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Abstract

Background: This paper describes the multi-institutional prospective phase Il clinical trial, SPARK: Stereotactic
Prostate Adaptive Radiotherapy utilizing Kilovoltage Intrafraction Monitoring (KIM). KIM is a real-time image guided
radiotherapy technology being developed and clinically pioneered for prostate cancer treatment in Australia. It has
potential for widespread use for target radiotherapy treatment of cancers of the pelvis, thorax and abdomen.

Methods: In the SPARK trial we will measure the cancer targeting accuracy and patient outcomes for 48 prostate
cancer patients who will be treated in five treatment sessions as opposed to the conventional 40 sessions. The
reduced number of treatment sessions is enabled by the KIM's increased cancer targeting accuracy.

Discussion: Real-time imaging in radiotherapy has the potential to decrease the time taken during cancer
treatment and reduce the imaging dose required. With the imaging being acquired during the treatment, and the
analysis being automated, there is potential for improved throughput. The SPARK trial will be conducted under the
auspices of the Trans-Tasman Radiation Oncology Group (TROG).

Trial registration: This trial was registered on ClinicalTrials.gov on 09 March 2015. The identifier is: NCT02397317
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Background

Prostate cancer stereotactic body radiation therapy
(SBRT) is becoming one of radiotherapy’s success
stories. Technological advances such as the Cyberknife
and Calypso have enabled the safe and accurate delivery
of high radiation doses to the prostate cancer of eligible
patients with high cure rates and low toxicity achieved
in five treatment sessions as opposed to the typical 40.
Although it is going to take several years for randomized
trials comparing SBRT with conventionally fractionated
treatments to report, there is already a high adoption of
this technology internationally: a U.S. survey showed
64% of centres were using SBRT in 2010, with the SBRT
uptake growing at ~10% per year, indicating that by now
almost all U.S. centres will be utilising SBRT [1]. The
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clinical outcome data for prostate cancer SBRT are en-
couraging and maturing: the recent results of a pooled
analysis of 1100 patients demonstrated excellent clinical
efficacy, with biochemical disease control rates of greater
than 93% at five years, as well as low patient reported
toxicity [2, 3]. These excellent efficacy and toxicity
profiles have led to ASTRO stating that ‘data supporting
the use of SBRT for prostate cancer have matured to a
point where SBRT could be considered an appropriate
alternative for select patients’ [4].

There is a history of advances in radiotherapy technology
improving cancer treatment outcomes. These advances are
particularly evident for prostate cancer where both image
guided and intensity modulated radiotherapy (IMRT) have
independently demonstrated improved tumour control and
lower rates of late rectal toxicity [5-8]. However, prostate
motion during cancer radiotherapy may shift the tumour
outside the beam, simultaneously reducing target dose and
exposing normal tissues to potentially damaging radiation

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-017-3164-1&domain=pdf
https://clinicaltrials.gov/ct2/show/NCT02397317
mailto:paul.keall@sydney.edu.au
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Keall et al. BMC Cancer (2017) 17:180

doses. The deleterious effects of motion for prostate cancer
has led ASTRO to state that ‘A precise ability to localize the
target tumour is essential to fully benefit from SBRT
techniques’ [9].

There are several solutions to account for the deleteri-
ous effects of motion during prostate cancer radiother-
apy, for example the CyberKnife [10], Calypso [11, 12],
RayPilot [13] and Real-Time Radiotherapy [14] systems.
However, these systems use hardware that is additional
to a conventional linear accelerator. A new real-time
image guided radiotherapy system, Kilovoltage Intrafrac-
tion Monitoring (KIM), uses the x-ray imaging system
mounted on the linear accelerator to determine the 3D
position of the prostate markers, and by inference the
prostate, during radiotherapy treatment. KIM has
evolved through in silico studies [15, 16], experimental
studies [17, 18], the development of a quality assurance
program [19], retrospective clinical evaluations [20] and
recently clinical deployment in a single institution study
(NCTO01742403) [21, 22] where the prostate is
repositioned if the KIM-guidance system shows motion
exceeding a certain threshold, typically 3 mm for 5 s for
conventionally fractionated treatments and 2 mm for 5 s
for SBRT treatments. The clinical success of KIM has
driven the creation of the SPARK trial (NCT02397317)
in which KIM will be tested in multiple institutions. This
paper describes the SPARK clinical trial.

Methods/Design

The hypotheses to be tested are that in a phase II clinical
trial Stereotactic Prostate Adaptive Radiotherapy utilis-
ing KIM (the SPARK trial) improves (1) Patient dose dis-
tributions, (2) Patient treatment outcomes and (3)
Cancer targeting accuracy. We will test these hypotheses
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by performing a 48-patient clinical trial at five sites in
Australia. The study schema is shown in Fig. 1.

For each treatment session for each patient, the accu-
mulated patient dose distributions (Fig. 2) and the tar-
geting accuracy (Fig. 3) will be determined via paired
control by comparing the measured dose and targeting
error with KIM to those that would have been present in
the absence of KIM.

Key selection criteria

Inclusion

Aged 18 years or older, histologically proven prostate
adenocarcinoma, low or intermediate risk disease as de-
fined by the NCCN guidelines: [23] a) Low Risk: All of
PSA <10 ng/mL, Gleason Grade 6 AND Stage T1 or T2a
b) Intermediate Risk: Any or all of PSA 10-20 ng/mL,
Gleason Grade 7 OR Stage T2b-c c) Absence of high risk
features (PSA > 20, T3-4, N1 or M1 disease, Gleason score
8-10) with PSA measured within 3 months prior to enrol-
ment, ECOG Performance status 0-2, suitable for defini-
tive external beam radiotherapy (IMRT or VMAT), ability
to have three gold fiducial markers placed in the prostate.

Exclusion

Prior lymph node irradiation, any other systemic anti-
prostate cancer therapy both proven in the metastatic set-
ting and investigational (e.g. docetaxel, enzalutamide, note
androgen deprivation therapy is allowed), prostate vol-
ume > 90 cm® measured from the CT scan, patient lateral
dimension >40 cm as measured at the level of the prostate
from the CT scan, two fiducial markers placed closer than
1 cm as measured in the axial CT scan, fiducial migration
or fewer than 3 fiducials present in the CT scan.

Fig. 1 The SPARK study schema
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Plan Delivered with KIM

Fig. 2 The accumulated patient dose distributions will be quantified via paired control by comparing the accumulated dose distribution from the
dose planned (left) with that from KIM corrections (middle) to that which would have been delivered without KIM (right)

Without Motion Correction

Objectives

The primary objective is to quantify accumulated patient
dose distributions with the KIM intervention compared
to dose distributions estimated without the KIM inter-
vention. Secondary objectives are to assess patient treat-
ment outcomes, to perform a technology assessment of
KIM to quantify the clinical practice impact, and to as-
sess KIM cancer targeting accuracy.

Assessments

For each visit, prostate-specific antigen (PSA), GU and GI
physician-graded toxicity (RTOG scale) and patient-
reported outcomes using the Expanded Prostate Cancer
Index Composite (EPIC) instrument will be recorded.
Where possible, and noting the limitations of retrospective
comparisons, different patient cohorts and differing eligibil-
ity criteria, outcome measures will be compared with con-
trols in participating centres and with large published series,

such as the 1100-patient pooled analysis by King [2, 3] and
the 477-SBRT patient series from Katz [24].
Physician-reported acute toxicity will be measured
during treatment, then after treatment completion at 2
weeks, 6 weeks, 3 months, 6 months and every 6 months
thereafter until 3 years after treatment. Patient reported
outcomes will be at baseline, then after treatment com-
pletion at 2 weeks, 6 weeks, year 1 and year 3. Biochem-
ical control will be assessed with PSA testing at baseline,
then after treatment completion at 6 weeks, 3 months, 6
months and every 6 months thereafter until 3 years after
treatment. Biochemical failure is defined using the
RTOG Phoenix definition [25] (any rise in the PSA
>2 ng/L above the nadir). The estimated outcome im-
provements will be determined by applying established
dose-response models to the patient’s accumulated dose
and comparing with the estimated accumulated dose
distribution in the absence of the KIM intervention.
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Fig. 3 The cancer targeting accuracy will be quantified via paired control by comparing the targeting error that would have been present
without KIM (above) to the targeting error with KIM corrections (below)
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Treatment planning

Fiducial markers will be inserted prior to treatment
planning. A planning CT is necessary for all patients.
MRI is strongly encouraged but not required. Table 1
shows the guidelines for the structures needing to be
contoured on the patient’s CT anatomy.

The dose-volume constraints for the treatment plan-
ning are given in Table 2.

During treatment planning, the prostate volume will be
assessed, patient width will be measured, and the place-
ment, number and inter-marker distance of the fiducials
will be assessed. IMRT or VMAT planning is required and
both flattened and flattening filer free beams are allowed.
95% of the PTV will be treated to the prescribed dose over
the course of 5 fractions. Patients will receive 7.25 Gy per
fraction in 5 treatments, consisting of 1-3 fractions per
week. Treatment should not be delivered on any 2 con-
secutive days. Treatment should be completed over a
period of no more than 5 weeks. There should be a mini-
mum of 40 h and a maximum of 8 days between fractions.

Treatment delivery

Prior to the IMRT or VMAT delivery, a Cone Beam
Computed Tomography (CBCT) scan will be acquired.
The patient will be aligned to the planned treatment
position based on the CBCT. KIM will be initiated just
prior to treatment and will monitor the prostate position
as the treatment beam is delivered. Two methods will be
allowed to manage movement during treatment, couch

Table 1 SPARK organs at risk contouring guidelines

Structure name Description

Contour as a solid structure from
recto-sigmoid junction to lower
aspect of ischial tuberosities,

the latter of which usually
corresponds to the anorectal junction.

Rectum

Bladder Contour the whole organ as a solid
structure. If CT and MR volumes
disagree, use the imaging with

the smaller bladder volume.

Penile bulb Contour from MR, if available,

otherwise use CT dataset.

Prostatic urethra planning
target at risk volume (PRV)

Estimate urethral position, and add

3 mm radial expansion. If IDC in situ,

add 1 mm radial margin to IDC.

Please note that a dedicated urethra
structure (from which the Urethra_PRV

is created) is desirable but not mandatory.

Contour the Left and Right NOF as solid
structures to the level of the ischial
tuberosity.

Neck of Femur

Remaining volume
at risk (RVR)

Defined as the imaged volume within the
patient, excluding any delineated OAR
and the PTV. The RVR is used to identify
unsuspected regions of high absorbed
dose (ICRU 83).
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shift and multileaf (MLC) tracking. If a couch shift adap-
tive strategy is used, when the prostate moves from its
planned position by more than 2 mm for more than 5 s,
the treatment will be interrupted and the patient rea-
ligned based on the KIM software so that the prostate
target is aligned to its planned position. Lower action
thresholds and more frequent corrections are allowed at
the discretion of the treatment team. If an MLC tracking
adaptive strategy is used, the beam will continually be
adjusted to target the prostate tumour.

Sample size calculation

We will enrol 48 patients to test the hypothesis that pa-
tient dose distributions are improved with the use of the
KIM technology. The derivation follow: treating each
treatment session as an independent event and then
using Simon’s two-stage design, a sample size of 24 ses-
sions with intervention events will give us 90% power
with 95% confidence to rule in a success rate of 2/3 in
favour of the futile rate of 1/3. To obtain an estimated
24 treatment sessions with intervention events we need
24/0.10 = 240 treatment sessions, which for the 5-session
SBRT regime equals 48 patients. The null hypothesis will
be rejected if 16 or more responses are observed in 48
patients. This design yields a type I error rate of 0.0488
and power of 0.91 when the true response rate is 67%.

Analysis

An interim analysis will be performed after 20 patients
have been accrued. This will correspond to an estimated
10 intervention events over 100 sessions. If four or fewer
responses are observed in these 10 events, consideration
will be given to the cause of the lack of response and the
study may be stopped on the grounds of futility. At the
same time, the IDSMC will review the trial for safety
and determine whether or not it should continue. Other-
wise, the study will continue with an additional 28
patients to be recruited. The main analysis will be per-
formed after all 48 patients have completed treatment,
with the final analysis being performed after the last
patient has completed 2 years of follow up.

Discussion

The clinical trial SPARK: Stereotactic Prostate Adaptive
Radiotherapy utilizing Kilovoltage Intrafraction Monitor-
ing (KIM) is an example of bench-to-bedside research
translation into a phase II trial. KIM is a real-time image
guided radiotherapy technology being clinically pioneered
in targeted prostate cancer radiotherapy. It has potential
for widespread use for cancers of the pelvis, thorax and
abdomen. Real-time radiotherapy has several benefits for
patients. In addition to the increased geometric accuracy,
leading to improve dosimetric target and normal tissue
coverage — and the expected commensurate improvement
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Table 2 The treatment planning dose-volume constraints for the SPARK protocol
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Constraint Per-Protocol Minor Variation Major Variation
PTV 36.0-36.5Gy <36.0Gy or >36.5 Gy
D95% (100%)

PTV >3444 Gy 3272- <3444 Gy <3272 Gy
D98% (95%)

PTV <38.06 Gy >38.06-39.96 Gy >39.96 Gy
D2% (105%)

PTV <3878 Gy >3878-40.72 Gy >40.72 Gy
Dmax to 0.1 cc (107%)

PTV Not within a critical structure N/A Within a critical structure
Dmax

Rectum <38.06 Gy >38.06-39.96 Gy >39.96 Gy
Dmax to 0.1 cc (105%)

Rectum <3 cc >3-4 cc >4 cc
V344 Gy

Rectum <50% >50-60% >60%
V18.13 Gy

Rectum <20% >20-25% >25%
V29 Gy

Rectum <5% >5-10% >10%
V3263 Gy

Bladder <38.06 Gy >38.06 or 39.96 Gy >39.96 Gy
Dmax to 0.1 cc (105%)

Bladder <10 cc >10-12 cc >12 cc
V344 Gy

Bladder <50% >50-60% >60%
V18.13 Gy

Bladder <10% >10-15% >15%
V3263 Gy

Urethra_PRV <38.78 Gy >38.78-40.72 Gy >40.72 Gy
Dmax 0.1 cc (107%)

Urethra_PRV <5% >5-7% >7%
V380 Gy

FemHead_R, FemHead_L <10 cc >10-14 cc >14 cc
V20 Gy

FemHead_R, FemHead_L <30 Gy >30-32 Gy >32 Gy
Dmax to 0.1 cc

PenileBulb <36.25 Gy n/a n/a

Dmax 0.1 cc

PenileBulb <1cc n/a n/a

V20 Gy

Intermediate dose spillage: ratio of <4 >4-5 >5
volumes receiving 50% TD to 100% TD

Conformity Index (volume receiving <1.1 >1.1-1.2 >1.2
36.25

Gy/volume of PTV):

RVR <5cc >5-7 cc >7 cC
V36.25 Gy

in clinical outcomes — real-time radiotherapy has the po-
tential to improve the throughput of cancer treatments
and reduce the imaging dose required.

The improvement in throughput comes as the real-
time imaging can replace the time consuming pre-

treatment and intra-treatment volumetric imaging
procedures, such as cone beam CT, as well as the time
taken to analyse these images. With the imaging being
acquired during the treatment, and the analysis being
automated, there is potential for improved throughput.
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The reduction in the imaging dose is due to the elimin-
ation in the use of repeat cone beam CT scans before
treatment, and the elimination of the use of cone beam
CT scans between treatments. Though KIM does use the
x-ray imager during treatment, the reduced field size —
6 x 6 cm” compared to =25 x 25 cm® with cone beam CT
for each projection — means a much lower imaging dose,
even if the number of projections is higher and/or the
dose per image is higher.
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