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Abstract
Background  Patients-derived xenograft (PDX) model have been widely used for tumor biological and pathological 
studies. However, the metabolic similarity of PDX tumor to the primary cancer (PC) is still unknown.

Methods  In present study, we established PDX model by engrafting primary tumor of pancreatic ductal 
adenocarcinoma (PDAC), and then compared the tumor metabolomics of PC, the first generation of PDX tumor 
(PDXG1), and the third generation of PDX tumor (PDXG3) by using 1H NMR spectroscopy. Then, we assessed the 
differences in response to chemotherapy between PDXG1 and PDXG3 and corresponding metabolomic differences 
in drug-resistant tumor tissues. To evaluate the metabolomic similarity of PDX to PC, we also compared the 
metabolomic difference of cell-derived xenograft (CDX) vs. PC and PDX vs. PC.

Results  After engraftment, PDXG1 tumor had a low level of lactate, pyruvate, citrate and multiple amino acids (AAs) 
compared with PC. Metabolite sets enrichment and metabolic pathway analyses implied that glycolysis metabolisms 
were suppressed in PDXG1 tumor, and tricarboxylic acid cycle (TCA)-associated anaplerosis pathways, such as amino 
acids metabolisms, were enhanced. Then, after multiple passages of PDX, the altered glycolysis and TCA-associated 
anaplerosis pathways were partially recovered. Although no significant difference was observed in the response of 
PDXG1 and PDXG3 to chemotherapy, the difference in glycolysis and amino acids metabolism between PDXG1 and 
PDXG3 could still be maintained. In addition, the metabolomic difference between PC and CDX models were much 
larger than that of PDX model and PC, indicating that PDX model still retain more metabolic characteristics of primary 
tumor which is more suitable for tumor-associated metabolism research.
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Background
Subcutaneous and orthotopic cell line-derived xeno-
graft (CDX) animal models have been widely used for 
the thousands of researches and make a great con-
tribution to development of oncological biology and 
oncological pharmacology [1]. Recently, with the deep-
ening understanding of tumor heterogeneity, scholars 
realized that CDX models cannot realistically mimic 
the genetic heterogeneity and biological properties 
of tumors in human [2–4]. These shortcomings hin-
der the progress of precision medicine based on five 
critical elements- clinical bioinformatics, precision 
methods, disease-specific biomarkers, drug discovery 
and development, and precision regulations, which are 
critical for establishing of executable integrative can-
cer model [1, 5, 6]. There is a general agreement that, 
although many issues contribute to the current ineffi-
cient drug discovery pipelines, deficiencies in in vivo 
models add substantially to the low rate of success [3]. 
Thus, to solve this problem, scholars develop animal 
models which directly graft tissues of patients’ primary 
tumor into immunodeficient mice, named patient-
derived tumor xenograft (PDX) models.

The development of PDX models assumes that 
the xenograft could faithfully resemble the original 
tumors, maintaining the molecular features and tumor 
microenvironment of the primary tumor [7]. Previ-
ous reports indicate that PDX models of multiple can-
cer, including colorectal, breast, bladder, renal and 
hepatopancreatobiliary cancers, could preserve gene 
expression pattern, mutational status, drug response 
and tumor architecture [8–11]. Therefore, PDX mod-
els provide a relatively realistic tools for predicting 
efficacy of treatment and identifying heterogeneous 
factors for patient-selection strategies [11]. However, 
recently, several reports indicate that the molecu-
lar profiles of PDX models of cancers, like pancreatic 
cancer and renal carcinoma, are significantly different 
to their primary tumors, but closely resemble those 
seen in metastatic and relapsed tumor [12–14]. Can-
cer cells derived from established PDX tumor models 
diverged from the primary tumor and their transcrip-
tomic signatures could not be reestablished even 
regrown in vivo [15]. These findings indicate that host 
microenvironment could pose an obvious influence 
on molecular characteristics of PDX, which leaded 

a differential biological behavior of PDX compared 
with the primary tumor. In addition, few metabolomic 
comparison between primary tumor and correspond-
ing PDX tumor established by grafting tumor tissues 
is reported. Thus, in present study, we compared the 
tumor metabolomics between primary tumor of pan-
creatic ductal adenocarcinoma (PDAC) and corre-
sponding PDX models, trying to clarify whether the 
PDX model could resemble the metabolic signatures of 
primary tumor of PDAC. Besides, we also evaluate the 
metabolomic similarity of PDX and CDX model with 
PC to define the superiority and suitability of PDX 
model over CDX model.

Methods
Ethics statement
The study protocol was approved by the Institutional 
Review Board of Fujian Medical University Union Hos-
pital (No.27, [2017] FMUUH ethical review, approved 
in May, 2017)., Fuzhou, China, and was conducted in 
accordance with the 1964 Declaration of Helsinki and 
its later amendments or comparable ethical standards. 
Informed consent was obtained from all patients. All 
animal experimental protocols were operated in accor-
dance with ARRIVE guidelines and other guidelines 
like the revised Animals (Scientific Procedures) Act 
1986 and the Guide for the Care and Use of Laboratory 
Animals.

Primary tumor sample collection
Twenty-seven primary tumor samples were collected 
from 27 PDAC patients who received PDAC radical 
surgery in Fujian Medical University Union Hospital 
from September 2017 to May 2018. After resection, 
tumors were immediately cleaned up, divided into 
pieces in size of 0.8 × 0.8 × 0.8  cm and washed with 
physiological saline. Then, each tumor sample were 
divided into three parts. One of them was stored in 
phosphate buffered solution in 4 ℃, prepared for 
establishment of PDX model. Another one was snap 
frozen with liquid nitrogen and stored in -80 ℃, used 
for 1H NMR spectroscopy. The last one was disposed 
with 10% formalin solution for histopathological exam-
ination. All tumor sample were confirmed by hema-
toxylin and eosin (H&E) staining histopathological 

Conclusions  Compared with primary tumor, PDX models have obvious difference in metabolomic level. These 
findings can help us design in vivo tumor metabolomics research legitimately and analyze the underlying mechanism 
of tumor metabolic biology thoughtfully.

Brief summary
The tumor metabolomics of patients-derived xenograft model is different to corresponding primary tumor, which 
mainly involved glycolysis and TCA-associated anaplerosis pathways of amino acids.
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examination and evaluated independently by two 
pathologists.

Cell culture and animal feeding
PDAC cell strain Panc-1(Catalog NO. SCSP-535) were 
obtained from Shanghai Institute of Cell Biology, Chi-
nese Academy of Sciences (Shanghai, China), At the 
circumstance of 5% CO2 and 37  °C, Panc-1 was incu-
bated in Dulbecco’s modified eagle medium (DMEM, 
Gibco, Thermo Fisher Scientific (China) Co., Ltd., 
Shanghai, China) added with 10% fetal bovine serum 
(Gibco) in cell incubator (3110, Thermo Scientific). 
Every 2–3 days, Panc-1 digested by 0.125% trypsino-
gen (Life Technologies, GrandIsland, NY, USA) for 
the passage with the ratio of 1:2–4. BALB/cnu/nu mice 
(male, 4 weeks, weighing 18–20  g), purchased from 
Shanghai Slac laboratory animals Co., Ltd. (NO: SCXK 
(HU) 2012-0002), were bred in Fujian Medical Univer-
sity Animals Centre (Fuzhou, china) with a standard 
SPF-grade laboratory condition.

Establishment and passage of PDX model
To establish the patient-derived xenograft (PDX) 
model, a fresh primary sample from each patient 
was subcutaneously implanted into three Balb/cnu/
nu mice (a total of 81 mice) after inducing anesthesia 
using isoflurane. After a period of 42 days, success-
ful establishment of PDX models was achieved in 34 
mice from 13 patients. These mice were divided into 
two groups: the first generation PDX model (PDXG1) 
comprising 24 mice, and the first generation PDX 
model for chemotherapy (PDXG1CH) comprising 
10 mice. When the passage tumor volume exceeded 
1500 mm3 or the diameter of passage tumors reached 
1.5 cm, the tumor-bearing mice of PDXG1 were eutha-
nized under anesthesia using isoflurane. The harvested 
PDX tumors from each patient were divided into three 
parts. One part underwent triple washing with phos-
phate-buffered solution and then implanted into new 
mice for further passages, while the other two parts 
were collected for 1H NMR-based metabolomic analy-
sis and H&E histopathological examination. For tumor 
passaging to new mice, each fresh tumor samples from 
PGXG1 were divided into pieces of 0.5*0.5*0.5  cm 
and remove necrotic tissue. These pieces were subcu-
taneously implanted into the back of mice by using a 
metal needle. After two passages of tumor, a total of 
28 third generation PDX models were formed from 13 
patients (referred to as PDXG3). These PDXG3 models 
were further divided into two groups: the third genera-
tion PDX model (PDXG3) consisting of 18 mice, and 
the third generation PDX model for chemotherapy 
(PDXG3CH) consisting of 10 mice. Like PDXG1, the 
PDXG3 mice were euthanized when the volume of 

passage tumors exceeded 1500 mm3 or the diameter 
of passage tumors reached 1.5 cm. The tumor samples 
were also collected for 1H NMR-based metabolomic 
analysis and H&E histopathological examination. The 
data regarding tumor growth were recorded every 
three days.

Albumin bound paclitaxel and gemcitabine treatment
Ten pairs of PDXG1CH and PDXG3CH mice were 
subjected to intraperitoneal injections of albumin-
bound paclitaxel (125mg/m2, Abraxane, AbraxisBio-
science, LLC) and gemcitabine (100mg/m2, Gemzar, 
Eli Lilly and Company) (AG) every 7 days once the 
tumor volume reached 50 mm3. After four rounds of 
AG injections, the PDXG1CH and PDXG3CH mice 
were humanely euthanized, and the harvested tumor 
tissues were rapidly frozen using liquid nitrogen and 
fixed with 10% formalin. All tumor growth data were 
recorded every three days. The pathological response 
of collected tumors to chemotherapy was evaluated by 
tumor pathologist based on tumor regression grade 
(TRG, 8th AJCC).

Establishment of CDX model
Panc-1 in the exponential phase were digested with 
0.125% trypsinogen, washed by phosphate buffer saline 
(PBS) for three times, then collected and resuspended 
in PBS (5 × 106/ml). After airway anesthesia, 100 µl of 
cell suspension was subcutaneously injected into 13 
Balb/cnu/nu mice to established cell-derived subcuta-
neous xenograft (CDSX) models. After 28 days feed-
ing, 13 tumor-bearing mice were sacrificed, and the 
harvested tumors were divided into pieces in size of 
1 × 1 × 1  mm. Then, the space between pancreas and 
liver of 13 Balb/cnu/nu mice were implanted with tumor 
pieces by surgeries to establish cell-derived orthotopic 
xenograft (CDOX) model. After 28 days feeding, 11 
CDOX mice had a mercy killing and tumors were col-
lected for 1H NMR and histopathological examination.

Sample preprocessing
All tumor samples (300  mg each) were defrosted on 
ice. Then, mixed with 0.6 mL ultrapure water and 
1.2mL methanol, samples were homogenized for 3 min 
(MiniBeadbeater-16; BIO SPEC, Bartlesville, OK, 
USA) in 7-mL lap tubes. After the addition of 1.2 mL 
chloroform and 1.2 mL ultrapure water, the mixture 
was vortexed for 60  s. After 15  min standing on ice, 
each sample was centrifuged at 10,397  g for 10  min 
and the supernate was collected. Then, the supernate 
was lyophilized in vacuum freeze-drying equipment 
(LGJ-10  C; Four-ring Science Instrument Plant, Bei-
jing, China) for 24 h to eliminate water and methanol.
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1H high resolution-NMR spectroscopy
Before 1H high resolution-NMR (1H HR-NMR) spec-
troscopy, the lyophilizate was dissolved in 550µL of 
150-mM deuterated phosphate buffer (NaH2PO4 and 
K2HPO4, pH 7.4, including 0.1% sodium 3-[trimeth-
ylsilyl] propionate-2,2,3,3-d4 [TSP]) followed with a 
10-min centrifugation at 10,397  g. Then, the 500µL 
upper layer liquid was transferred into a 5-mm NMR 
tube. In present study, NMR spectroscopy was per-
formed on a Bruker AscendTM NMR spectrom-
eter (Bruker Corporation, Karlsruhe, Germany) at 
600.13 MHz proton frequency and 295 K. Spectra of all 
samples were acquired by using the 1H NOESYPR1D 
pulse sequence with water suppression: [RD-90°-t1-
90°-tm-90°-ACQ]. A total of 32 scans with a spectral 
width of 12  kHz, accompanied with a data point of 
32  K, were collected for all spectra. The acquisition 
time was 2.66  s with a relaxation delay (RD) of 4  s, a 
fixed interval (t1) of 4µs and the mixing time (tm) of 
0.1 s. The pulse width of 90° was 11µs.

Data processing
All free induction decays derived in 1H NMR spec-
troscopy were multiplied by an exponential weighting 
function equivalent to a line-broadening of 1 Hz to 
increase the signal-to-noise ratio, followed by a Fou-
rier transformation. Then, all spectra were manually 
corrected for phase and baseline using MestReNova 
(V9.0; Mestrelab Research, Santiago de Compostela, 
Galicia, Spain). The chemical shift in spectra was 
referenced to TSP at δ0.0. Spectral regions of δ0.5-
9.0 were integrally segmented into discrete regions 
of 0.004ppm. the spectral regions of δ4.61–5.49 and 
δ3.32–3.39 were removed to eliminate the interference 
of water and methanol signals for analysis. Then, the 
integrated data were normalized to 100 prepared for 
further multivariate and univariate statistical analy-
sis. Resonance assignment and metabolite identifica-
tion were conducted based on the literature and public 
databases [16, 17].

Statistical analysis
In present study, to extract the bioinformation con-
tained in the NMR spectra, multivariate statisti-
cal analyses, including principal component analysis 
(PCA) and orthogonal partial least squares discrimi-
nant analysis (OPLS-DA) were conducted to compare 
the metabolome of tumors between different groups. 
PCA using mean center scaling was implemented 
on an online metabolomic database Metaboanalysts 
5.0 (https://www.metaboanalyst.ca/, assess on June, 
2022). As an unsupervised statistical method, PCA 
can simplify the multivariate data into a few princi-
pal components, which can highlight intrinsic trends, 

distribution of clusters and the existence of outli-
ers. The OPLS-DA using unit variance scaling was 
conducted using SIMCA-P+ (Ver.14.0, Umetrics AB, 
Umea, Sweden) for pairwise comparisons of different 
groups. As a supervised statistical method, OPLS-DA 
can maximize the distinction between different groups 
and establish pattern recognition models for semi-
quantitative evaluation of metabolomic difference 
and discriminatory metabolites identification. For all 
OPLS-DA, 7-fold cross-validations and response per-
mutation tests were performed to evaluate the fitness 
and predictability of OPLS-DA models.

Discriminatory metabolite identification
For screening of discriminatory metabolites, the Pear-
son correlation coefficients (Pcorr) and variable impor-
tance in projections (VIP) of metabolites were back 
calculated based on OPLS-DA models. The cut-off 
value of Pcorr for each comparison was determined by 
degree of freedom (df = n-2, p < 0.05). To identify dis-
criminatory metabolites more rigorously, the Student’s 
t test was also performed to compare the relative level 
of metabolites between different groups. The relative 
levels of metabolites were represented by the integral 
area under spectral curve of metabolites’ character-
istic peaks. The metabolites having p value of|Pcorr| 
and  Student’s t test less than 0.05 and VIP > 1.00 were 
identified as discriminatory metabolites. To visualize 
the discriminatory metabolites for each comparison, 
color-code volcano plot was drawn by using Matlab 
(Ver.2021, MathWorks, Natick, MA, US) based on VIP, 
pcorr, p of t test and fold change of metabolites.

Metabolic pathways analysis
For discovering underlying bioinformation, metabo-
lites set enrichment and metabolic pathway analysis 
were performed by using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) [18–20] and MetaboAn-
alyst 5.0 online databases (https://www.metaboanalyst.
ca/, accessed on June, 2022) [21].

Results
The metabolomics of the first generation of PDX tumor 
was different to primary tumor
In present study, by subcutaneously implanting tumor 
slices derived from 13 PDAC primary tumors (PC 
group), we successfully established 24 first-generation 
PDX nude mice PDXG1 group) and 18 third-gener-
ation PDX mice bearing 18 tumors (PDXG3) (Fig.  1). 
By using univariate and multivariate statistical analy-
ses, we evaluated the tumor metabolomic difference 
between PDXG1 model (n = 24) and the PC (n = 13). 
As demonstrated in scores plot of PCA, an obvi-
ous separation could be seen between the clusters 

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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of PC and PDXG1 without outlier exited (Fig.  2A). 
Then, OPLS-DA was further performed to high-
light the specific metabolic difference between PC 
and PDXG1. The separation of PC and PDX become 
more obvious in OPLS-DA scores plot (Fig.  2B). The 
parameters of pattern recognition model (R2X = 0.39, 
R2Y = 0.931, Q2 = 0.833) and the p-value of CV-
ANOVA (P = 5.36 × 10− 12) indicated a high stability 

and reliability of pattern recognition model which was 
favorable for further screening discriminatory metabo-
lites. The response permutation plot indicated that no 
overfitting was existed in this model (Fig. 2C).

In present study, a total of 70 metabolites were iden-
tified (Table S1). For PC vs. PDXG1, absolute value 
of Pcorr higher than 0.552 and VIP higher than 1.000 
were consider as the cut-off value of discriminatory 

Fig. 1  The research process diagram of this study. PDAC, pancreatic ductal adenocarcinoma; PDX, patient-derived xenograft; PDXG1, the first generation 
of PDX model; PDXG3, the third generation of PDX model; PDXG1CH, the first generation of PDX model receiving chemotherapy; PDXG1CH, the third 
generation of PDX model receiving chemotherapy
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Fig. 2  Univariate and multivariate statistical analyses of spectra data derive from tumor of primary cancer (PC), the first generation of patient-derived 
patients (PDXG1) and the third generation of patient-derived patients (PDXG3). Figure 2A&E. The scores plot of principal component analysis (PCA) of 1H 
NMR spectral data derived from PC vs. PDXG1 (A), and from PDXG1 vs. PDXG3 (E). Figure 2B&F. The scores plot of orthogonal partial least squares discrimi-
nant analysis (OPLS-DA) of 1H NMR spectral data derived from PC vs. PDXG1 (B), and from PDXG1 vs. PDXG3 (F). Figure 2C&G. The response permutation 
test of OPLS-DA model of PC vs. PDXG1 (C) and PDXG1 vs. PDXG3 (G). R2 and Q2 indicate the fitness and predictive performance of the established model. 
Figure 2D&H. The volcano plots of discriminative metabolites of PC and PDXG1 (D), and PDXG1 vs. PDXG3 (H). Each dot represents a metabolite. The 
color of dots represents the absolute value of Pcorr and the size of dot represents the value of VIP. 1-MH: 1-Methylhistidine; DU: 2-Deoxyuridine; 2-HB: 
2-Hydroxybutyrate; 3-HB: 3-Hydroxybutyrate; MC: 5-Methylcytidine; Ala: Alanine; Asp: Aspartate; Bet: Betaine; Ci: Citrate; Cr: Creatine; Cyd: Cytidine; Eth: 
Ethanol; EA: Ethanolamine; Glu: Glutamate; Gln: Glutamine; GSH: Glutathione; G: Glycerol; GPC: Glycerophosphocholine; Gly: Glycine; GA: Guanidoacetate; 
His: Histidine; HX: Hypoxanthine; IB: Isobutyrate; Ile: Isoleucine; Lac: Lactate; Leu: Leucine; Lys: Lysine; Met: Methionine; MA: Methylamine; MIB: Methyl 
isobutyrate; MM: Methylmalonate; NA: Nicotinamide; NAD: Nicotinamide adenine dinucleotide; Pan: Pantothenate; PCho: Phosphocholine; Py: Pyruvate; 
Suc: Succinate; Sph: Sphignosine; Tau: Taurine; Trp: Tryptophan; Tyr: Tyrosine; Ura: Uracil; Val: Valine; Xan: Xanthine; α-glu: α-Glucose; β-glu: β-Glucose
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metabolites. To eliminate the deviation of multivari-
ate statistical analyses, The p value of students’ t tests 
less than 0.05 after false discovery rate (FDR) correc-
tion was also set as the cut-off value of discriminatory 
metabolites distinguishing PC and PDXG1. Com-
pared with PC, 38 discriminatory metabolites were 
screened out in PDXG1 (Fig.  2D, Table S2). The level 
of 1-methylhistidine, 2-deoxyuridine, 2-hydroxybu-
tyrate, 3-hydroxybutyrate, 5-methylcytidine, alanine, 
citrate, cytidine, glutamine, glycine, histidine, hypo-
xanthine, lactate, leucine, methionine, nicotinamide, 
pyruvate, sphingosine, tryptophan, tyrosine, valine, 
xanthine, in PDXG1 tumor were lower. Meanwhile, 
the level of aspartate, betaine, creatine, ethanol, etha-
nolamine, glutamate, glycerol, glycerophosphocholine, 
guanidoacetate, isoleucine, lysine, methylisobutyrate, 
nicotinamide adenine dinucleotide, phosphocholine, 
α-glucose in PDXG1 were higher than PC.

Metabolomic difference was existed during tumor passage 
of PDX model
To elucidate whether the tumor passage could influ-
ence the tumor metabolomics of PDAC PDX model, 
we compared the tumor metabolomics of first and 
third generation of PDX model (n = 24 and 18, respec-
tively). As scores plot demonstrated, the clusters of 
PDXG1 and PDXG3 were partially overlapped, indicat-
ing the metabolic difference of PDXG1 vs. PDXG3 was 
relatively slight (Fig. 2E). However, by using OPLS-DA, 
a pattern recognition model can be established with 
acceptable model parameters (R2X = 0.351, R2Y = 0.762, 
Q2 = 0.425 and p value of CV-ANOVA = 0.000859), 
which suggested that a moderate metabolic difference 
between PDXG1 and PDXG3 (Fig.  2F). The response 
permutations plot indicated that the model was not 
overfitted which was suitable for the screening dis-
criminatory metabolites (Fig. 2G).

As demonstrated in Fig.  2H. 33 discriminatory 
metabolites between PDXG1 and PDXG3 were identi-
fied. The level of alanine, citrate, glutamine, glutathi-
one, glycerophosphocholine, hypoxanthine, lactate, 
methionine, methylamine, nicotinamide, phosphocho-
line, pyruvate, succinate, taurine, tryptophan, tyrosine, 
uridine diphosphate glucose in PDXG3 were higher 
than PDXG1. Meanwhile, the level of 3-hydroxybutyr-
ate, aspartate, betaine, ethanol, ethanolamine, gluta-
mate, glycerol, guanidoacetate, isobutyrate, isoleucine, 
lysine, methyl isobutyrate, methylmalonate, nicotin-
amide adenine dinucleotide, pantothenate, phenylala-
nine, α-glucose, β-glucose in PDXG3 were lower than 
PDXG1 (Table S3).

Tricarboxylic acid cycle (TCA)-associated metabolisms 
were the main metabolic pathways reprogramed during 
establishment and passage of patient-derived xenograft 
model
By using relative quantitative metabolites enrichment 
analysis and metabolic pathway analysis, we found 
glycolysis/gluconeogenesis, TCA metabolism and 
TCA-associated metabolic replenishment pathways 
were highly associated with the metabolomic differ-
ence of PC vs. PDXG1 and PDXG1 vs. PDXG3. For the 
comparison between PC and PDXG1, Warburg effect 
(aerobic glycolysis), pyruvate metabolism and glu-
coneogenesis were the major differential metabolic 
pathways. Besides, multiple amino acids metabolisms 
like glycine, alanine, aspartate, glutamate, branched-
chained amino acids (BCAAs) were also significantly 
associated with the metabolomic difference between 
PC and PDXG1 (Fig. 3A&B, Table S4&5). For the com-
parison between PDXG1 and PDXG3, notably, the 
pyruvate metabolism, Warburg effect and gluconeo-
genesis were also the major metabolic pathways asso-
ciated with the metabolomic difference of PDXG1 vs. 
PDXG3. Meanwhile, the metabolic pathways of mul-
tiple amino acids (AAs), nicotinate and nicotinamide 
metabolism were significantly associated with the met-
abolic change in PDXG3 (Figure 3C&D, Table S6&7). 
Through metabolic network analysis, we noticed that 
glycolysis and pyruvate metabolisms acted as a core 
of the metabolic network associated with metabolo-
mic difference of both PC vs. PDXG1 and PDXG1 vs. 
PDXG3, connecting multiple AAs metabolic pathway 
(Fig. 3E&F).

To get insight into metabolomic difference existed 
in PC vs. PDXG1 and PDXG1 vs. PDXG3, we com-
prehensively analyzed the metabolomic similarity and 
difference involved in the comparisons between PC, 
PDXG1, PDXG3. As demonstrated in scores plot of 
PCA (Fig.  4A), the cluster of PC was separated with 
the clusters of PDXG1 and PDXG3 obviously while 
the clusters of PDXG1 and PDXG3 were heavily over-
lapped, indicating that human-to-mouse tumor graft-
ing can cause more metabolic reprogramming than 
mouse-to-mouse tumor passage. The correlation of 
the critical TCA-associated metabolites in PC vs. 
PDXG1 and PDXG1 vs. PDXG3 was detailly demon-
strated in heatmap plot (Fig.  4B). Interestingly, the 
levels of lactate and pyruvate were both positively cor-
related with TCA intermediates, such as citrate, suc-
cinate and fumarate, in PC vs. PDXG1 and PDXG1 
vs. PDXG3. Meanwhile, the aspartate, glutamate and 
isoleucine were negative correlated with these TCA 
intermediates. To visualize the TCA-associated meta-
bolic difference between PC, PDXG1 and PDXG3, a 
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Fig. 3  The metabolic enrichment and pathways analyses of PC vs. PDXG1 and PDXG1 vs. PDXG3. Figure 3A&B. The metabolic enrichment analysis based 
on metabolomic difference of PC vs. PDXG1 and PDXG1 vs. PDXG3, respectively. Y axis represents the top 15 metabolic difference-related metabolic sets. 
Figure 3C&D. The topological analysis of the metabolic pathway involved in metabolomic difference of PC vs. PDXG1 and PDXG1 vs. PDXG3, respectively. 
X axis represent the impact of metabolic pathway, and Y axis represent the–log(p-value) of pathway. Each dot represents a pathway, and the color of 
dot represent p-value of pathway ranging from low (red) to high (yellow). For PC vs. PDXG1, label dots represented the statistically significant metabolic 
pathways based on p-value less than 1 × 10− 4 and pathway impact higher than 0.1. For PDXG1 vs. PDXG3, label dots represented the statistically signifi-
cant metabolic pathways based on p-value less than 1 × 10− 3 and pathway impact higher than 0.1. Figure 3E&F. The metabolic network analyses based 
on metabolomic difference of PC vs. PDXG1 and PDXG1 vs. PDXG3, respectively. Each dot represents a pathway, and the color of dot represent p-value of 
pathway ranging from low (red) to high (yellow). Dashed lines represent significant connection between metabolic pathways
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Fig. 4  The comprehensive metabolic analysis of metabolomic difference of PC vs. PDXG1 and PDXG1 vs. PDXG3. Figure 4A. The scores plot of principal 
component analysis (PCA) of 1H NMR spectral data derived from PC, PDXG1 and PDXG3. Figure 4B. The heatmap of correlation coefficient between criti-
cal metabolites involved in glycolysis/TCA metabolism in comparisons of PC vs. PDXG1 and PDXG1 vs. PDXG3. The cool-toned color of boxes represents 
a negative correlation while the warm-toned color represents a positive correlation. Figure 4C. The metabolic flux of TCA-associated metabolisms in the 
metabolomic comparisons between PC, PDXG1 and PDXG3. Each box represents a metabolite. The three solid boxes under metabolites represent the p 
value of t tests of metabolites in comparisons of PC vs. PDXG1, PC vs. PDXG3 and PDXG1 vs. PDXG3, respectively. The cool-toned color of boxes represents 
that the corresponding metabolite in latter group was significantly lower than the former group, while the warm-toned color represents a relatively high 
level of metabolites in latter group. KEGG was used as important reference for figure drawing [18–20]
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Fig. 5 (See legend on next page.)
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metabolic flux plot was drawn based on relative level 
of TCA-associated metabolites (Fig. 4C).

The metabolomic difference between different generations 
PDX with chemotherapy treated was obvious
Since important tumor-related metabolisms, such as 
TCA, can undergo reprogramming during the estab-
lishment and passage of PDX models, it is critical to 
investigate whether there are differences in the che-
mosensitivity and post-chemotherapy tumor metabo-
lism among PDX models with different passages. In 
present study, we treated the first and third genera-
tion of PDX models with a combination of albumin-
bound paclitaxel and gemcitabine (AG) (PDXG1CH 
and PDXG3CH group, n = 10, respectively). Com-
pared with PDXG1 and PDXG3, AG treatment signifi-
cantly inhibit the growth of tumor in both PDXG1CH 
and PDXG3CH group (Fig.  5A). Only 2 of 10 tumors 
in PDXG1CH and PDXG3CH, respectively, showed 
increases in tumor volume during AG treatment 
(Fig. 5B&C). By pathological examination of tumor tis-
sue, 4 of 10 in PDXG1CH and 5 of 10 in PDXG3CH 
show limited pathological response (TRG ≥ 2) to AG 
treatment. Meanwhile, 6 of 10 in PDXG1CH and 
5 of 10 in PDXG3CH have obviously pathological 
response(TRG ≤ 1) after AG treatment (Fig. 5D).

Then, we conducted metabolomic profiling on 
AG-resistant tumor(TRG ≥ 2)from PDXG1CH (n = 4) 
and PDXG3CH (n = 5). Interestingly, there are meta-
bolic differences in AG-resistant tumors between 
the PDXG1CH and PDXG3CH groups. As shown in 
the PCA score plot (Fig.  5E), principal component 1 
mainly represents the metabolic differences formed 
by AG chemotherapy intervention, while principal 
component 2 represents the metabolic differences 
formed by tumor passaging. These results not only 
demonstrate that the survival pressure induced by 
chemotherapy exerts a significant shaping effect on 
tumor metabolism but also suggest that the meta-
bolic differences generated by tumor propagation are 
still retained in this process. Using univariate statis-
tical analysis, the relative abundances of glycolytic 
metabolites and amino acids were compared among all 
groups. Interestingly, key intermediate metabolites of 
glycolysis such as glucose, lactate, pyruvate, and amino 

acids showed significant differences in level between 
the PDXG1 group and the other groups (Fig.  5F-P). 
However, these substances appeared to have no sig-
nificant differences among the PDXG3, PDXG1CH, 
and PDXG3CH groups. These findings suggested 
that drug-resistant tumors formed after chemother-
apy treatment in PDX models with different passage 
numbers exhibited consistent changes in glycolysis 
and amino acid metabolism, with greater similarity 
observed in PDX models with multiple passages.

PDX model keep metabolic signatures of primary tumor 
better than CDX model
To clarify the advantages of PDX models over CDX 
models in metabolic studies, we compared the abil-
ity of PDX and CDX models to mimic the metabolic 
profile of primary tumors. A total of 13 and 11 sub-
cutaneous and orthotopic xenograft models of Panc-1 
cell strain (CDSX, n = 13 and CDOX, n = 11) were suc-
cessfully established. As demonstrated on scores plot 
of PCA, the cluster of PDXG1 and PDXG3 were near 
to cluster of PC and far from the clusters of CDSX and 
CDOX (Fig. 6A&B). The heatmap drawn based on rel-
ative level of metabolites of all groups illustrated that, 
compared with CDSX and CDOX, PDXG1 and PDXG3 
have more similarity in overall distribution of metabo-
lites levels compared with PC (Fig. 6C).

Discussion
Tumor animal models are critical platforms for inves-
tigating the biological features of tumor, discovering 
genesis and progress mechanism and screening under-
lying anticancer agents. With the development of PDX 
models, scholars and physicians gain access to an new 
experimental tool carrying tumor heterogeneity, which 
empowers people to evaluate and treat tumor in indi-
vidual [22]. One of the advantages of PDX model is a 
well gene mutation preservation of primary tumor. 
However, for stroma-rich tumor like PDAC, engraft-
ment and passages of tumor could impose signifi-
cant influence on expression of genes associated with 
stroma compartment and inflammation. Mattie et al. 
reported that the PDX model established by grafting 
PDAC tumor tissue demonstrated significantly expres-
sion change of metastatic gene signatures which may 

(See figure on previous page.)
Fig. 5  The comparison of growth data and tumor metabolomics between PDXG1, PDXG3, PDXG1CH and PDXG3CH. Figure 5A. The tumor volume line 
graph of PDXG1, PDXG3, PDXG1CH and PDXG3CH. Figure 5B. The photograph of PDXG1CH and PDXG3CH tumor after receiving Albumin-bound pacli-
taxel plus gemcitabine (AG) treatment. All mice in PDXG1CH and PDXG3CH had intraperitoneal injections of AG every 7 days and sacrificed after 4 rounds 
of AG treatment to collect tumor samples. Figure 5C The changes in tumor volume of PDXG1CH and PDXG3CH before and after chemotherapy. Figure 5D 
The representative H&E pathological images of AG-resistant and AG-response tumor in corresponding PDXG1, PDXG3, PDXG1CH and PDXG3CH groups. 
Compare with AG-resistant tumor, the AG-response tumor had numerous fibrous stroma and there was significant lymphocyte infiltration after receiving 
treatment. Meanwhile, only a small amount of residual cancer cells remained (Yellow arrow). Figure 5E. The PCA score plot of metabolomic data of tumor 
samples from PDXG1, PDXG3, PDXG1CH and PDXG3CH. Figure 5F-P. The histogram of the relative concentration of metabolites associated with glycolysis 
and amino acids in PDXG1, PDXG1CH, PDXG3 and PDXG3CH.
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contribute to successful establishment of PDX models 
[12]. Garrido-Laguna et al. reported that PDX tumors 
were more often SMAD4 mutant and had a meta-
static gene expression signature [14]. Being the down-
stream of genomics, metabolomics inevitably reflected 
the genetic reprogramming of PDX model during the 
grafting of tumor [23]. However, by far, no research has 
been conducted to assess the metabolic maintenance 
of PDX model compared with the primary tumor.

In present study, we firstly compared the metabo-
lomics of tumor derived from the first generation of 
PDX with the primary tumor of patients and found the 
levels of glycolysis-related and TCA-related metabo-
lites like lactate, pyruvate, and citrate in PDXG1 were 
significantly lower than the primary tumors. This find-
ing strongly suggested that bioenergy metabolism of 
tumor had an obvious reprogramming after engraft-
ment from patients to mice, and the glycolysis in 
PDXG1 was suppressed, leading to a shortage of pyru-
vate and its downstream metabolites. For pancreatic 
cancer, aerobic glycolysis (Warburg’s effect) was one 
of the most critical metabolic reprogramming during 
genesis and development of neoplasia [24]. In PDAC, 
tumors contain oxygenated and hypoxic regions, so 
normoxic and hypoxic cancer cells are coexisted. The 
hypoxic cancer cells mainly depend on glycolysis to 
produce energy and secrete lactate to promote forma-
tion of acidosis microenvironment [25]. The lactate 
generated by hypoxic cancer cells can get into the cir-
culation and then be utilized by normoxic PDAC cells 
to feed TCA. Through this metabolic pathway, circu-
lating lactate of PDAC patients is increased and pro-
vides over two-fold of TCA substrates (like citrate and 
fumarate) than glucose [26]. Thus, the lower level of 
lactate and pyruvate in PDXG1 model suggested, com-
pared with primary tumor, the ability of initial PDX 
model to generate endogenous lactate and utilize cir-
culating lactate was weakened, partly explaining why 
the success rate of PDX model is low.

Interestingly, we found the decrease of pyruvate 
and glycolysis in PDXG1 did not be accompanied 
with a significant decrease in the flux of TCA cycle. 
Although the levels of citrate and pyruvate in PDXG1 
was decreased compared with PC, the other interme-
diates of TCA like succinate, malate and fumarate did 
not decrease, indicating that substrates of TCA were 
replenished by anaplerosis pathways. Glutaminolysis 
is one of the critical anaplerosis pathways to compen-
sate for the shortage of TCA cycle substrates due to 
the limited pyruvate availability caused by enhanced 
glycolysis in cancer cells [27]. Glutamine is the most 
abundant circulating amino acid in blood and mus-
cle. During glutaminolysis, glutamine was converted 
to glutamate catalyzed by glutaminase 1/2, and then 

converted to α-ketoglutarate to fuel TCA. However, 
as previously reported, PDAC with oncogenic KRAS 
relies on a distinct pathway in which glutamine-
derived aspartate is transported into the cytoplasm 
where it can be converted into oxaloacetate by aspar-
tate transaminase [28]. Then, this oxaloacetate can 
be converted into malate and pyruvate to fuel TCA. 
Recently reported, this KRAS-regulated glutamine 
anaplerosis pathways requires mitochondrial uncou-
pling protein 2-mediated aspartate transportation 
[29]. Inhibiting this glutamine metabolism could heav-
ily hamper the growth of PDAC cells. Like glutamate, 
asparagine is also a critical non-essential AA for the 
growth of PDAC. In absence of exogeneous glutamine, 
cancer cells can sustain glutamate-dependent process 
through de novo glutamate biosynthesis, with excep-
tion of asparagine [30]. Inability to sustain cellular 
asparagine limit the growth of glutamine-restricted 
cancers. Thus, in present study, PDXG1 had lower 
levels of glutamine and pyruvate, and higher levels of 
glutamate and aspartate than PC, indicating that, after 
engraftment, glutamine/aspartate-based anaplerosis 
of TCA may be enhanced in PDXG1 models to sustain 
TCA flux.

Another potential anaplerosis pathway of TCA 
was the degradation of BCAA in PDXG1. For PDAC, 
branched-chain amino acid transaminase (BCAT)-
mediated BCAAs catabolism plays a critical role in 
development and progress of tumor. In cancer cells, 
BCAAs are converted to branched-chain α-keto acids 
(BCKAs) including α-ketoisocaproate, α-keto-β-
methylvalerate, and α-ketoisovalerate catalyzed by 
BCATs. These BCAKs are then converted to acetyl-
CoA and succinyl-CoA to replenish TCA flux. As pre-
viously reported, BCAA can enhance growth of PDAC 
in a dose-dependent manner. Inhibiting BCAT2-
mediated BCAA catabolism ameliorates formation of 
precancerous lesions of pancreas [31]. Moreover, the 
degradation of BCAT2 in PDAC cells is promoted by 
acetylation of lysine 44 residue and enhance growth of 
PDAC [32]. For stromal-rich PDAC, cancer-associated 
fibroblasts (CAFs) provide BCKAs through BCAT1-
mediated BCAA catabolism to fuel cancer cells [33]. 
Thus, as found in present study, the levels of leucine 
and valine were significant decreased in PDXG1 com-
pared with PC, implying an enhanced catabolism of 
BCAA to replenish the flux of TCA.

To clarify the metabolic alteration accompanied with 
the passages of PDX models, we compared the tumor 
metabolomics between the first and the third genera-
tion of PDX model, finding that glycolysis and pyruvate 
metabolisms were still the main pathways associ-
ated with metabolomic difference. Compared with 
PDXG1, the level of glycolysis-associated metabolites 
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Fig. 6  The metabolomic analysis of spectra data derived from tumor of PC, PDX model and CDX models. Figure 6A&B. The 2D and 3D scores plot of 
principal component analysis (PCA) of 1H NMR spectral data derived from PC, PDXG1, PDXG3, CDOX and CDSX. Figure 6C. The heatmap of metabolites’ 
relative levels in the tumors of PC, PDX model and CDX models. The cool-toned color of boxes represents a relatively low level while the warm-toned color 
represents a relatively high level of metabolites
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like lactate and pyruvate were significantly increased 
in PDXG3, indicating that, during passages of PDX 
model, the aerobic glycolysis can be partially recov-
ered from a suppressed status. Meanwhile, the level of 
glutamine in tumor of PDXG3 was increased and glu-
tamate is decreased, also implying that the level glu-
taminolysis was partially recovered from an enhanced 
status in PDXG1. Besides, the levels of valine and leu-
cine in PDXG3 were not different to that in PDXG3, 
suggested that the enhanced metabolic replenishment 
of BCAA degradation toward TCA can be maintained 
during passages of PDX models. These metabolic 
reprogramming may be attributed to the replacement 
of human-derived stroma components (vessels) by 
mouse-derived stroma during the process of establish-
ment and passages of PDX models. Meanwhile, the 
subsets of cancer cells which adapted to mouse micro-
environment rather than human microenvironment 
gradually become the main population companied 
with corresponding metabolic reprogramming. These 
processes are accompanied with the emerge of specific 
clonal selection and protumorigenic signatures [34–
36], which often occur in metastatic tumor [12–14, 
37, 38]. At this point, it is unclear whether the mouse 
can only support and provide a unique protumorigenic 
environment. Besides, although the tumor response of 
different generation of PDX to AG treatment was not 
different, the metabolomic difference still retained. 
For most studies on anti-tumor drugs, including 
metabolomics, glycolysis and amino acid metabolism 
remain core pathways of research. The metabolic dif-
ferences formed during the establishment and passage 
of patient-derived xenograft (PDX) models can still 
have potential implications on the interpretation of 
experimental results and the determination of targets. 
However, the global metabolomic changes sometimes 
cannot reflect the specific changes in metabolic activi-
ties of cancer cells, which may be interfered by stromal 
cells. Space metabolomics based on AFADESI-MSI 
may help to solve this problem. Therefore, how to uti-
lize PDX model for metabolism-associated studies still 
needs to be further evaluated.

In this study, we also found that the metabolomic 
similarity between PDX-derived and primary tumors 
are obviously better than CDX-derived tumor, either 
subcutaneous or orthotopic xenograft. For CDX 
models, each cell strain used for establishing model 
is derived from only one patient’s tumor and is rep-
licated in culture medium before grafting into mice, 
which mean the unique metabolic reprogramming 
in specific cell strain can be very different to com-
mon metabolic changes in PDAC cancer. In addition, 
tumors of CDX models were formed by proliferation 
of human PDAC cell added with the infiltration of 

mice-derived cells like lymphocytes and fibroblasts, 
which mean CDX models lack human-derived stroma 
and human-derived infiltrating cells. These factors 
may significantly hamper CDX models to mimic meta-
bolic activity of human cancer. Meanwhile, long-term 
passages of cell lines in vitro could also lead to a loss or 
alteration of tumor-related genes. These factors jointly 
determine metabolomics of CDX models would have 
significantly metabolic difference to primary tumor, 
which can be far larger than PDX model. However, 
these findings still require comprehensive research to 
further elucidate.

However, due to limitation of NMR-based metabo-
lomic method, only 70 metabolites were identified in 
this study. Many metabolites included in analysis are 
intermediates of amino acids, glycolysis and TCA cycle 
metabolisms, which may potentially lead to overes-
timation of related pathways in enrichment analysis. 
The relatively small sample size and identified metabo-
lites inevitably limited deeper discoveries, and in the 
future, a metabolomics dataset containing more sam-
ple sizes and metabolites may help improve accuracy 
of research analysis and provide richer information 
for PDX modeling and passage-related metabolomics 
change.

Conclusion
The present study demonstrated that PDX tumor 
metabolomics was obviously differ to that of pri-
mary tumor. Compared to primary tumor, the tumor 
of PDX models have a lower level of glycolysis and an 
enhanced TCA-associated anaplerosis metabolism. 
These metabolomic reprogramming of initial PDX 
model were partly recovered during the passages of 
PDX model. The metabolic difference due to passages 
of PDX model can be retained after

AG-treatment. However, PDX model can mimic the 
metabolic environment of primary tumor better than 
CDX models. These findings can help us design in vivo 
tumor metabolomics research legitimately and analyze 
the underlying mechanism of tumor metabolic biology 
thoughtfully.
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