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Abstract 

Background  The presence of heterogeneity is a significant attribute within the context of ovarian cancer. This 
study aimed to assess the predictive accuracy of models utilizing quantitative 18F-FDG PET/CT derived inter-tumor 
heterogeneity metrics in determining progression-free survival (PFS) and overall survival (OS) in patients diagnosed 
with high-grade serous ovarian cancer (HGSOC). Additionally, the study investigated the potential correlation 
between model risk scores and the expression levels of p53 and Ki-67.

Methods  A total of 292 patients diagnosed with HGSOC were retrospectively enrolled at Shengjing Hospital of China 
Medical University (median age: 54 ± 9.4 years). Quantitative inter-tumor heterogeneity metrics were calculated based 
on conventional measurements and texture features of primary and metastatic lesions in 18F-FDG PET/CT. Conven-
tional models, heterogeneity models, and integrated models were then constructed to predict PFS and OS. Spear-
man’s correlation coefficient (ρ) was used to evaluate the correlation between immunohistochemical scores of p53 
and Ki-67 and model risk scores.

Results  The C-indices of the integrated models were the highest for both PFS and OS models. The C-indices 
of the training set and testing set of the integrated PFS model were 0.898 (95% confidence interval [CI]: 0.881–0.914) 
and 0.891 (95% CI: 0.860–0.921), respectively. For the integrated OS model, the C-indices of the training set and testing 
set were 0.894 (95% CI: 0.871–0.917) and 0.905 (95% CI: 0.873–0.936), respectively. The integrated PFS model showed 
the strongest correlation with the expression levels of p53 (ρ = 0.859, p < 0.001) and Ki-67 (ρ = 0.829, p < 0.001).

Conclusions  The models based on 18F-FDG PET/CT quantitative inter-tumor heterogeneity metrics exhibited good 
performance for predicting the PFS and OS of patients with HGSOC. p53 and Ki-67 expression levels were strongly 
correlated with the risk scores of the integrated predictive models.
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Background
Ovarian cancer is the third most common cancer among 
women [1]. In 2023, there were 19,710 estimated new 
cases (2% of all types of cancers) and 13,270 deaths (5% of 
all cancer deaths) in women in the United States [2]. The 
5-year relative survival rate was approximately 50% in all 
races and ethnicities from 2012 to 2018 [2]. High-grade 
serous ovarian cancer (HGSOC) is the most common and 
fatal subtype of ovarian cancer, accounting for 70–80% of 
total deaths [3, 4]. Previous studies have shown that the 
International Federation of Gynecology and Obstetrics 
(FIGO) stage, CA125 level, and tumor grade help predict 
the prognosis of patients with ovarian cancer [5]; how-
ever, they are not strong, independent prognostic indica-
tors. Thus, reliable biomarkers for predicting the survival 
of patients with ovarian cancer are lacking [6].

Ovarian tumors are highly heterogeneous [7, 8], with 
intra- and inter-tumor heterogeneity. Intra-tumor het-
erogeneity refers to the inconsistency observed within 
a single lesion. Inter-tumor heterogeneity, also known 
as spatial heterogeneity, refers to variations in multiple 
lesions of the same tumor type in one patient. The exist-
ence of tumor heterogeneity may explain the rapid pro-
gression of ovarian cancer and inconsistent response to 
the same treatment regimen [9]. A better understanding 
of tumor heterogeneity may facilitate appropriate tumor 
stratification to achieve optimal individualized interven-
tions [9, 10]. Hence, there is an urgent need to develop 
simple and noninvasive methods to assess heterogeneity 
and integrate these methods into clinical pathways.

Radiomics can be employed to convert traditional 
medical images into several high-dimensional quantita-
tive imaging features that can be mined using computer 
algorithms [11]; providing a noninvasive quantitative 
approach to estimate tumor heterogeneity [12–14], par-
ticularly inter-tumor heterogeneity. To date, only a few 
studies have investigated image-based inter-tumor het-
erogeneity. These studies have showed that Computer 
Tomography (CT) -based inter-tumor heterogeneity met-
rics are related to survival time [15], platinum resistance 
[16], and response to immunotherapy [17] in patients 
with ovarian cancer.

Ovarian cancer, particularly HGSOC, is frequently 
diagnosed at an advanced stage with peritoneal implan-
tation metastasis due to the lack of evident symptoms 
in the early stages [18, 19]. CT is a commonly used pre-
operative modality for ovarian cancer; however, its sen-
sitivity for detecting peritoneal metastasis is relatively 
low [20, 21]. 18F-fluoro-2-deoxyglucose Positron Emis-
sion Tomography/Computed Tomography (18F-FDG 
PET/CT), which provides both anatomical location and 
metabolic information, is beneficial for staging malig-
nant gynecological tumors [19, 22, 23]. Although there 

is some controversy regarding the effectiveness of 18F-
FDG PET/CT for evaluating peritoneal implantation 
in ovarian cancer [19, 24–26], a recent meta-analysis 
showed that 18F-FDG PET/CT had inferior sensitivity 
but superior specificity for the detection of metastasis 
[20]. Nevertheless, to date, no research has specifically 
investigated the inter-tumor heterogeneity derived from 
18F-FDG PET/CT.

The present study aimed to establish inter-tumor het-
erogeneity metrics using two modalities (PET and CT) 
and two dimensions (conventional measurements and 
texture features) of 18F-FDG PET/CT images. The study 
evaluated the performance of models based on these 
metrics to predict progression-free survival (PFS) and 
overall survival (OS) of patients with HGSOC. The corre-
lations between the prognostic models and p53 and Ki-67 
expression levels were also determined to provide reliable 
support for the preoperative evaluation of patients with 
HGSOC.

Patients and methods
Patient characteristics
This study was approved by the Ethics Committee of 
Shengjing Hospital of China Medical University (No. 
2021PS881K). The requirement for informed consent was 
waived because of the retrospective nature of the study.

We enrolled patients who underwent preoperative 
18F-FDG PET/CT examination and were suspected with 
ovarian cancer at Shengjing Hospital of China Medical 
University between January 1, 2010 and December 30, 
2020. The inclusion criteria were as follows: (1) patients 
with a primary tumor, (2) patients in whom cytoreduc-
tive surgery was performed within 15 days after 18F-FDG 
PET/CT examination at our hospital, (3) patients who 
received no neoadjuvant chemotherapy before surgery, 
and (4) patients who were pathologically confirmed to 
have HGSOC after surgery. The exclusion criteria were as 
follows: (1) patients in whom the primary ovarian lesion 
could not be identified on 18F-FDG PET/CT images, (2) 
patients with apparent artifacts (including hip replace-
ment and uterine contraceptive ring artifacts) in CT 
images that affected the observation of tumor lesions, 
(3) patients in whom 18F-FDG PET/CT images showed 
no metastatic lesions or metastasis could not be identi-
fied, and (4) patients with incomplete data. All patients 
received platinum-based chemotherapy after surgery. 
Patients’ clinical details, including age, CA125 level, 
FIGO stage, volume of ascites, characteristics of ascites, 
surgical resection status (Sur_status), PFS, and OS, were 
recorded. PFS was defined as the time between the pre-
operative CT scan and tumor progression, whereas OS 
was defined as the time from the preoperative CT exami-
nation to death [27].
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Image acquisition and segmentation
All patients underwent 18F-FDG PET/CT scan using 
Discovery PET/CT 690 (GE Healthcare, Milwaukee, 
USA) according to the European Association of Nuclear 
Medicine guidelines [28, 29]. 18F-fluoro-2-deoxyglucose 
(18F-FDG) was synthesized at the PET/CT center of our 
hospital. 18F-FDG [28] requires quality control with a 
pH of 4.5–8.5 and purity of > 98%. The patients fasted 
for 4–6  h, and the blood glucose limit was < 15  mg/L; 
the injection dose for patients was 15  mCi/kg (± 10%). 
Sixty minutes after the injection, patients underwent 
18F-FDG PET/CT. The median applied activity of 18F-
FDG was 310.45  MBq (1st Qu: 269.00  MBq to 3rd Qu: 
354.00 MBq). The scanning region ranged from above the 
upper thigh to the top of the head. The tube voltage of the 
CT was 120 kV, automatic tube current was 15–180 mA, 
tube rotation speed was 0.8  s/rot, and scanning layer 
thickness was 3.8 mm. PET scans were performed using 
the three-dimensional acquisition mode, and 8–9 beds 
were collected, with each bed collected for 3  min. The 
size of the reconstruction matrix was 192 × 192 pixels. 
The image was reconstructed using the ordered subset 
maximum expectation iteration method.

Two researchers (ZDG and SBH, with 15 and 12 years 
of experience in interpreting 18F-FDG PET/CT images, 
respectively) evaluated the 18F-FDG PET/CT images and 
identified all suspected ovarian cancer lesions, including 
primary lesions and peritoneal metastatic implants in the 
abdominopelvic cavity. The location of the lesions was 
digitally encoded based on the anatomical abdominopel-
vic region [30, 31], as shown in Additional file 1.

Subsequently, the 18F-FDG PET/CT images were 
loaded onto the IntelliSpace Discovery platform (ver-
sion 3.0, Philips Healthcare, Eindhoven, Netherlands). 
The “Research Oncology Suite” was used to delineate 
the volumes of interest (VOIs). This suite can simul-
taneously display the corresponding layers of CT and 
PET sequences, and researchers can adjust the range of 
VOIs on the CT sequence with metabolic information 
shown on PET sequences as a reference. We used the 
solid component of lesions with 18F-FDG uptake in PET 
to delineate VOIs. The cystic components of the lesions 
were mostly liquid and contained very few tumor cells, 
whereas the peritoneal metastatic implants were almost 
solid. Therefore, using the solid components of lesions for 
analysis better reflects the heterogeneity between tumor 
cells and further enhances the accuracy of the results.

The primary focus and all selected peritoneal meta-
static implants (1–9 areas) were delineated for each 
patient. Only one lesion per area was selected. If there 
were multiple lesions in an area, the largest lesion was 
selected as the VOI. Each VOI had to be greater than 
5  mm × 5  mm × 5  mm, and this process was performed 

according to the Image Biomarker Standardization Ini-
tiative (IBSI) [32]. To assess the reproducibility of both 
intra- and interobserver segmentation, two researchers 
(ZDG and SBH) repeated the segmentation process on 
30 randomly chosen cases after a lapse of 1 month.

Extraction of inter‑tumor heterogeneity metrics based 
on conventional measurements
Each VOI had eight conventional measurements, includ-
ing pixel number (Pixel_number), major axis length 
(Maj), minor axis length (Min), CT value (HU), maximum 
standardized uptake value (SUVmax), mean standard-
ized uptake value (SUVmean), peak standardized uptake 
value (SUVpeak), and total lesion glycolysis (TLG) in the 
pathological area. To quantify the inter-tumor heteroge-
neity of conventional measurements, we calculated the 
following statistics for every VOI: (1) central tendency sta-
tistics: mean, median, mode, and quartile deviation (R); 
(2) discrete trend statistics: standard deviation (Std_dev), 
standard error for the sample mean (SM), variance, range, 
coefficient of variation (CV), corrected sum of squares 
(CSS), uncorrected sum of squares (USS); and (3) distribu-
tion statistics: kurtosis and skewness. Therefore, 13 quali-
tative heterogeneity metrics were generated. For example, 
patient 1 had three VOIs (one primary focus and two peri-
toneal metastatic implants). Each VOI had eight conven-
tional measurements, and each conventional measurement 
had 13 inter-tumor heterogeneity metrics at the patient 
level. Taking conventional measurement SUVmean as an 
example, SUVmean_Mean, SUVmean_Median, SUVmean_
Mode, SUVmean_td_dev, SUVmean_Variance, SUVmean_
Range, SUVmean_CV, SUVmean_CSS, SUVmean_USS, 
SUVmean_R, SUVmean_SM, SUVmean_Skewness, and 
SUVmean_Kurtosis were generated. Finally, 104 heteroge-
neity metrics based on conventional measurements were 
obtained for each patient.

Extraction of inter‑tumor heterogeneity metrics based 
on CT texture features
Inter-tumor heterogeneity metrics based on texture 
features were extracted as follows: (1) CT images were 
rescaled and 256  Gy levels were used. Moreover, a bin 
width of 32 was used to discretize the images; (2) the 
Gray-Level Co-occurrence Matrix (GLCM) of each VOI 
voxel was calculated; (3) the Haralick texture features, 
including energy, entropy, contrast, and homogeneity, 
were calculated; (4) the lesions were divided into differ-
ent subregions using the clustering algorithm; (5) pair-
wise similarities between subclasses were quantified as 
a dissimilarity matrix using Euclidean distance. Cluster 
site entropy (cSE) was calculated based on the frequency 
of pairwise similarities; and (6) The grey level distance 
zone matrix (GLDZM) was established. Cluster standard 
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deviation (cluDev) and cluster dissimilarity (cluDiss) 
were calculated for GDM. More detailed information can 
be found in Additional file 2.

Establishment of prognostic models
Three predictive models were established each for PFS and 
OS: a conventional model, an inter-tumor heterogeneity 
model, and an integrated model. The conventional model 
was established using conventional data, including age, 
CA125 level, FIGO stage, volume of ascites, characteris-
tics of ascites, Sur_status, pixel number, MajorAxis, Mino-
rAxis, average CT value, lymph node metastasis (LNM) 
location (pelvic, middle abdominal, upper abdominal, and 
distant LNM), number of metastatic implants, location 
of metastatic implants, pattern of invasion, ratio of solid 
components in the primary lesion, SUVmax, SUVmean, 
SUVpeak, and TLG. The inter-tumor heterogeneity model 
included the heterogeneity metrics calculated from both 
conventional measurements and texture features of the 
lesions. The integrated model included all the above-men-
tioned data. Finally, 6 models were established.

Immunohistochemical scores of p53 and Ki‑67
Postoperative pathological specimens of primary lesions 
were prepared by the pathology department of our hospital. 

All immunohistochemical sections obtained for p53 and 
Ki-67 measurements were scanned using the Pannoramic 
MIDI scanner (3DHISTECH, Budapest, Hungary) to gen-
erate digital Whole Slide Images (WSIs). The WSIs were 
then input into the Aipathwell software (Servicebio, Wuhan, 
China), which uses the deep learning principle of artificial 
intelligence to automatically analyze and calculate the his-
tochemical scores (H-score) of p53 and Ki-67. The H-score 
was calculated as ([{% of weak staining} × 1] + [{% of moder-
ate staining} × 2] + [{% of strong staining} × 3]) [33, 34].

Statistical methods
The Shapiro–Wilk test was used to assess normal dis-
tribution. Normally distributed data were expressed as 
mean ± standard deviation (x ± s). Non-normally distrib-
uted data were expressed as median (upper quartile and 
lower quartile, represented as 1st Qu. to 3rd Qu.). Stu-
dent’s t-test or Mann–Whitney U test was used to com-
pare continuous variables of two groups, depending on 
the normality of the distribution. Enumeration data were 
analyzed by the chi-square test. The intraclass correlation 
coefficient (ICC) [35] was computed to assess the intra- 
and interobserver measurements.

Feature selection and modeling for survival analysis 
were performed using the least absolute shrinkage and 

Fig. 1  Data analysis workflow. A Extraction of inter-tumor heterogeneity metrics based on conventional measurements. B Extraction of inter-tumor 
heterogeneity metrics based on texture features. C Survival analysis using the prognostic model. D Immunohistochemical scores of p53 and Ki-67 
using Whole Slide Images. E Correlation analysis between the immunohistochemical scores and the risk scores obtained from the models
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selection operator (LASSO) [36] Cox regression method. 
The included patients from our larger affiliated hospi-
tal served as the training set and the patients from the 
other affiliated hospital served as the testing set. The 
model training uses fivefold cross-validation in train-
ing set. The Kaplan–Meier survival curve and log-rank 
test [37] were used for confirmation. Spearman’s cor-
relation coefficient (ρ) was used to evaluate the correla-
tion between the immunohistochemical scores and risk 

scores obtained from models. Texture features were com-
puted using the Computational Environment for Radio-
logical Research (CERR) software (https://​github.​com/​
cerr/​CERR/) [38], which is IBSI compliant. Inter-tumor 
heterogeneity metrics based on texture features were 
extracted using MATLAB R2022a software (MathWorks, 
Natick, USA). Other statistical methods were conducted 
with R software (4.1.0, R Core Team). The main pack-
ages included in the study were “survival,” “survivalROC,” 

Fig. 2  Flowchart of the enrolled patients

Table 1  Clinical characteristics of the training set and the testing set

Abbreviations: CA125 Cancer Antigen 125, 1st Qu. First or upper quartile, 3rd Qu. Third or lower quartile, FIGO International Federation of Gynecology and Obstetrics, 
PFS Progression-Free Survival, OS Overall Survival
a Differences in clinical characteristics were compared using Student’s t-test or Mann–Whitney U test or chi-square test

Training set (n = 208) Testing set (n= 84) p-valuea

Age:median (1st Qu., 3rd Qu.) 54.00(47.25,60.00) 54.50(47.00,64.00) 0.49

CA125:median (1st Qu., 3rd Qu.) 867.00(511.00,1717.75) 867.00(319.75,1787.75) 0.30

Surgical resection status 0.65

  R0 (no residual tumor) 119(57.21%) 50(59.52%)

  R1 (residual tumor ≤ 1 cm) 42(20.19%) 19(22.62%)

  R2 (residual tumor > 1 cm) 47(22.60%) 15(17.86%)

FIGO stage determined surgically (%) 0.93

  IIB 3(1.44%) 1(1.19%)

  IIIA 6(2.88%) 1(1.19%)

  IIIB 20(9.62%) 9(10.71%)

  IIIC 119(57.21%) 45(53.57%)

  IVA 33(15.97%) 16(19.05%)

  IVB 27(12.98%) 12(14.29%)

Ascites volume 1500.00(300.00,3000.00) 1000.00(200.00,3750.00) 0.50

Ascites_character 0.38

  No ascites 9(4.33%) 6(7.14%)

  Bloody 63(30.29%) 20(23.81%)

  Non-bloody 136(65.38%) 58(69.05%)

Survival time:median (1st Qu., 3rd Qu.)
   PFS 644.50(413.75,902.50) 657.00(422.00,902.00) 0.79

   OS 1021.50(724.25,1630.00) 989.50(657.50,1729.75) 0.44

https://github.com/cerr/CERR/
https://github.com/cerr/CERR/
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“survcomp,” “glmnet,” “ggplot2,” “pROC,” and “corrplot.” A 
p-value < 0.05 (two-sided) was considered statistically sig-
nificant. The workflow of data analysis is shown in Fig. 1.

Results
Basic patient information
A total of 1749 patients with suspected malignant 
ovarian mass were retrospectively enrolled. Of these, 
292 patients with HGSOC were finally included in the 
study. Figure 2 shows the flowchart of patients enrolled 
in the study cohort. The median age of the enrolled 
patients was 54 years (1st Qu.: 47 to 3rd Qu.: 61). The 
median follow-up time of all patients was 1021.5  days 
(1st Qu.: 717.7  days to 3rd Qu.: 1626.0  days). Patient 
characteristics for the two datasets are summarized in 
Tables 1 and 2.

Establishment of survival predictive models
A total of 107 inter-tumor heterogeneity indicators were 
extracted from conventional measurements (n = 104) and 
Haralick texture features (n = 3). The intra- and inter-
observer ICCs of heterogeneity indicators were greater 
than 0.75. Table  3 shows a comparison of the predictive 
performance of the models. The C-indices of the inte-
grated model for both PFS and OS were the highest. The 

C-indices of the training and testing set for the integrated 
PFS model were 0.898 (95% confidence interval [CI]: 
0.881–0.914) and 0.891 (95% CI: 0.860–0.921), respec-
tively. The C-indices of the training set and the validation 
set of the integrated OS model were 0.894 (95% CI: 0.871–
0.917) and 0.905 (95% CI: 0.873–0.936), respectively. These 
parameters are shown in Figs.  3 and 4. Figure  5 shows 
the nomogram of the integrated PFS and OS predictive 
models. The inter-tumor risk scores calculated from the 
inter-tumor heterogeneity model were significant prog-
nostic factors for PFS (hazard ratio [HR] = 1.281, 95% CI: 
1.240–1.322, p < 0.05) and OS (HR = 1.221, 95% CI: 1.174–
1.270, p < 0.05) by univariate Cox analysis. Multivariate 
Cox analysis also indicated that the inter-tumor risk scores 
were independent prognostic factors for PFS (HR = 1.214, 
95% CI: 1.170–1.260, p < 0.05) and OS (HR = 1.187, 95% CI: 
1.154–1.221, p < 0.05).

Correlation analysis between model risk scores 
and immunohistochemical scores of p53 and Ki‑67
Immunohistochemical analysis for p53 expression 
was performed for 90 of 292 patients. The p53 H-score 
showed the strongest correlation with the risk score of 
the integrated PFS predictive model (ρ = 0.859, p < 0.001) 
(Fig.  6A). Immunohistochemical analysis for Ki-67 

Table 2  Characteristics of lesions in the training set and the testing set

Abbreviations: LNM Lymph Node Metastasis, AR area
a Differences in clinical characteristics were compared using Student’s t-test or Mann–Whitney U test or chi-square test. “*” represents statistically significant

Training set (n = 208) Testing set (n = 84) p-valuea

Lymph node metastasis (LNM)
  Pelvic LNM 74(35.58%) 25(29.76%) 0.34

  Middle abdominal LNM 63(30.29%) 35(41.67%) 0.06

  Upper abdominal LNM 61(29.33%) 30(35.71%) 0.29

  Distant LNM 26(12.50%) 16(19.05%) 0.15

Number of metastatic implants 6.00(3.00,8.00) 5.50(3.25,8.00) 0.14

Location of metastatic implants
  AR-5 (left lower) 142(68.27%) 46(54.76%) 0.04*

  AR-6 (pelvis) 173(83.17%) 75(89.29%) 0.19

  AR-7 (right lower) 131(62.98%) 47(55.95%) 0.27

  AR-4 (left flank) 88(42.31%) 35(41.67%) 0.92

  AR-0 (central) 95(45.67%) 37(44.05%) 0.80

  AR-8 (right flank) 147(70.67%) 55(65.48%) 0.38

  AR-3 (left upper) 129(62.02%) 57(67.86%) 0.42

  AR-2 (epigastrium) 87(41.83%) 41(48.81%) 0.28

  AR-1 (right upper) 141(67.79%) 61(72.62%) 0.42

Pattern of invasion 0.74

  0 No invasion 23(11.06%) 13(15.48%)

  1 Nodular type 42(20.19%) 18(21.43%)

  2 Predominantly nodular type 51(24.52%) 18(21.43%)

  3 Predominantly infiltrate type 52(25.00%) 17(20.24%)

  4 Infiltrate type 40(19.23%) 18(21.43%)
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Table 3  Comparison of the predictive performance of the different models

Abbreviations: PFS Progression-Free Survival, OS Overall Survival, CI Confidence Interval, C-index Concordance Index

Training set (95% CI) Testing set (95% CI)

PFS predictive models (C-index)
  Conventional model 0.809(0.778–0.835) 0.808(0.766–0.851)

  Inter-tumor heterogeneity model 0.853(0.816–0.870) 0.849(0.807–0.891)

  Integrated model 0.898(0.881–0.914) 0.891(0.860–0.921)

OS predictive models (C-index)
  Conventional model 0.821(0.751–0.840) 0.817(0.758–0.877)

  Inter-tumor heterogeneity model 0.854(0.812–0.876) 0.852(0.788–0.916)

  Integrated model 0.894(0.871–0.917) 0.905(0.873–0.936)

Fig. 3  Parameters of the models. The related features in the integrated PFS model (A) and integrated OS model (B). FIGO_stage: the International 
Federation of Gynecology and Obstetrics stage; Sur_status: surgical excision status; cSE: cluster site entropy; HU_SM: standard error of CT value; 
HU-Kurtosis: kurtosis value of CT value; TLG-Kurtosis: kurtosis value of the total amount of glucose decomposition; HU_USS: uncorrected sum 
of squares of CT value; TLG_USS: uncorrected sum of squares of total lesion glycolysis
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Fig. 4  Kaplan–Meier survival curves and ROC curves of the integrated models: 1- to 3-year progression-free rate in the training set (A, B) 
and the testing set (C, D); 1- to 5-year survival rate in the training set (E, F) and the testing set (G, H)

Fig. 5  Nomogram of the integrated PFS predictive model (A) and the integrated OS predictive model (B)
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expression was performed for 88 of 292 patients. The 
Ki-67 H-score showed the strongest correlation with 
the risk score of the integrated PFS predictive model 
(ρ = 0.829, p < 0.001) (Fig. 6B).

Discussion
In the present study, we extracted qualitative inter-tumor 
heterogeneity metrics from conventional measurements 
and texture features from 18F-FDG PET/CT images. The 
models based on these metrics performed well in pre-
dicting PFS and OS in patients with HGSOC. The risk 
scores derived from the models showed a relationship 
with p53 and Ki-67 expression levels.

The inter-tumor risk score recalculated from inter-
tumor heterogeneity metrics was a strong and independ-
ent prognostic factor for PFS and OS. For conventional 
measurements, the results indicated that the more dis-
crete the conventional measurements, the stronger the 
heterogeneity between tumor sites, and the shorter the 
PFS and OS for HGSOC patients. To date, few studies 
have focused on predicting the prognosis of patients with 
ovarian cancer by using heterogeneity metrics derived 
from conventional measurements. Lee et  al. reported 
that the intra-tumor heterogeneity of 18F-FDG uptake 
on 18F-FDG PET/CT was significantly correlated with 
the recurrence of epithelial ovarian cancer [39]. Liu et al. 
showed that the SUVmean of primary tumors was higher 
than that of metastatic implants in the omentum [40]. 
For inter-tumor heterogeneity metrics based on texture 
features, cSE and cluDiss were important risk factors for 
PFS and OS; this finding is consistent with those of pre-
vious studies [15, 16, 41]. Both the cSE and cluDiss can 
be used as indicators of the extent of dissimilarity. Thus, 
patients with VOIs with highly similar textures will have 
low cSE and cluDiss values, implying low heterogeneity.

Image-based inter-tumor heterogeneity may be associ-
ated with underlying molecular changes. This study con-
firmed that the risk scores of the prognostic models based 
on inter-tumor heterogeneity metrics were strongly cor-
related with the expression of p53 and Ki-67. p53 expres-
sion reflects the TP53 missense mutation, and it plays an 
important role in regulating cell proliferation, apoptosis, 
senescence, DNA repair, and metabolic homeostasis [42–
44]. Ki-67 is closely associated with tumor differentiation, 
invasion, metastasis, and prognosis [45, 46]. According 

to previous studies, CT-based inter-tumor heterogene-
ity metrics were correlated with the enrichment of the 
WNT/ β-catenin signaling pathway [15], 19q12 ampli-
fication involving CCNE1 [41], and abundance of some 
proteins in vivo [47].

However, surgical procedures still play a major role in 
the primary treatment of ovarian cancer, and immuno-
histochemical determination of the surgically removed 
tissue is usually feasible. However, some patients, par-
ticularly those with advanced ovarian cancer, require 
neoadjuvant chemotherapy, rather than direct surgery. 
Therefore, it is necessary to analyze the correlation 
between noninvasive indicators and these immunohis-
tochemical indicators to identify the potential molecu-
lar mechanisms underlying inter-tumor heterogeneity. 
Moreover, expanding their scope of application, such 
as predicting the survival of patients using neoadjuvant 
chemotherapy, evaluating the efficacy of neoadjuvant 
chemotherapy, and developing personalized treatment 
plans, is crucial [48].

Through this study, we hope to preliminarily estab-
lish inter-tumor heterogeneity metrics based on 18F-
FDG PET/CT and identify high-risk patients with 
high heterogeneity. Greater focus should be directed 
toward these patients, and more proactive personal-
ized treatment plans could be developed to improve 
patient management. This study provides a nomogram 
for clinical use. In the future, we hope to standardize 
and simplify this process. First, we will use a standard-
ized 18F-FDG PET/CT scanning process within 15 days 
before surgery. Second, by combining information from 
the hospital information system and Picture Archiving 
and Communication System, the integrated software 
can automatically calculate inter-tumor heterogeneity 
metrics and provide the risk level, possible prognosis, 
and available personalized treatment plans.

It is difficult to distinguish metastatic malignant lesions 
from inflammatory sites using 18F-FDG PET/CT images 
[49], especially for inexperienced readers, and relevant 
patient history and symptoms, knowledge of the typical 
pattern of metastases for the malignancy under investiga-
tion, corresponding CT images, and the help of clinical 
doctors may guide the interpretation of 18F-FDG uptake 
[50]. Furthermore, this study used a 9-zone abdomi-
nal location method to locate metastatic sites, which 

(See figure on next page.)
Fig. 6  Spearman’s correlation coefficient graph. The correlation between the risk scores of the prognostic models and immunohistochemical 
scores of p53 (A) and Ki-67 (B). The distribution of each variable is shown on the diagonal line, including p53/Ki-67 H-Score, Integrated_PFS_
riskScore, Integrated_OS_riskScore, Conventional_PFS_riskScore, Conventional_OS_riskScore, Inter-tumor_PFS_riskScore, and Inter-tumor_OS_
riskScore. The part below the diagonal line shows the scatterplots and fitting curves of the two variables. The part above the diagonal line shows 
Spearman’s correlation values of the two variables and the corresponding significance levels: *** represents p < 0.001



Page 10 of 13He et al. BMC Cancer          (2024) 24:337 
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is relatively simple and user-friendly, particularly for 
novices.

The present study had some limitations. First, the study 
cohort was limited in size. However, as 18F-FDG PET/
CT technology continues to advance and become more 
accessible, a larger number of patients will likely have the 
opportunity to undergo 18F-FDG PET/CT examinations 
for disease evaluation. Second, we used traditional arti-
ficial segmentation for delineating VOI. Although it was 
drawn and corrected by two experienced imaging radi-
ologists, artificial errors were unavoidable. Third, when 
constructing the PFS and OS models, we did not include 
the interaction between variables in the models; however, 
this also increased the simplicity and interpretability of 
the models. Fourth, it is important to acknowledge that 
this study specifically pertains to patients with at least 
one metastatic lesion and may not be applicable to all 
types of HGSOC.

Conclusions
In conclusion, inter-tumor heterogeneity metrics based 
on two dimensions (conventional measurements and 
texture features) of two modalities (PET and CT) in 
18F-FDG PET/CT were developed and used to con-
struct noninvasive predictive models of PFS and OS for 
patients with HGSOC. These models need to be vali-
dated in larger multicenter cohorts and are expected 
to be implemented in clinical practice in the future. 
The improved inter-tumor heterogeneity extraction 
method is also expected to be applied to other tumors 
with inter-tumor heterogeneity, thus providing a new 
research approach.
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