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Abstract

Background: Epithelial to mesenchymal transition (EMT) is the process by which stationary epithelial cells transdifferentiate
to mesenchymal cells with increased motility. EMT is integral in early stages of development and wound healing. Studies have
shown that EMT could be a critical early event in tumor metastasis that is involved in acquisition of migratory and invasive
properties in multiple carcinomas.

Methods: In this study, we used 15 published gene expression microarray datasets from Gene Expression Omnibus (GEO)
that represent 12 cell lines from 6 cancer types across 95 observations (45 unique samples and 50 replicates) with different
modes of induction of EMT or the reverse transition, mesenchymal to epithelial transition (MET). We integrated multiple gene
expression datasets while considering study differences, batch effects, and noise in gene expression measurements. A
universal differential EMT gene list was obtained by normalizing and correcting the data using four approaches, computing
differential expression from each, and identifying a consensus ranking. We confirmed our discovery of novel EMT genes at
mRNA and protein levels in an in vitro EMT model of prostate cancer – PC3 epi, EMT and Taxol resistant cell lines. We validate
our discovery of C1orf116 as a novel EMT regulator by siRNA knockdown of C1orf116 in PC3 epithelial cells.

Results: Among differentially expressed genes, we found known epithelial and mesenchymal marker genes such as CDH1
and ZEB1. Additionally, we discovered genes known in a subset of carcinomas that were unknown in prostate cancer. This
included epithelial specific LSR and S100A14 and mesenchymal specific DPYSL3. Furthermore, we also discovered novel EMT
genes including a poorly-characterized gene C1orf116. We show that decreased expression of C1orf116 is associated with poor
prognosis in lung and prostate cancer patients. We demonstrate that knockdown of C1orf116 expression induced
expression of mesenchymal genes in epithelial prostate cancer cell line PC3-epi cells, suggesting it as a candidate driver
of the epithelial phenotype.

Conclusions: This comprehensive approach of statistical analysis and functional validation identified global expression
patterns in EMT and candidate regulatory genes, thereby both extending current knowledge and identifying novel drivers
of EMT.

Keywords: EMT, Metastasis, Prostate cancer, C1orf116, Multi-study integration

* Correspondence: ajbattle@cs.jhu.edu
1Department of Computer Science, Johns Hopkins University, Baltimore, MD
21218, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Parsana et al. BMC Cancer  (2017) 17:447 
DOI 10.1186/s12885-017-3413-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-017-3413-3&domain=pdf
mailto:ajbattle@cs.jhu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Cancer is the second leading cause of death in United
States. Metastasis is the leading cause of cancer-related
morbidity and mortality [1], but identifying tumors with
metastatic potential remains a challenge [2]. Tumor me-
tastasis is a multi-step process in which primary tumor
cells disseminate from their site of origin to seed sec-
ondary tumors at a distant site [3]. It is believed that in
a critical early event in cancer progression, metastatic
cancer cells undergo an epithelial to mesenchymal tran-
sition (EMT). During EMT, stationary epithelial cells
lose cell polarity and transdifferentiate to spindle-shaped
motile mesenchymal cells. EMT is a crucial physiologic
process involved in early development during embryo-
genesis and organogenesis. It also plays an important
role in tissue regeneration and wound healing. However,
in cancer EMT may contribute to tumor progression
and malignant transformation. Several epithelial cancer
cells have been described to undergo EMT transform to
a more malignant phenotype [4] that can further pro-
mote formation of secondary tumors [5].
The role of EMT has been frequently debated in clin-

ical cancer metastasis [6]. However, several in vitro stud-
ies have shown that epithelial cancer cells can undergo
EMT in response to a combination of signals from the
tumor microenvironment [2]. During EMT, cells go
through multiple morphological and biochemical changes
resulting in loss of epithelial properties coupled with gain
of mesenchymal characteristics [7–21]. Microarrays have
been widely used to study gene expression patterns of cell
populations under different experimental settings, includ-
ing EMT-inducing conditions (Fig. 1). While there have
been many studies investigating the effect of a gene or
pathway in EMT, none have explored the universal
changes across multiple cancer tissue types or EMT in-
duction methods.
Several gene expression datasets examining EMT in a

variety of different cell lines under different conditions

are available on open access databases such as Gene Ex-
pression Omnibus (GEO) [22]. It has been demonstrated
that re-use and aggregation of public gene expression
data facilitates discovery of signals too weak to be de-
tected in an individual experiment [23–26]. Gröger et al.
performed meta-analysis of 18 EMT gene expression
studies and identified 130 core-EMT genes, which were
differentially expressed in at least 10 of the 18 studies
[27]. Genes such as TGFB, GNG11, TIMP1, ETS1,
S100A14, DPYSL3 and C1orf116 that we discovered as
differential EMT, were not found in their core EMT gene
list. Furthermore, we experimentally validated some of
these genes (S100A14, DPYSL3 and C1orf116) in PC3
epithelial, PC3-EMT and PC3-taxol resistant cell lines
confirming their association in EMT. Also, each dataset
in [27] was confined by small sample size per class
(n < =6). The drawback with underpowered studies are:
a) low probability of identifying true effects b) overesti-
mation of effect size [28, 29]. Therefore, genes that
showed consistent moderate effects across datasets could
be missed. In contrast, systematic integration of multiple
studies promotes reliable detection of consistent gene
expression changes that may otherwise be false negatives
in results obtained from individual experiment [30]. At
the same time, it helps avoid false discoveries that could
result from intra-study variability resulting from single
experiment.
Batch effects and noise introduce spurious signal and

correlations in microarray gene expression data [31, 32].
Therefore, data normalization is crucial in order to cor-
rect the data for unwanted biological or non-biological
effects. However, Groger et al. do not account for batch
effects, cross-platform differences, or cross-tissue effects
in their meta-analyses study that could potentially lead
to false positive findings.
In this study, to identify universal EMT genes common

across multiple cancer types, we integrated 15 independ-
ent gene expression studies representing 12 cell lines (49
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Fig. 1 Epithelial to Mesenchymal Transition. During EMT, non-motile epithelial cells trans differentiate to mesenchymal cells with increased migratory
potential. During this, cells show decreased expression epithelial specific genes that include E-cadherin, OVOL1 and ESRP1. At the same time, expression
of mesenchymal genes such as N-cadherin, VIM and ZEB1 increases
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epithelial and 46 mesenchymal phenotypes) from 6 can-
cer tissue types and multiple EMT induction modalities
(Table 1, Additional file 1: Table S1). After correcting
data to account for cross-study differences, cross-
platform differences, and other sources of noise, we per-
formed differential expression analysis and identified
global changes in gene expression patterns between epi-
thelial and mesenchymal states (Fig. 2). Importantly, our
candidate gene list was enriched for EMT-related genes
and we identified known markers of EMT. In addition, we
also identified EMT genes that had only been described in
a sub-set of malignant disease states, but were previously
unknown in prostate cancer (e.g. LSR, S11A14, DPYSL3),
implying a common EMT program across multiple cancer
types. We further identified genes that had not been previ-
ously characterized in EMT in any disease state including
C1orf116, which we then experimentally validated using
siRNA knockdown in PC3 epithelial cells. This approach
of multi-study integration enabled identification of differ-
ential EMT genes universal across different types of can-
cer. Functional validations of these genes indicate
manifestation of molecular mechanisms contributing to
EMT shared across disease types. This study also identifies
an uncharacterized candidate novel EMT regulator gene
C1orf116. These findings thereby extend our knowledge
and understanding of EMT biology.

Methods
Data overview
We used 15 published EMT microarray gene expression
datasets from GEO (Gene Expression Omnibus) (Table 1,
Additional file 1: Table S1). This comprises of 95

observations (45 unique samples and 50 replicates), 49
epithelial and 46 mesenchymal cell lines exposed to differ-
ent treatment modalities. The cell lines come from 6 dif-
ferent tissue types including breast, prostate, colon,
esophageal, liver and retinal pigment and 4 different
microarray platforms (8 chips), Affymetrix, Agilent, Stan-
ford Microarray Database (SMD) and Illumina. All the
datasets were downloaded in the format they were submit-
ted to GEO. We mapped platform specific probe IDs to
Ensembl IDs and gene symbols. When multiple probes
mapped to same gene, we used median values to represent
expression of that gene. We used 7276 genes common
across all datasets.

Data normalization
This work combined data from multiple studies span-
ning diverse cell lines and different platforms. Batch
effects and noise are inherent in gene expression data.
To account for confounders in data as a result of cross-
study and cross-platform effects, we used multiple cor-
rection methods, such as quantile normalization (QN),
Surrogate Variable Analysis (SVA), Quantile normalization
followed by SVA and Column Standardized Median
Centered (MCtr). We merged all 15 datasets into one
matrix prior to quantile normalization and SVA. For
CMSC, we individually processed each study and com-
bined them after normalization.

Quantile normalization
Quantile normalization makes the gene expression dis-
tribution of each sample in the dataset the same. Given
a dataset D, with ‘g’ genes and ‘n’ samples:

Table 1 Dataset information

GEO ID Platform ID Disease Type Cell line Samples* Ref

GSE12811 GPL7319 Breast MCF10A 3 [7]

GSE13915 GPL7785 Breast BT549, EFM19 4 [8]

GSE18070 GPL570 Breast MCF10CA1h 9 [9]

GSE28569 GPL6480 Breast MCF10A 8 [10]

GSE39356 GPL6480 Breast MCF-7 4 [11]

GSE8240 GPL3921 Breast MCF10A 11 [12]

GSE12203 GPL2700 Colon Caco-2 4 [13]

GSE14773 GPL570 Colon HT29, SW480 8 [14]

GSE27424 GPL570 Esophageal EPc2-hTERT 12 [15]

GSE26391 GPL6244 Liver HCC-1.1, HCC-1.2 8 [16]

GSE14405 GPL570 Prostate PC3, TEM4, TEM2 6 [17]

GSE22010 GPL6244 Prostate PrEC-hTERT 2 [18]

GSE22764 GPL6884 Prostate PC3 6 [19]

GSE43489 GPL570 Prostate PC3 4 [20]

GSE12548 GPL570 Retinal pigment ARPE19 6 [21]

*Indicates the number of samples included in our study
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� Sorts each column in D
� Computes mean for each row and assigns it to each

element in the row giving D’
� Finally, it rearranges columns in D’ such that it has

the same ordering as original D, thus giving normalized
data, D_normalized

At the end of this, each column in D has the same dis-
tribution [33].

Surrogate variable analysis
Surrogate variable analysis allows us to preserve the
phenotype signal of interest (epithelial and mesenchy-
mal). It estimates known and hidden confounding fac-
tors using Singular Value Decomposition on residual
variation matrix. We regress out estimated surrogate
variables from gene expression data to get SVA normal-
ized gene expression [34].
We also quantile normalize combined data followed

by SVA to correct for hidden confounders.

Column standardized median centered
Samples from each study are standardized and median
centered by gene as described in [35] and combined
them.

Differential expression analyses and concordance between
normalization methods
With each of the normalized dataset, we used a two-
sample t-test to identify differentially expressed genes
between epithelial and mesenchymal states. Assuming

equal variance, we compared the mean expression of a
gene between the two populations. For each gene, we
tested:

Null Hypothesis : μepi ¼ μmes

Alternative : μepi≠μmes

We ranked genes by raw p-values. We applied Bonfer-
roni correction for multiple hypothesis testing.
To test concordance between normalization methods,

we used spearman rank correlation to test association
between gene ranks (n = 7276) obtained by different cor-
rection methods.
Assuming equal probability of error for each

normalization method, we computed average rank for
each gene across the four methods that represented the
consensus position of each gene according to the differen-
tial expression test statistic (Fig. 2).

Cluster evaluation of normalized data
To evaluate if normalization improved overall grouping
of epithelial and mesenchymal phenotypes together, we
clustered each of the normalized data using hierarchical
clustering (with all 7276 genes). Next, to evaluate group-
ing we used Baker Hubert Index for cluster evaluation.
Baker Hubert’s Index (BH) [36] is an adaptation of
Goodman and Kruskal gamma statistic in the context of
clustering.

Fig. 2 Workflow for multi-study data integration, normalization and identification of candidate universal EMT genes
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BH ¼ Sþ−S−

Sþ þ S−

Here, S+ is the number of concordant quadraples and
S− is the number of disconcordant quadraples. To com-
pute BH, it tests all possible quadraples in the input.
Suppose we were testing quadruple samples a , b , c , d.

And d(a, b) is the distance between samples a and b. A
quadruple is concordant if it fulfills one of the following
two conditions:

� d(a, b) > d(c, d); And c and d are in same cluster and
a and b are in different clusters

� d(a, b) < d(c, d); And a and b are in same cluster and
c and d are in different clusters

A quadruple is disconcordant if:

� d(a, b) > d(c, d); And a and b are in same cluster and
c and d are in different clusters

� d(a, b) < d(c, d); And c and d are in same cluster and
a and b are in different clusters

Since we were interested in improvement in grouping
of epithelial and mesenchymal samples, we used pheno-
type vector as cluster assignment for evaluation.

Gene co-expression module detection using WGCNA
With 200 DE genes from QN + SVA data, unsigned co-
expression network was constructed using the WGCNA
package in R [37]. Since we used differentially expressed
genes, prior to constructing networks, the effect of
phenotype (epithelial and mesenchymal) from each gene
was removed using a linear model.

Ei ¼ μþ β1 �Pi þ �

where, μ is the mean effect, Ei is the expression of a gene
in sample i, β1 is the regression coefficient of phenotype,
Pi is the phenotype label for sample i and ϵ ~N(0, 1).
Expression of gene bE after regressing out effect of
phenotype is given by:

bEi ¼ Ei− μþ β1 �Pið Þ
Next using this, we computed an adjacency matrix aij

using pearson correlation:

aij ¼ corr ei; ej
� ��

�

�

�

β

where enis the expression of gene n and β is the soft-
thresholding power for weighted networks. Best scale-
free topology fitting index R2 was obtained at β = 5.5 (R2 =
0.77). The adjacency matrix was then transformed to a
topological overlap based similarity matrix given by:

TOMij ¼
X

u

P

kaikakj þ aij
min

P

kaik ;
P

kajk
� �þ 1−aij

The topological overlap between two nodes is the
measure of relative interconnectedness. The TOM was
then transformed to dissimilarity matrix:

dissTOMij ¼ 1−TOMij

Genes were then clustered using average linkage hier-
archical clustering.
Co-expression modules were derived from clustering

dendrogram using Dynamic Tree Cut with hybrid
method. This helped overcome the need for manually
selecting a cut-off height. We set minimum module size
to 15 since we were looking for modules among 200
genes. The expression profile of each module is repre-
sented by its eigengene, which is the first principal com-
ponent of the module.

RT-qPCR
RNA was isolated from cells at ~80% confluency using
RNeasy kit (Qiagen) and subsequent cDNA libraries
were prepared using Bio-Rad cDNA synthesis kit.
TaqMan gene expression assays were used to determine
mRNA expression levels using the following probes:
β-actin Hs_1060665_g1, LSR Hs01076319_g1, S100A14
Hs04189107, DPYSL3 Hs00181665_m1, C1orf116 Hs00
539900_g1, OVOL1 Hs00970334, CDH1 Hs01023894,
CDH2 Hs00983056_m1, ZEB1 Hs00232783_m1.
Relative Expression Calculations: In the qPCR, the tar-

get of interest in each sample is measured using at least
three biological replicates. The Ct value for each bio-
logical replicate is calculated as an average of three tech-
nical replicates. Then the Ct value of each biological
replicate is normalized to β-actin by subtracting it from
the corresponding Ct value of β-actin (−ΔCt). The two
groups of interest are compared using a Student’s t-test.
The values plotted in the graph are the average of the
base 2 anti-log transformations of -ΔCt for the biological
replicates of interest divided by the average of the base 2
anti-log of -ΔCt for the reference group. The standard
errors of the mean are determined from biological
replicates.

Western blot
Protein extracts were prepared using Frackleton-lysis
buffer with protease inhibitors (Thermo Scientific
78,410), and samples were electrophoresed on 4–15%
SDS-PAGE (Bio-Rad), transferred to a nitrocellulose
membrane and blocked with casein blocking buffer
(Sigma B6429). The list of antibodies used for western
blotting is in Additional file 2: Table S6. The Licor
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Odyssey fluorescence scanner was used for visualizing
the westerns.

siRNA knockdown of C1orf116
C1orf116 siRNA (ThermoFisher, cat#: 4,392,420) with
RNAiMAX transfection reagent (ThermoFisher) was
used for siRNA transfections. Some alterations were
made to manufacturer’s recommended protocol. Cells
were seeded at a density result in 50% confluency the
following day. Using a 6 well plate, 9 ul of RNAiMAX
reagent and 3 ul (30 pmol) of siRNA (each diluted in
150 ul of Opti-MEM media) was added to each well the
day after seeding. 72 h later RNA was isolated (Qiagen,
Rneasy mini kit) from plates and gene expression was
analyzed.

C1orf116 expression in cancer patient data
We identified publicly available published cancer patient
(breast, prostate, esophageal, liver, colorectal, and lung)
gene expression studies with at least 150 patients on
Oncomine [38]. Gene expression data for studies
(GSE17536 [39], GSE11121 [40], GSE25066 [41],
GSE22358 [42], GSE7390 [43], GSE68465 [44],
GSE31210 [45], and GSE21034 [46]) available on GEO
were obtained using the GEOquery R package [47]. Pro-
beset IDs corresponding to C1orf116 were used. Gene
level expression was obtained by aggregating multiple
probe expression values with median. Wilcoxon rank
sum test was used to test association between expression
of C1orf116 and grade, smoking status and cancer sam-
ple site. We also looked at association between tumor
grade and C1orf116 expression in 4 breast cancer, 1
colorectal cancer and 1 lung cancer studies from Onco-
mine. We adjust Wilcoxon rank sum p-values with
bonferroni correction for a total of 23 tests performed
for clinical associations (Table 2, Additional file 3:
Table S7 and Additional file 4: Figure S7).

Results
We identified publically available gene expression micro-
array datasets that queried gene expression of cell lines
induced to undergo EMT [7–21]. We confirmed the
phenotype of the samples by referring to associated pub-
lications for immunohistochemistry staining and/or pro-
tein expression of known epithelial or mesenchymal
markers (Table 1, Additional file 2: Table S1). 95 cell line
observations (45 unique samples and 50 replicates) from
15 datasets that showed sufficient evidence of correct
phenotypic labeling included 49 cell lines of epithelial
phenotype and 46 cell lines of mesenchymal phenotype.

Normalization methods show consistency in signal
Technical variability in the form of noise and batch-effects
is inherent in gene expression data. We performed

rigorous confounding factor correction to make gene ex-
pression comparisons between epithelial and mesenchy-
mal samples that came from different studies, platforms,
and cell lines. We used simple normalization methods in-
cluding column standardized mean centered (MCtr) [35]
and Quantile Normalization (QN) [33] and more rigorous
methods that included Surrogate Variable Analysis (SVA)
[34] and combination of QN followed by SVA (QN + SVA).
With each normalization method (MCtr, QN, SVA,
QN + SVA), we compared mean expression of epithelial
and mesenchymal cell lines by a two-sample t-test for dif-
ferential expression. We evaluated concordance among
normalization methods to determine signal robustness – any
individual method may be subject to false positives due
to different patterns such as outliers, batch effects,
etc. For this, we restricted our analysis to 7276 genes
that were common across all studies. We used spearman
correlation to test association between raw test statistics
(n = 7276 genes) obtained from two-sample t-test from
each of type of normalized data. Test-statistic distributions
from individual normalization methods were significantly
correlated with each other (p-value <2.2e-16, n = 7276).
This indicates that signal produced by data normalized
using a particular method is consistent with others (Fig. 3,
Additional file 5: Figure S1, Additional file 6: Figure S2
and Additional file 7: Figure S3).
Next, to assess if normalization improved overall

grouping of epithelial and mesenchymal phenotypes to-
gether, we clustered samples from each of the normal-
ized datasets using hierarchical clustering (using all 7276
genes). Next, to evaluate this grouping we used the
Baker Hubert Index (BH) with known phenotype vector
as group assignments. Values of the BH index range

Table 2 Association of C1orf116 expression in lung and prostate
cancer patients

Test group Wilcoxon rank
sum p-value

Bonferroni
adjusted
p-value

Lung cancer (Director’s Lung Challenge): grade [44]

Grade1 vs Grade 2 1.4191e-06 3.27E-05

Grade 2 vs Grade 3 1.1481e-10 2.65E-09

Grade 1 vs Grade 3 2.6121e-17 6.00E-16

Lung cancer (Director’s Lung Challenge): Smoking Status [44]

Never vs Past 0.006 1.38E-01

Past vs Current 0.006 1.38E-01

Never vs Current 0.0002 4.60E-03

Lung cancer (Okayama): Smoking status [45]

Never smoker vs
ever smoker

0.0586 1E + 00

Prostate cancer (Taylor): Tumor type [46]

Primary vs Metastatic 0.0340 7.82E-01
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from −1 to 1, with larger values indicating better group-
ing [48]. Table 3 shows that grouping of samples by
phenotype (epithelial or mesenchymal) is considerably
improved in normalized datasets in comparison to non-
normalized data. QN + SVA performs the best, followed
by SVA, MCtr and QN.

Differential expression analyses reveal universal EMT genes
across multiple carcinoma types
With every form of normalized data (MCtr, QN, SVA,
QN + SVA), we determined differentially expressed genes
between epithelial and mesenchymal cell phenotype by a

two-sample t-test. A gene list ranked by raw p-values from
the t-test was generated for each normalization method.
Assuming equal likelihood of error in correction methods
(Fig. 2), for each gene we assigned a differential rank that
was the average of p-value ranks from all four
normalization methods. This was used to generate a final
integrated ranked gene list (Additional file 8: Table S2).
We defined a candidate universal EMT gene list by the

top 200 genes from the integrated gene list (absolute
fold change >1.2 and FDR < 0.005 in SVA, QN + SVA
and MCtr normalized data) (Additional file 8: Table S2).
These genes are representative of global differential

a b

c d

Fig. 3 Consistency in differential expression signal across normalization methods. a Correlation heatmap showing concordance (Spearman rho)
among ranks of differentially expressed genes using the four normalization methods (n = 7276). Genes were ranked by raw t-test p-values.
b Correlation heatmap showing concordance (Spearman rho) among fold-change of differentially expressed genes using the four normalization methods
(n = 7276). c Hierarchical Clustering of top 200 differentially expressed genes with uncorrected data shows strong clustering of samples by study rather
than by phenotype. d Hierarchical Clustering of top 200 differentially expressed genes with QN + SVA (Quantile Normalized + SVA) corrected data clusters
by epithelial and mesenchymal phenotype

Table 3 Evaluation of sample grouping (with 7276 genes) using Baker Hubert index and phenotype information

No normalization Quantile Normalization
(QN)

Surrogate Variable
Analysis (SVA)

QN + SVA Median Centered
Column Scaled

Baker Hubert Index 0.0001 0.047 0.864 0.7995 0.0705

Parsana et al. BMC Cancer  (2017) 17:447 Page 7 of 14



EMT patterns independent of cell line origin and treat-
ment modality.
Cancer cells recruit developmental pathways and pro-

cesses to acquire migratory and invasive properties. To
determine if the candidate gene list contained groups of
genes working together and shared common biological
functions we tested enrichment it’s enrichment for
Hallmark genesets (MSigDB) defined and curated by the
Broad Institute [49] using a right-tailed Fisher’s exact
test. The most significantly enriched gene set was
epithelial to mesenchymal transition (Odds ratio = 18.3575636,
FDR = 4.92E-31). Among the other hallmark gene sets,
we found increased representation (FDR < 10%) of
several EMT related pathways including estrogen re-
sponsive genes (early and late), genes upregulated in
response to low oxygen levels (hypoxia) and others
[5, 50–57] (Table 4). We also found that specific es-
trogen responsive genes (early and late) were differen-
tially expressed even when restricted just to the
prostate cancer samples (Additional file 9: Figure S6)
indicating this enrichment was not due exclusively to
breast cancer cell lines in our combined analysis.
When tested for GO biological processes, we found
enrichment (FDR < 10%) for several developmental
terms including epidermis development, anatomical
structure morphogenesis and organ development

(Additional file 10: Table S3). This further confirms
that our analyses capture comprehensive signals in
identifying changes in gene expression patterns across
cancer types during EMT.
Among genes on our candidate gene list, we found

known epithelial- and mesenchymal-specific genes such as
E-cadherin (CDH1), Zinc Finger E-Box Binding Homeo-
box 1 (ZEB1), Vimentin (VIM), Transforming Growth Fac-
tor, Beta 1 (TGFB1), Tissue Inhibitor Of Metalloproteinase
1 (TIMP1) [5, 58], N-cadherin (CDH2) (Table 5). We also
observed enrichment of collagen genes that are known to
be associated with cell adhesion and migration amongst
DE genes (Fisher’s exact p-value 1.124e-05) [5]. In addition,
we also found known EMT related transcription factors
such as ZEB1, ETS1 and LSR in our candidate gene list.
We also compared our list of genes to the core EMT

gene signature described by Groger et al. [27]. We found
43 common genes from their study (Additional file 11:
Table S4). These included genes such as CDH1, CDH2,
VIM, LSR and some collagen genes. Several known EMT
genes such as TGFB, TIMP1, ETS1 that were found in
universal EMT genes were missing from their list. Some
other genes such as S100A14, DPYSL3 and C1orf116
(Additional file 12: Figure S4 and Additional file 13: Fig-
ure S5) that we validate as differential EMT genes in our
study, were also not found in their core gene list.

Table 4 Enriched MsigDB Hallmark genesets

Geneset p-values oddsratio FDR Genes in set

HALLMARK Epithelial mesenchymal
transition

9.84E-33 18.3575636 4.92E-31 CD59, CDH11, CDH2, COL1A1, COL1A2, COL4A2, COL5A1,
COL6A3, CTGF, CYR61, DAB2, DPYSL3, EDIL3, EMP3, ENO2,
FAP, FBN1, FBN2, FERMT2, GEM, GJA1, GREM1, LGALS1,
LOX, MMP14, MMP2, PCOLCE, PCOLCE2, PLAUR, PLOD1,
PMP22, POSTN, SERPINE1, SERPINE2, SLIT2, SPARC, SPOCK1,
TGFB1, TIMP1, VCAN, VIM, WNT5A

HALLMARK Estrogen response late 9.36E-06 4.332224532 0.00019652 ALDH3A2, ASS1, CDH1, CELSR2, LLGL2, LSR, MAPK13, PLXNB1,
RAPGEFL1, SCNN1A, SLC22A5, SLC27A2, ST14, TOB1, TRIM29

HALLMARK Apical junction 1.18E-05 4.516129032 0.00019652 AKT3, CDH1, CDH11, CLDN7, FBN1, GRB7, JAM3, JUP, MAPK13,
MMP2, MPZL2, PVRL3, SLIT2, VCAN

HALLMARK UV response dn 8.16E-05 4.23768997 0.001019448 AKT3, COL1A1, COL1A2, CYR61, DAB2, FZD2, GJA1, HAS2,
KCNMA1, MAP1B, PMP22, SERPINE1

HALLMARK Estrogen response early 0.000247578 3.495078664 0.002475779 AQP3, CELSR2, CLDN7, ELF3, GJA1, KRT15, PMAIP1, RAPGEFL1,
SCNN1A, SLC22A5, SLC27A2, TOB1, WWC1

HALLMARK Hypoxia 0.000436298 3.276838008 0.003635818 AKAP12, CHST2, COL5A1, CTGF, CYR61, ENO2, ETS1, HMOX1,
KDELR3, LOX, PLAUR, SERPINE1, SRPX

HALLMARK Inflammatory response 0.000679488 3.786760716 0.004246802 CD70, CHST2, EMP3, FZD5, HAS2, HRH1, MMP14, PLAUR,
SERPINE1, TIMP1

HALLMARK KRAS signaling up 0.00061698 3.554348835 0.004246802 AKAP12, EPB41L3, ETS1, GFPT2, GNG11, JUP, MAP7, MPZL2,
PLAUR, TMEM158, TRIB2

HALLMARK Angiogenesis 0.003822541 7.2 0.02123634 JAG2, POSTN, TIMP1, VCAN

HALLMARK Complement 0.00451196 3.068992514 0.022559801 CD59, COL4A2, CTSD, MMP14, PLAUR, SERPINE1, TIMP1,
TIMP2, ZEB1

HALLMARK Myogenesis 0.00594623 2.929880329 0.027028319 COL1A1, COL4A2, COL6A3, ERBB3, MEF2C, NCAM1, PDLIM7,
SPARC, TGFB1

HALLMARK TGF beta signaling 0.010673511 4.097902098 0.044472964 BCAR3, CDH1, SERPINE1, SMURF2, TGFB1
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Candidate gene list identified genes previously unknown
in prostate cancer EMT
In addition to genes well established in the process of
EMT, we also identified genes that had only been de-
scribed in EMT in a subset of cancer types, including
two epithelial specific genes, lipolysis stimulated lipopro-
tein receptor (LSR) and S100 calcium binding protein
A14 (S100A14), and one mesenchymal specific gene,
dihydropyrimidinase-like 3 (DPYSL3). Previous studies
have investigated role of LSR in breast cancer EMT [59],
and S100A14 has been examined in pancreatic and
cervical cancer [60, 61]. Previous studies have indicated
involvement of DPYSL3 in malignant pancreatic and
gastric tumors [62, 63].
We validated the expression of these genes in an in

vitro model of prostate cancer EMT. mRNA and protein
expression levels of these genes were determined in one
epithelial and two mesenchymal prostate cancer cell line
PC3 derivatives. PC3-Epi is an expansion of a highly epi-
thelial clone from the parental PC3 population. The
mesenchymal derivatives were generated from PC3 cells
by M2 macrophage co-cultures (PC3-EMT) and Taxol
treatment and subsequent resistance (PC3-TxR) [20, 64].
RT-qPCR of canonical epithelial and mesenchymal
genes, OVOL1, OVOL2, CDH1, ZEB1, and CDH2, con-
firmed the appropriate phenotypic states for these cells
lines (Fig. 4a). Elevated levels of S100A14 mRNA was
observed in PC3-Epi compared to mesenchymal PC3-

EMT and PC3-TxR. Similarly, mRNA expression of epi-
thelial gene LSR was found to be higher in PC3-Epi than
in its mesenchymal counterparts, PC3-EMT and PC3-
TxR (Fig. 4b).
Conversely, the mesenchymal gene DPYSL3 was ex-

tremely upregulated in PC3-EMT and PC3-TxR than in
PC3-Epi (Fig. 4b). These results were supported by west-
ern blot analysis, which demonstrated protein levels mir-
rored the mRNA expression (Fig. 4c).

C1orf116 was discovered to be a novel EMT regulator
Our candidate gene list also contained genes that have
not been previously described as related to the EMT
process in any cancer type or in any physiologic process.
One of these novel candidate EMT genes, C1orf116 (also
known as SARG), is a poorly characterized gene with
only one PubMed listed publication [65]. We first vali-
dated our finding from microarray data using the PC3 in
vitro model of EMT and found increased mRNA expres-
sion in PC3-Epi cells compared to PC3-emt (1.3 fold)
and PC3-TxR (8.8 fold). These results were supported by
elevated protein expression of C1orf116 in PC3-epi cells
(Fig. 5a-b).
Increased expression C1orf116 in epithelial cells con-

firmed of it as an epithelial marker gene. We applied
gene network analysis [37], that revealed weighted coex-
pression gene modules (groups of co-expressed genes)
and showed that C1orf116 clustered with other epithelial
genes including CDH1, LSR, S100A14 and others
(Additional file 14: Table S5, Fig. 6). LSR and S100A14
were among the known-unknown genes whose expres-
sion was validated in PC3 cell lines. This confirmed its
association with other epithelial genes universal across
other disease types. Through manual literature search,
we identified that a subset of the C1orf116 module gene
list have been shown to be associated with multiple can-
cer types. Among other genes in the modules, SH2D3A,
AP1M2, CDS1 and SCNN1A haven’t been previously
studied in cancer biology. This shows that in addition
to being a novel EMT regulator in prostate cancer,
C1orf116 could have broad effects across multiple
cancer types.
Next, we interrogated the possible role of C1orf116 in

in vivo malignant progression. For this, we identified
gene expression studies with at least 150 patients that
also had information on tumor grade and expression
data for C1orf116 and were able to find breast, prostate,
colorectal and lung cohorts (Additional file 4: Figure
S7). We found that C1orf116 expression is decreased in
metastatic lesions compared to localized tumors in pros-
tate cancer patients (Fig. 7a) [46]. Likewise, C1orf116 ex-
pression decreased with increasing cancer grade in
patients with lung cancer (Fig. 7b) [44]. Studies have
shown that lung cancer patients with history of smoking

Table 5 Rank of known epithelial and mesenchymal specific
genes and DE genes found in Hallmark Epithelial to mesenchymal
transition [73]

Gene Symbol Order in
average
rank

Gene
Symbol

Order in
average
rank

Gene
Symbol

Order in
average
rank

EMP3 3 PCOLCE2 45 VIM* 144

VCAN 4 FAP 54 FERMT2 147

GEM 6 CDH11 73 POSTN 150

CDH2* 11 TGFB1* 81 FBN2 155

ZEB1* 12 SPARC 84 GJA1 159

SPOCK1 13 CYR61 90 SERPINE1 161

COL4A2 14 WNT5A 95 DAB2 168

FBN1 15 CD59 98 COL1A1 171

PMP22 21 GREM1 106 MMP2 174

COL5A1 22 PLAUR 108 PCOLCE 181

CDH1* 24 CTGF 118 ENO2 187

SLIT2 33 COL1A2 120 LGALS1 191

EDIL3 36 PLOD1 124 SERPINE2 162

DPYSL3 42 MMP14 127

COL6A3 43 LOX 129

*commonly used EMT marker genes
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tobacco/cigarette exhibit lower expression levels of E-
cadherin and higher levels of mesenchymal markers such
as vimentin [66, 67]. Previous studies have also indicated
that cigarette smoking can induce EMT in non-small
cell lung cancer [68]. Analogous to these findings, we
observed reduced expression of C1orf116 among lung
cancer patients with smoking habits (Fig. 7c-d) [44,
45]. In some breast cancer datasets expression of
C1orf116 increased with increasing cancer grade
(Additional file 3: Table S7 and Additional file 4: Fig-
ure S7). This suggested that in addition to expression
changes in in vitro cell line models, changes in
C1orf116 expression could potentially have a func-
tional role in clinically-important disease progression
in cancer patients.
To test the role of C1orf116 as a driver of an epithelial

phenotype, we used siRNA-mediated knockdown of the
gene in PC3-Epi cells. We found that siRNA-mediated

knockdown of C1orf116 expression resulted in decreased
expression of epithelial markers OVOL1, ESRP1, and
CDH1, and increased expression of mesenchymal
marker CDH2 (Fig. 5c). This suggests that C1orf116
plays a functional role in maintaining epithelial pheno-
type. Significant upregulation of mesenchymal genes in
response to C1orf116 knockdown indicates it as a novel
regulator of EMT.

Discussion
EMT may be an early step in cancer metastasis and has
been associated with chemoresistance and disease pro-
gression [69, 70]. Though EMT is common among all
solid tumor types and is essential in early development,
common drivers of EMT across multiple cancer types
have not been described. Several studies have investi-
gated EMT in cell lines from within a single disease
type. Although most studies have been confined to very

Fig. 4 Expression of EMT associated genes in prostate cancer EMT. a qPCR: mRNA expression of known epithelial and mesenchymal specific genes in
PC3 prostate cancer EMT model cell line. b qPCR: mRNA expression of epithelial and mesenchymal specific genes in PC3 prostate cancer cell lines
previously unknown in prostate cancer EMT. * P < 0.05; ** P < 0.005; *** P < 0.0005. c Immunoblot: Protein expression of epithelial and mesenchymal
specific genes in PC3 prostate cancer cell lines previously unknown in prostate cancer EMT (LSR, DPYSL3, S100A14, C1orf116, and β-actin were all
probed on the same blot, so the β-actin loading control is appropriate for both Fig. 4c (LSR, DPYSL2, S100A14) and Fig. 5b (C1orf116). Data were sepa-
rated into two figures for clarity)

Fig. 5 C1orf116: a novel EMT regulator. a qPCR: mRNA expression of C1orf116 in EMT model prostate cancer cell lines PC3-Epi, PC3-EMT and PC3-TxR
* P < 0.1; ** P < 0.05; *** P < 0.005. b Immunoblot: Protein expression of C1orf116 in EMT model prostate cancer cell lines PC3-Epi, PC3-EMT and PC3-
TxR (LSR, DPYSL3, S100A14, C1orf116, and β-actin were all probed on the same blot, so the β-actin loading control is appropriate for both Fig. 4c (LSR,
DPYSL2, S100A14) and Fig. 5b (C1orf116). Data were separated into two figures for clarity). c qPCR: mRNA expression of C1orf116 and other known
epithelial (OVOL1, ESRP1 and CDH1) and mesenchymal (CDH2) gene in PC3-Epi cells transfected with C1orf116-siRNA relative to empty vector control
* P < 0.1; ** P < 0.05; *** P < 0.005
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small sample size. To address this, we systematically
integrate multiple EMT studies to increase power
and identify novel drivers of EMT universal to all
cancer types.
A significant challenge in multi-study analysis comes

from various sources of heterogeneity arising from study
specific technical and biological variation. Biological
variation interferes with analyses, especially when it is
not the signal of interest. We employed two strategies to
address various sources of heterogeneity and noise. First,
we chose stringent normalization methods that have
been shown to reduce the influence of such heterogen-
eity (SVA, quantile normalization, and scaled median
centering). We recognize that these methods may have
their failure modes and limitations. Therefore, we de-
fined our final differentially expressed gene list from
consensus ranking across all four normalization
schemes. Thus even if a single method introduced an
error or failed to account for a particular effect, the final
gene list may be more robust than results from any indi-
vidual method. However, technical variation and experi-
mental heterogeneity may still influence the results of
our analysis, as no method has been shown to fully
remove such effects from expression data. Therefore, ex-
perimental validation and comparison with external
functional annotation were important.

Integrating across multiple studies did improve power
and helped us detect novel genes that showed consistent ef-
fect across multiple studies, which could be concealed in a
single study. We found three groups of genes in the EMT
differentially expressed list: a) known EMT genes (e.g.
CDH1, ZEB1, TGFB, CDH2, VIM, TIMP1), b) EMT genes
previously unknown in prostate cancer (LSR, S100A14,
DPYSL3) and c) novel EMTgenes (including C1orf116).
We confirmed our discovery of unknown EMT genes

in prostate cancer by testing expression of LSR,
S100A14, and DPYSL3 in a PC3 prostate cancer cell line

Fig. 6 C1orf116 associated genes in weighted gene correlation network
module. This correlation network shows association of C1orf116 module
genes obtained from WGCNA. Node size is a function of correlation with
C1orf116 expression. Yellow nodes represent genes that have been
previously studied in multiple (greater than 3) cancer types. Bright green
nodes are the genes that have been studied in 3 or less cancer types.
Light green nodes are genes that have not been specifically studied in
cancer. Gray nodes were genes that were not significantly associated
with expression of C1orf116

a b

c d

Fig. 7 C1orf116 expression in cancer patient data. a Decreased
expression of C1orf116 is seen in metastatic tumor type compared
to primary prostate cancer (Taylor dataset); unadjusted P = 0.0340,
Bonferroni adjusted P = 0.51. b Expression of C1orf116 decreases in
high grade lung cancer (Director’s challenge dataset); Bonferroni
adjusted P < 0.0005. c C1orf116 is downregulated in lung cancer
patients with increased smoking habits (Director’s challenge dataset);
unadjusted P < 0.01, Bonferroni adjusted P < 0.1. d C1orf116 is
downregulated in lung cancer patients with smoking habits in
comparison to non-smokers (Okayama dataset); unadjusted
P = 0.0586, Bonferroni corrected P = 0.879
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model of EMT. Previous studies have shown that LSR
suppresses EMT phenotype in claudin-low breast cancer
cell lines [59]. S100A14 has been studied in breast can-
cer progression and is showed to be involved in EMT in
human cervical and pancreatic cancer cells [60, 61, 71].
DPYSL3 is associated with malignant gastric and pan-
creatic tumors [62, 63]. Moreover studies suggest that
mRNA expression of DPYSL3 is positively correlated
with Vascular Endothelial Growth Factor (VEGF), a
gene thought to be involved in EMT [72]. This data
indicates that our method bridged EMT cancer biol-
ogy across different disease types and captures global
expression patterns in EMT (Additionale file 12:
Figure S4A-C).
We confirmed discovery of C1orf116 as epithelial spe-

cific gene by testing its expression in PC3 in vitro model
of EMT. siRNA knockdown of C1orf116 in PC3 epithelial
cell lines showed loss of epithelial markers and gain of
mesenchymal markers thereby confirming its functional
role as a negative driver of EMT. Clinical data from breast,
prostate cancer and lung cancer patients also suggested
that changes in expression of C1orf116 could have func-
tional implications in disease progression.
Altogether, through this study we have found genes

whose effects are represented by multiple cancer types
(breast, prostate, liver, colon, esophagus and retinal
pigment). We have also validated expression of some
genes in an in vitro prostate cancer cell line model and
potential relevance in vivo data from three tissues, in-
cluding one (lung) that was not represented among our
cell line data. However, these effects might not necessar-
ily be extrapolated for cancer types not included in this
study. As data become available for other tissues and
cancers, further analysis can be performed.

Conclusions
Using multi-study integration approach, we identified
consensus ranked universal EMT genes. This gene list
comprised of a) known EMT genes that included CDH1,
ZEB1 and CDH2 b) genes studied in a subset of carcin-
omas, unknown in prostate cancer: LSR, S100A14 and
DPYSL3 and c) novel unknown EMT and cancer genes
such as C1orf116. siRNA experiments indicate it to be a
potential novel regulator of EMT. Patient gene
expression data shows that reduced expression of
C1orf116 is associated with poor prognosis in lung
and prostate cancer (unadjusted Wilcoxon rank sum
p-value <0.05). In conclusion, our approach of statis-
tical analysis and functional validation identified
universal EMT genes and candidate global regulatory
genes, thereby both extending current knowledge of
EMT and showed preliminary evidence of disease pro-
gression in cancer.
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