the nodules in the two groups was domi-
nated by hypoechoicity. In addition, nodules commonly 
occurred in the middle lobe of the thyroid, accounting for 
56.1% and 63.6% of nodules in the benign and malignant 
groups, respectively. Further baseline information for the 
two cohorts is shown in Table 1.

Model development
The component, margin, microcalcification, cytopa-
thology, and imprinted gene detection were identified 
as potential predictors of PTC (P < 0.05) via univariate 
analysis. Next, multivariable logistic regression analysis 
demonstrated that four variables, namely, component (Z: 
2.71, P < 0.01), microcalcification (Z: 2.35, P = 0.02), cyto-
pathology (Z: 2.54, P = 0.01), and imprinted gene detec-
tion (Z: 3.50, P < 0.01), showed statistical significance and 
entered the final model (Table 2). The AIC of the model 

Fig. 1  The flowchart of the nodules selected into the development and validation cohorts from two centers
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was 41.36, while the Cook’s distances calculated to dis-
criminate the influential cases showed that the largest 
one was smaller than 0.40. Consequently, the equation of 
the final prediction model for PTC was Y = -10.62 + 5.52 
(component) + 3.23 (microcalcification) + 2.02 

(cytopathology) + 4.84 (imprinted gene detection). The 
VIFs of component, microcalcification, cytopathology, 
and imprinted gene detection were 2.25, 1.56, 1.76, and 
1.35, respectively. The AUC of the ROC was 0.98 (95% 
CI: 0.94–1.00) (Fig.  2a). The sensitivity, specificity, and 

Table 1  The baseline of patients in development and validation cohort
Development Validation
Benign (n = 57) Malignant (n = 33) P Benign (n = 26) Malignant (n = 36) P

Age, y 47.0 (40.5–56.0) 48.0 (35.0–53.5) 0.58 45.0 (32.8–51.8) 43.5 (35.3–52.5) 0.87
Sex ratio (M: F) 1 : 3.4 1 : 2.3 0.43 1 : 5.5 1 : 6.2 0.75
Maximum diameter, mm 13.0 (8.5–23.5) 13.0 (9.0–16.5) 0.42 16.0 (10.0–25.5) 12.0 (8.3–15.0) < 0.01
Component 0.04 0.05
  Solid 44 (77.2) 31 (93.9) 18 (69.2) 32 (88.9)
  Partially cystic 13 (22.8) 2 (6.1) 8 (30.8) 4 (11.1)
Echogenicity 0.12 0.92
  Markedly hypoechoic 10 (17.5) 11 (33.3) 6 (23.1) 7 (19.4)
  Hypoechoic 29 (50.9) 17 (51.5) 13 (50.0) 20 (55.6)
  Iso-echoic 14 (24.6) 2 (6.1) 5 (19.3) 7 (19.4)
  Hyperechoic 1 (1.8) 0 (0) 1 (3.8) 0 (0)
  Mix-echoic 3 (5.3) 3 (9.1) 1 (3.8) 2 (5.6)
Margin 0.02 < 0.01
  Microlobulated 8 (14.0) 13 (39.4) 2 (7.7) 18 (50.0)
  Irregular 25 (43.9) 12 (36.4) 8 (30.8) 12 (33.3)
  Well circumscribed 24 (42.1) 8 (24.2) 16 (61.5) 6 (16.7)
Shape 0.67 < 0.01
  Wider than taller 47 (82.5) 7 (21.2) 19 (73.1) 8 (22.2)
  Taller than wider 10 (17.5) 26 (78.8) 7 (26.9) 28 (77.8)
Location 0.67 0.28
  Upper 8 (14.0) 6 (18.2) 8 (30.8) 14 (38.9)
  Middle 32 (56.1) 21 (63.6) 11 (42.3) 16 (44.4)
  Lower 12 (21.1) 4 (12.1) 7 (26.9) 4 (11.1)
  Isthmus 5 (8.8) 2 (6.1) 0 (0) 2 (5.6)
Microcalcification < 0.01 < 0.01
  Yes 5 (8.8) 19 (57.6) 2 (7.7) 30 (83.3)
  No 52 (91.2) 14 (42.4) 24 (92.3) 6 (16.7)
Blood flow 0.60 0.63
  Grade 0 21 (36.8) 12 (36.4) 13 (50.0) 15 (41.7)
  Grade 1 26 (45.6) 18 (54.5) 6 (23.1) 13 (36.1)
  Grade 2 4 (7.0) 2 (6.1) 4 (15.4) 6 (16.6)
  Grade 3 6 (10.5) 1 (3.0) 3 (11.5) 2 (5.6)
Imprinted gene detection < 0.01 < 0.01
  Grade 0 26 (45.6) 0 (0) 16 (61.5) 0 (0)
  Grade I 22 (38.6) 1 (3.0) 5 (19.2) 4 (11.1)
  Grade II 5 (8.8) 10(30.3) 3 (11.5) 12 (33.3)
  Grade III 4 (7.0) 14 (42.4) 2 (7.8) 17 (47.3)
  Grade IV 0 (0) 8 (24.3) 0 (0) 3 (8.3)
Cytopathology < 0.01 < 0.01
  Benign (Category II) 20 (35.0) 1 (3.0) 17 (65.4) 0 (0)
  AUS (Category III) 35 (61.4) 9 (27.3) 5 (19.2) 3 (8.3)
  FN (Category IV) 1 (1.8) 4 (12.1) 4 (15.4) 4 (11.1)
  SUS (Category V) 1 (1.8) 7 (21.2) 0 (0) 24 (66.7)
  Malignant (Category VI) 0 (0) 12 (36.4) 0 (0) 5 (13.9)
Note: Values are presented as n (%) or median (i.q.r)

Abbreviations: AUS, atypia of undetermined significance; FN, follicular neoplasm; SUS, suspicious for malignancy
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accuracy of the model were 97.0%, 89.5%, and 94.4%, 
respectively.

Model validation
The model was subjected to both internal and external 
validation. Through internal validation with enhanced 
bootstrapping, the calibration curve was plotted (Fig. 3) 
to check the internal validity, and the predicted PTC was 
in agreement with the actual observation after internal 
validation, thereby indicating that the model had good 
calibration. The mean absolute error was 0.033, while the 

mean squared error was 0.002. The corrected C-statistic 
was 0.98, with a mean optimism of 0.01.

External validation was conducted using a validation 
cohort comprising 62 nodules, and an ROC curve was 
generated (Fig.  2b and c). In applying the model to the 
data derived from the validation cohorts, the AUC was 
0.96 (95% CI: 0.90–1.00), and the Brier score was 0.06. 
The sensitivity and specificity values were 100.0% and 
88.5%, respectively. The calibration intercept and calibra-
tion slope were 0.40 and 0.63, respectively, which indi-
cated good overall calibration (Fig. 4) [33]. In addition to 
the AUC, the discrimination slope, which was 0.82, was 
used to assess the discrimination of the model.

Sensitivity analysis was conducted to verify the robust-
ness of the model. 10% of the external validation data 
were randomly missing and imputed by the MICE algo-
rithm. The sensitivity and specificity values were 100.0% 
and 80.8%, respectively. The AUC, Brier score, calibration 
intercept and calibration slope of the external validation 

Table 2  The multivariable logistic regression results of candidate 
variables for the model
Variables β Z P 95% CI
Component
Microcalcification
Cytopathology
Imprinted gene detection

5.52
3.23
2.02
4.84

2.71
2.35
2.54
3.50

< 0.01
0.02
0.01
< 0.01

1.52–9.52
0.54–5.93
0.46–3.57
2.13–7.55

Abbreviations β, regression coefficient; CI, confident interval

Fig. 3  The calibration curve of the prediction model via internal validation with enhanced bootstrap method

 

Fig. 2  The receiver operating characteristic (ROC) curves of the prediction model in the development (a) and external validation cohorts (b). (c) The 
comparison of ROC curves between the prediction model in the development and external validation cohorts
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were 0.95, 0.10, 0.36 and 0.57, respectively after re-evalu-
ating the model. The ROC curves and calibration curves 
plotted are shown in the Supplementary Fig.  2, Addi-
tional file 1.

Model comparison
In the present study, imprinted gene detection was the 
method of choice due to its novelty and recent clinical 
trials. To study the role of imprinted gene detection in 
the prediction model, we compared the difference in sta-
tistics between the model with and without it. First, we 
compared the ROC curves of the two models and calcu-
lated their AUC values (Fig. 5a). The AUC of the model 
with imprinted gene detection was 0.98, while that of 
the model without imprinted gene detection was 0.92. 

Although there was little difference in the AUC values 
between the two models, the DeLong test, which is based 
on variance and covariance, showed Z = -2.13 (P = 0.03), 
demonstrating that the difference between the two mod-
els was significant. Thus, there were advantages in using a 
model with a predictor of imprinted gene detection than 
without it. Next, to identify the improvements of mod-
els in risk predictions, NRI and IDI were performed (NRI 
[Categorical]: 0.09, 95% CI: -0.06–0.24, P = 0.22; NRI 
[Continuous]: 1.69, 95% CI: 1.49–1.90, P < 0.01; IDI: 0.18, 
95% CI: 0.11–0.25, P < 0.01). Furthermore, the LR test was 
conducted to compare the model fitting of the two mod-
els (L.R. Chisq: 2.42; P < 0.01), indicating that the model 
with imprinted gene detection was better than that with-
out it. Finally, DCA was applied to compare the clinical 

Fig. 5  (a) The comparison of ROC curves between the prediction model with the predictor namely imprinted gene detection and without it. (b) The 
decision curve analysis (DCA) curves showing the net clinical benefit of the models. Model 1 represents the model without the predictor namely im-
printed gene detection and Model 2 with it. The curve All and None represent the situation that all cases are intervened and none of them are intervened, 
respectively

 

Fig. 4  The calibration plot of the prediction model through external validation
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application and benefits between the two models, further 
confirming that the model with imprinted gene detection 
showed favourable effects for PTC patients (Fig. 5b).

Model visualization
To avoid using the complicated formula and better apply 
it to clinical settings, we combined all the variables in 
the final prediction model to construct a nomogram 
for predicting PTC (Fig.  6a). Summing up the points of 
the four variables, the acquired total points effortlessly 
yielded the corresponding predicted values. Moreover, an 
online dynamic nomogram (Fig. 6b) was built to further 
simplify the manipulations (https://cywujs.shinyapps.io/
modelPTC/).

Discussion
In the present study, we retrospectively analysed the 
general information, ultrasound features, cytopathology, 
and imprinted gene detection in a total of 152 nodules, 
and we established a comprehensive prediction model 
for PTC. The model had satisfactory performance in 
both internal and external validation, demonstrating that 
imprinted gene detection has advantages in increasing 

diagnostic efficiency. Based on the prediction model, a 
nomogram was provided for clinical application.

Ultrasound is recognized as the first priority and plays 
an important role in the diagnosis of thyroid nodules 
[20]. In the present study, eight ultrasound features that 
may be related to PTC were used as candidate variables 
for the model [19, 34, 35]. The present results showed 
that the component was the most significant variable 
among the ultrasound features. As reported, approxi-
mately 88% of PTCs have solid components, while car-
cinomas with marked cystic changes are relatively rare, 
accounting for only 6% of lesions [36, 37]. In addition, a 
recent study further demonstrated that the sensitivity of 
solid components is the highest of all ultrasound features 
[38]. Microcalcification was also included as a predictor 
in the model. Previous studies have reported that micro-
calcification is closely related to PTC based on coloured 
Doppler images combined with contrast-enhanced ultra-
sonography (CEUS), showing that microcalcification is 
a strong predictor for PTC [39, 40]. However, various 
scholars have also proposed that CEUS has difficulty in 
determining whether the tiny hyperechoic foci derived 
from microcalcifications or colloid crystals sometimes 

Fig. 6  The static (a) and online dynamic (b) nomogram based on the comprehensive prediction model for predicting papillary thyroid carcinoma

 

https://cywujs.shinyapps.io/modelPTC/
https://cywujs.shinyapps.io/modelPTC/
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lead to biases in predictions of the model, thus requiring 
constant observation in subsequent work [41]. Moreover, 
it is worth noting that nodules with irregular margins 
have been reported to be associated with malignancy 
[20]. In the present study, the margin of the nodules was 
significantly different (P = 0.02) between the two groups, 
but multivariate logistic regression analysis indicated that 
the margin did not show statistical significance (P = 0.75), 
which may be because the irregular margin of a few small 
nodules could not be clearly displayed on the ultrasound 
images.

Ultrasound-guided FNA biopsy is the most recom-
mended method for nodules that are difficult to diagnose 
under ultrasound emanations, especially for nodules 
with maximum dimensions equal to or more than 1 cm 
and high suspicion ultrasound features [19]. Accord-
ing to different guidelines, the sensitivity and specificity 
of diagnostic performance for FNA range from 70.9 to 
94.5% and 26.4–62.4%, respectively [42]. In the majority 
of hospitals, cytopathological examination is regarded 
as a crucial factor in determining the surgical strategy, 
and the result is sufficient for making accurate clinical 
management decisions in most situations [43]. Never-
theless, Category III and IV nodules, which account for 
approximately 20–30% of the results, are indeterminate, 
and the rates of malignancy range from 20 to 30% and 
25–40%, respectively [19]. The uncertainty in cytopathol-
ogy greatly increases the confusion for both doctors and 
patients, resulting in repeat FNA or unnecessary surgery 
[44].

It has been reported that up to 30% of cases tested in 
cytopathology lack the morphological features needed to 
provide a definitive classification. Thus, molecular tests 
have been developed to help diagnose these uncertain 
cases and have been recommended by the ATA guide-
lines [19, 45]. The analysis of the BRAF mutation has 
emerged as a significant advancement in the molecular 
diagnosis of thyroid carcinoma in recent years, garner-
ing extensive research attention [46]. In addition, a vari-
ety of biomarkers have been used clinically, such as RAS 
mutation, RET/PTC rearrangement, and PAX8-PPARγ 
rearrangement [47]. Considerable progress has been 
made in the continuous development of molecular test-
ing platforms, including Afirma Genomic Sequencing 
Classifier (GSC) and ThyroSeq v3, which are currently 
the two main thyroid molecular classifiers with proven 
clinical efficacy, but both have some limitations, such as 
low specificity, low positive predictive value, or high price 
[48].

During the past decade, there has been increasing 
interest in the relationship between epigenetics and dis-
eases. The rapid development of epigenetics in the 21st 
century has provided researchers with new ideas for the 
occurrence and development of diseases [49]. Epigenetic 

changes, especially variations in epigenetic markers, have 
been considered to play a role in the diagnosis and prog-
nosis of up to 80% of carcinomas [50]. Genomic imprint-
ing, which is one of the epigenetic mechanisms and the 
biallelic expression caused by LOI, is ubiquitous in dif-
ferent types of carcinomas [51]. Based on this phenom-
enon, the QCIGISH method was developed to visualize 
and quantitatively analyse noncoding RNA allelic expres-
sion of three imprinted genes with the purpose of early 
diagnosis of ten types of carcinomas, including PTC. The 
sensitivity and specificity of QCIGISH for predicting TC 
have been reported to be 91% and 86%, respectively [16]. 
In a recent clinical study, imprinted gene detection using 
an improved gene combination of SNRPN and HM13 
demonstrated a sensitivity of 100% [17]. To address false-
positives in imprinted gene detection, a comprehensive 
model combining imprinted gene detection with other 
available clinical detections may be helpful. The present 
prediction model is the first to utilize imprinted gene 
detection combined with traditional predictors for pre-
dicting PTC, with a sensitivity of 97.0% and specificity 
of 89.5%. The comparison between the models with and 
without imprinted gene detection further confirmed the 
meaningful role that imprinted gene detection has in 
predicting PTC. The results revealed that the model with 
imprinted gene detection not only had a higher AUC but 
also had the ability to include malignant nodules omit-
ted as benign and exclude benign nodules misdiagnosed 
as malignant by the model without it. Furthermore, the 
results indicated that the model with imprinted gene 
detection had a better model fitting. Various studies have 
indicated that the addition of imprinted gene detection 
could further diagnose nodules that were originally inde-
terminate under cytopathology and ultrasound features.

There were several limitations in the present study. 
First, the number of nodules was not sufficient, which 
may have influenced the predictive effect of the model. 
Second, the present study is only applicable to the diag-
nosis of patients with suspected PTC, while it remains 
unknown whether it is effective in the diagnosis of other 
types of TC. Last, the patients recruited for developing 
and validating the model were all from one province, and 
subsequent research is needed to determine whether 
geographical variations affect the accuracy of the model’s 
prediction.

Conclusion
In conclusion, the present study developed and validated 
a novel comprehensive prediction model for PTC, which 
included, imprinted gene detection, components, micro-
calcification, and cytopathology. Internal and external 
validations demonstrated that the model had excellent 
predictive performance. The comprehensive prediction 
model can improve the diagnosis of PTC and reduce 
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unnecessary operations. The visualized nomogram based 
on the prediction model was provided for clinical appli-
cation. The new model is expected to solve the difficult 
problem of diagnosing PTC to a certain extent.
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