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Abstract

Background: Antiangiogenic therapies are considered promising for the treatment of glioblastoma (GB). The non-
collagenous C-terminal globular NC1 domain of type VIil collagen a1 chain, Vastatin, is an endogenous antiangiogenic
polypeptide. Sustained enhanced expression of Vastatin was shown to inhibit tumour growth and metastasis in murine
hepatocellular carcinoma models. In this study, we further explored the efficacy of Vastatin in the treatment of GB

xenografts.

Method: Treatment of Vastatin was carried out using a nanopolymer gene vector PEIGO0-CyD-Folate (H1). Antiangiogenic
effect of Vastatin was tested in vitro by using co-culture system and conditioned medium. An orthotopic GB murine
model was established to examine the in vivo therapeutic effect of Vastatin alone treatment and its combination with

temozolomide.

Results: Vastatin gene transfection mediated by H1 could target tumour cells specifically and suppress the
proliferation of microvessel endothelial cells (MECs) through a paracrine inhibition manner. Enhancing Vastatin
expression by intracerebral injection of H1-Vastatin significantly prolonged animal survival from 48 to 75 days in
GB murine model, which was comparable to the effect of Endostatin, the most studied endogenous antiangiogenic
polypeptide. The diminished presence of CD34 positive cells in the GB xenografts suggested that Vastatin induced
significant antiangiogenesis. Moreover, a synergistic effect in extending survival was detected when H1-Vastatin was
administered with temozolomide (TMZ) in GB chemoresistant murine models.

Conclusion: Our results suggest, for the first time, that Vastatin is an antiangiogenic polypeptide with significant potential
therapeutic benefit for GB. H1-Vastatin gene therapy may have important implications in re-sensitizing recurrent GB to

standard chemotherapeutic agents.
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Background

Glioblastoma (GB) is a lethal and aggressive human malig-
nancy, accounting for over 60% of high-grade primary
brain tumours [1, 2]. In spite of significant technological
advances in neurosurgery, anaesthesia, intensive care and
oncology in the last few decades, GB remains incurable
with a median overall survival of 15 months after its first
diagnosis [3, 4]. Antiangiogenesis is a therapeutic strategy
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aiming at the suspension of tumour cells in a state of dor-
mancy by disrupting their blood supply [5]. As hypervas-
cularity, characterized by endothelial proliferation, is a
hallmark of GB, antiangiogenic therapies are naturally
considered potential oncologic treatment options [6].
Studies focused on this therapeutic strategy have led to
the development and approval of bevacizumab, a recom-
binant humanized monoclonal antibody against vascular
endothelial growth factor (VEGF), for recurrent GB [7].
However, such clinical trials have produced inconsistent
results and the overall benefits of bevacizumab on GB pa-
tients are being challenged [8—10]. Moreover, bevacizu-
mab was not recommended for newly diagnosed GB due

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-017-3125-8&domain=pdf
mailto:wpoon@surgery.cuhk.edu.hk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Li et al. BMC Cancer (2017) 17:126

to its limited survival benefit and common adverse events
[11, 12]. Thus there is an urgent need to develop novel al-
ternative antiangiogenic agents with more convincing
therapeutic effects.

Vastatin is the C-terminal non-triple-helical (NC1) do-
main of the type VIII collagen al chain. It is an endogenous
polypeptide that initially discovered to inhibit the prolifera-
tion and migration of bovine aortic endothelial cells [13].
Our recent study proved that Vastatin, which is normally
expressed in normal liver tissue, was distinctly absent in he-
patocellular carcinoma (HCC) and possessed antiangio-
genic properties. Through interfering with proliferation and
metabolism of endothelial cells, Vastatin inhibited tumour
growth and prevented metastasis in HCC-bearing rats [14].
Concurrently a recombinant form of Vastatin, rhEDI-8 t,
was discovered to be an angiogenesis inhibitor with poten-
tial therapeutic benefits for retinopathy-related neovascular-
ization [15]. Since collagen VIII expression is known to be
increased in brain tumours and participates in angiogenesis,
we are interested in determining whether Vastatin could be
used for the treatment of other hypervascular malignancies
such as GB [16].

An ideal cancer therapeutic agent should be able to
maintain predominantly high concentrations in the tumour
thereby minimizing systemic adverse effects. We previously
developed a polyplex-forming plasmid delivery agent,
Folate-PEI600-CyD (H1). H1 formed nanoparticles with
plasmid DNA and showed high affinity to cancer cells
through binding to the folate receptors that enriched on
cancer cell surface. It had high transfection efficiency espe-
cially on GB cells like U87 and U138 [17-19]. More im-
portantly, H1 demonstrated low cytotoxicity and had little
effect on normal cells. In the present study we aimed to
test the feasibility of using H1 delivered Vastatin gene for
treatment of GB xenografts. We report for the first time
that enhancing Vastatin expression by H1 mediated gene
transfection induced antiangiogenesis and prolonged sur-
vival of GB bearing mice, suggesting a promising treatment
candidate for future GB drug development.

Methods

Cell lines and Cell culture

The murine tumour-derived microvessel endothelial cells
(MECs) SVEC4-10EE2 and human GB cell lines US7MG
were purchased from American Type Culture Collection
(ATCC). They were maintained in either Minimum Essen-
tial Medium (MEM; Gibco) or Dulbecco’s modified Eagle’s
medium (DMEM; Gibco) with 10% fetal-bovine-serum
(FBS; Gibco) supplementation at 37 °C, 5% CO,, and used
for test within 20 passages after purchase.

GB cells with acquired TMZ resistance (ATR) were
derived from U87MG cells through chronic exposure to
TMZ. US7MG cells were first incubated in DMEM con-
taining 20 uM TMZ for 2 weeks, then subcultured into
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DMEM with 200 pM TMZ. Cells that managed to sur-
vive and proliferate in this medium for more than five
passages were then collected. The final generated cells
were considered resistant to TMZ treatment and named
U87-ATR.

Preparation of H1/DNA Polyplexes

Plasmid pORF-EGFP, pORF-Endostatin and pOREF-
Vastatin were constructed by inserting DNA fragments
encoding EGFP, Endostatin and Vastatin into the mul-
tiple cloning sites of the pORF-mcs expression vector
(InvivoGen). The secretion of Vastatin and Endostatin
protein were mediated by the Igk leader. The encoded
gene was further confirmed by DNA sequencing.

The PEI600-CyD-Folate (H1) gene vector was synthe-
sized as previously reported [18]. H1 polymer solution
was added to pDNA solution in equal volumes to form
the polyplexes. The ratio between the amount of nitro-
gen in PEI and the amount of phosphate in DNA (N/P
ratio) was predetermined at 20. The polyplex suspension
was allowed to incubate at room temperature for 15 min
before being used for transfection or injection.

Orthotopic GB Murine Model

Animal studies were performed in accordance with the
protocol approved by the Animal Experimentation Eth-
ics Committee of the Chinese University of Hong Kong
(CUHK). Female nude mice, 6 to 8 weeks old, were pur-
chased from the laboratory animal services center in
CUHK. To establish the murine orthotopic GB model,
animals were anaesthetised with ketamine:xylazine
(100 mg/kg:10 mg/kg.body weight) and mounted into a
stereotaxic frame (Stoelting Co.). A burr hole located
0.5 mm anterior to the coronal suture and 1.2 mm right
to the sagittal suture was created. U87MG GB cells or
U87-ATR cells were harvested and resuspended in phos-
phate buffered saline (PBS) to a concentration of 1 x 10°
cells/uL. The needle of a Hamilton microsyringe was
inserted through the burr hole to a depth of 2.5 mm
where the right striatum is located. A total of 2 x 10°
cells were slowly injected into this area at a rate of
0.2 pL/min. The needle was slowly withdrawn 5 min
after cell injection. The mice were then kept within far
infrared lighting cabinets until recovery.

Gene Expression Test

Total 15 mice bearing U87MG xenografts were used for
detection of gene expression after H1-Vastatin treatment.
Treatments were performed by intracerebral injecting the
H1-Vastatin polyplexes to the same location of tumour
cell inoculation and ventricle nearby. A 20 pL volume of
H1-Vastatin solution was injected into each mouse at a
rate of 0.5 pL/min. This process was performed twice, on
day 7 and day 14 post cell-inoculation, to achieve a total
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dosage of 20 pg plasmid DNA. Mice were sacrificed on
day 7 (1 h after the first treatment), 10, 14 (1 h after the
second treatment), 17 and 21, with 3 mice each time. The
right hemispheres were isolated immediately for measure-
ment of Vastatin mRNA level. Total RNA was extracted
from brain tissues using TRIzol® Reagent (Invitrogen) and
then reverse transcribed to cDNA with SuperScript® II Re-
verse Transcriptases (Invitrogen). The cDNA was then
subjected to PCR assay and gel electrophoresis. The fol-
lowing primer sequences were used: Vastatin (forward:5-
AAC TAC AAC CCG CAG ACA GG -3’; reverse:5- TGA
ATA GAG CAA CCC ACA CG -3)); Collagen VIII al
(forward: 5’- ACT CTG TCA GAC TCATTC AGG C -3
reverse: 5- CAA AGG CAT GTG AGG GAC TTG -3’);
and GAPDH (forward:5- GAA TCT ACT GGC GTC
TTC ACC -3’ reverse:'5-GTC ATG AGC CCT TCC
ACG ATG C-3).

Animal survival tests

Total 28 mice bearing U87MG xenografts were used to
study the survival benefit of H1-Vastatin single treatment.
On day 7 after model establishment, the mice were ran-
domized into four groups, 7 mice for each group, and
treated with H1-Vastatin, H1-Endostatin, H1-EGFP or
PBS respectively. Treatments were performed using the
same protocol for H1-Vastatin in gene expression test.
The behaviors and survival of these mice were monitored
daily. Mouse was sacrificed and recorded as dead when it
lost over 20% of its body weight or exhibited serious be-
havioral disorders like seizures and limb weakness. The
animal survivals after model establishment will be sum-
marized in Kaplan-Meier survival curves.

To test the sensitivities of different model to TMZ
treatment, 10 mice bearing U87MG xenografts and 10
mice bearing U87-ATR xenografts were used. On day 7
after model establishment, 5 mice with U87MG xeno-
grafts and 5 mice with U87-ATR xenografts were sched-
uled to be treated with TMZ, while the other 10 mice
treated with PBS. TMZ was administered via intraperito-
neal (i.p.) injection at a dose of 50 mg/kg/day. TMZ
powder was first dissolved in dimethyl sulfoxide (DMSO;
Sigma) and diluted with PBS before injection. This treat-
ment was performed five times per week and lasted for
2 weeks. The behaviors and survival of animals were
monitored daily as mentioned above.

To examine the combination effect of H1-Vastatin and
TMZ, 20 mice bearing U87-ATR xenografts were used. On
day 7 after model establishment, the mice were random-
ized into four groups, 5 mice for each group, and treated
with H1-EGFP + PBS, H1-EGFP + TMZ, HI1-Vastatin +
PBS, or H1-Vastatin + TMZ respectively. Treatment of H1-
DNA and TMZ were performed using the same protocols
mentioned above. The first TMZ administration was car-
ried out 1 h after the first HI-DNA treatment on day 7.
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The behaviors and survival of animal were monitored and
recorded daily.

Histology study

Nine mice bearing U87MG xenografts were used for
histological study and microvessel density (MVD) ana-
lysis. On day 7 after model establishment, animals were
divided into three groups, three mice in each group, and
received the treatment of H1-Vastatin, H1-EGFP or PBS.
All these mice were sacrificed on day 42. Whole brain
tissues were collected and processed through 10% for-
malin fixation and paraffin embedding. The tissue blocks
were then cut at 5 pm thickness with a microtome for
histological analysis. Tumour structure assessment was
performed using Hematoxylin & Eosin (H&E) staining.
Angiogenesis in tumour tissues was detected by immu-
nohistochemical staining using rabbit anti-CD34 primary
antibody (Abcam) and HRP-linked anti-rabbit secondary
antibody (Cell Signaling Technology), in accordance
with a previous publication [20]. MVD was calculated by
counting the percentage of CD34 positive cells in five
randomly chosen high-power fields from each tumour.

Cell proliferation assay

For proliferation assays, 2 x 10* U87MG cells or 2 x 10°
SVEC4-10EE2 MECs were seeded in a six-well plate and
allowed to adhere. Twenty-four hours later, these cells were
treated with H1/Vastatin or H1/EGFP (N/P ratio = 20) for
6 h at a dosage of 10 ug DNA per well and then incubated
in DMEM with 10% FBS. Cell viability was assessed 2, 4, or
7 days later by trypan blue exclusion and viable cells were
counted manually [21]. In the co-culture system, 2 x 10°
MECs were seeded in a six-well plate while 2 x 10° US7MG
cells were seeded onto the inner surface of the PET mem-
brane located at the base of the Falcon™ culture insert
(BD Biosciences). The insert was then placed into the six-
well plate where the MECs were seeded. H1/Vastatin or
H1/EGFP treatment was added to the inner surface of the
insert for 6 h. Proliferation assays were carried out by
counting the viable MECs at the same aforementioned time
points.

To evaluate the inhibitory effects of secreted Vastatin
on MEC proliferation, conditioned media were used. In
brief, 2x10° US7MG or SVEC4-10EE2 cells were
seeded in 100 mm culture dishes, treated with H1-
Vastatin or HI-EGFP at a dose of 10 ug DNA per dish
for 8 h, then incubated in DMEM with 10% FBS for
96 h. The conditioned media were collected and centri-
fuged at 600 g, 4 °C for 10 min. SVEC4-10EE2 MECs
were seeded in a 96-well plate at a density of 5000 cells
per well. After cell attachment, the media were changed
to serial dilutions of conditioned media with 10% FBS.
Seven days later, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphe-
nyl-2H-tetrazolium bromide (MTT) was added to the
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media and incubated for 2 h. The media were then
changed to dimethyl sulfoxide (DMSO) and assessed by
colorimetric analysis at 570 nm.

In vitro temozolomide resistance testing

For proliferation inhibition, 2000 U87MG or U87-ATR
cells were seeded into each well of a 96-well plate and
treated with increasing concentrations of TMZ. MTT as-
says were used to examine cell viability 4 days later. For
clonogenic survival assays, U87MG or U87-ATR cells
were seeded into a six-well plate at a density of 500 cells
per well. The media were then changed to DMEM con-
taining 10% FBS and 100 uM TMZ for incubation. On
day 14 the number of colonies containing more than 50
cells were counted.

Statistical analysis

Mice survival was analysed with PASW Statistics Version
18 (SPSS Inc., Chicago, Illinois). Comparisons in prolifera-
tion tests and MVD analysis were conducted by one-way
analysis of variance or two-tailed Student’s t test. Compar-
isons of animal survivals were performed using Log-rank
test. P < 0.05 was considered statistically significant.

Results

H1-Vastatin transfected GB cells and inhibited MECs
proliferation through paracrine suppression

The H1 gene vector was designed specifically to target
tumour cells [18]. We proposed that H1 mediated gene
transfection could restrict the expression and secretion of
therapeutic agents in tumour areas and prevent systemic
side effects. To prove this idea, GB U87MG cells and
mouse MECs SVEC4-10EE2 were treated with either H1-
Vastatin or H1-EGFP in culture. Only U87MG cells treated
by H1-Vastain showed enhanced Vastatin mRNA levels
(Fig. 1a), which was consistent with previous report that
H1-DNA nanoparticles transfected cancer cells specifically.
We further conducted a series of proliferation tests on days
2,4 and 7 after the cells received H1-Vastatin treatment. As
anticipated, H1-Vastatin showed no significant influence on
cell viability of either U87MG or MECs (Fig. 1b, left and
middle). However in a U87MG and MECs trans-well co-
culture system, the proliferation of MECs was significantly
inhibited on day 7 post-transfection (Fig. 1b, right;
P <0.05). This has demonstrated that the expression and
secretion of Vastatin from H1-Vastatin transfected U87MG
cells was necessary for inducing proliferation inhibition in
MECs. Then we collected conditioned media (CM) from
different culture groups on day 4 post-treatment. MECs
SVEC4-10EE2 were seeded into a 96-well plate and incu-
bated in serial dilutions of these CM. Proliferation test was
performed 1 week later. Cell viabilities from different cul-
ture conditions were normalized to the NO CM culture
group to generate an inhibition curve (Fig. 1c). The results
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showed that CM collected form H1-Vastatin treated
U87MG reduced MECs proliferation in a dose-dependent
way, while CM from H1-Vastatin treated MECs or H1-
EGFP treated U87MG had no such effect. This further sup-
ported our anticipation that HI-Vastatin could induce
Vastatin secretion from tumour cells and suppress MECs
proliferation by paracrine inhibition.

Administration of H1-Vastatin prolonged survival in GB-
bearing mice

The therapeutic benefit of H1-Vastatin was studied on
GB-bearing mice and compared with PBS, EGFP and
Endostatin. An orthotopic GB model was established by
intracranial inoculation of U87MG cells into the nude
mice. Intracerebral injections of HI1-Vastatin, H1-
Endostatin, HI-EGFP or PBS were performed on day 7
and day 14 after cells inoculation. Sustained expression
enhancement of intracranial Vastatin level was observed
after H1-Vastatin treatment (Fig. 2a). H1-Vastatin suc-
cessfully prolonged animal survival from a median of
48 days (PBS treated group) to 75 days (P<0.01, n=7
for each group; Fig. 2b). The animal survival was also
significantly extended in the Endostatin treated group
(median survival of 64 days; P<0.01 against the PBS
treated group). H1-EGFP caused no significant differ-
ence on animal survival (median survival of 51 days),
suggesting that the vector per se did not interfere with
the test. However, no significant difference in animal
survival was detected between the Vastatin group and
the Endostatin group. These results imply that Vastatin
has a potent anti-tumour activity in this GB model, and
is comparable to the well studied endogenous antiangio-
genic agent Endostatin.

Administration of H1-Vastatin decreased microvessel
density (MVD) in GB-bearing mice

For histological assessment, mice bearing GB xenografts
were treated with PBS, H1-EGFP or H1-Vastatin re-
spectively (m=3 for each group). The animals were
sacrificed at day 42 post tumour cell inoculation. The
brain tissues were then fixed in formalin, embedded into
paraffin blocks and processed for slicing and staining.
Angiogenesis was detected by immunohistochemical
staining against cells expressing CD34, a protein marker
for blood vessel endothelial cells. Results showed that
H1-Vastatin significantly reduced CD34+ cells in brain
tumours (Fig. 3a). Microvessel density in the HI1-
Vastatin treated group (7.3 £ 1.9) was significantly lower
than those in the PBS (13.7+1.8, P<0.05) and H1-
EGFP (145+29, P<0.05) treated groups (Fig. 3b).
These results indicated that Vastatin induced angiogen-
esis inhibition and eliminated tumor microvessels in the
orthotopic GB model, which could be the underlying
mechanism of its survival benefits.
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Fig. 1 H1-Vastatin transfectd tumour cells specifically and suppressed MECs proliferation through paracrine inhibition. a H1 mediated gene transfections
targeted only the tumour cells. Enhanced transcription level of Vastatin was only detected in the H1-Vastatin treated U87MG cells. b Proliferation curves
of cells treated by H1-Vastatin or H1-EGFP. H1-Vastatin did not affected the proliferation of U87MG cells or MECs in separate culture condition. In the
U87MG and MECs co-culure system, H1-Vastatin significantly suppressed the MECs growth on day 7 post treatment (P < 0.05). ¢ Inhibition curves showing
effects of different conditioned media (CM) on MECs proliferation. Conditioned medium from H1-Vastatin treated U87MG cells significantly decreased the
cell viability of MECs in a dosage dependant way (* P < 0.05 against CM from H1-EGFP treated U87MG cells; # P < 0.05 against CM from H1-Vastatin
treated MECs), suggesting Vastatin secreted by tumour cells inhibited neovascularization in paracrine manner

H1-Vastatin synergized with TMZ in chemoresistant GB
model

TMZ is an alkylating agent which damages tumor cell
DNA and triggers cell death. It has been demonstrated
to confer moderate survival benefits for GB patients. To
test whether H1-Vastatin could facilitate current man-
agement of GB, we performed a combined treatment of
Vastatin and TMZ on GB orthotopic model. We also
established a TMZ resistant GB model, since intrinsic
and acquired chemoresistance are the main clinical chal-
lenges encountered in TMZ therapy. To induce a stable
TMZ resistant cell line, U87MG cells were exposed to
TMZ containing medium for a long term incubation.
The generated cells, named U87-ATR, were confirmed
to be TMZ resistant in both proliferation and survival
assays (Fig. 4a). Nude mice intracranially inoculated with
U87-ATR cells had significantly shorter survival (median
survival of 25 days, n = 5) than those with U87MG cells
(median survival of 50 days; P<0.05). TMZ was found
extremely effective in treating U87MG bearing mice,

with all the animals in this group survived the total dur-
ation of 100 days. In contrast, mice with U87-ATR xeno-
grafts showed no significant response to TMZ treatment
(median survival of 29 days; Fig. 4c). Our results further
showed that H1-Vastatin was effective in the treatment
of this TMZ resistant model, and significantly extended
the median survival from 23 days of the HI1-EGFP
treated group to 34 days (Fig. 4d; n=5, P <0.05). More
interestingly, a synergistic effect was noted between H1-
Vastatin and TMZ, which further prolonged the median
survival to 54 days (P<0.01 against H1-EGFP treated
group; P<0.05 against HI1-Vastatin single treatment
group).

Discussion

Angiogenesis is the physiological process by which new
blood vessels develop from pre-existing vessels. In normal
tissues, it is precisely regulated by a series of angiogenic
stimulators and inhibitors. In the state of tumour growth,
the balance between the stimulators and inhibitors is
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Fig. 2 Administration of H1-Vastatin increased intracranial Vastatin
expression and significantly prolonged survival of GB bearing mice. a
Bands of Vastatin exclusive PCR products in agarose gel electrophoresis.
H1-Vastatin significantly enhanced the mRNA level of Vastatin in the right
hemispheres of treated mice, which lasted over 2 weeks. b Survival curves
of GB bearing mice (n = 7). H1-Vastatin and H1-Endostatin treatment
significantly prolonged the median survival time of GB bearing mice to 75
and 64 days respectively, from 48 and 51 days for the PBS and H1-EGFP
treated groups (P < 0.05). There was no significant difference in survival
time between H1-Vastatin and H1-Endostatin treated groups

tipped, towards an “angiogenic switch” [22]. VEGF is
one of these stimulators and plays a predominant role
in regulating tumour angiogenesis. A humanized
monoclonal antibody against VEGF, bevacizumab, has
been shown to exhibit treatment response resulting in a
longer progression-free survival in GB patients [23, 24].
However, angiogenic inhibitors like bevacizumab which
target a single pathway often encounter rapid onset resist-
ance through alternative pathways [25]. Studies that aimed
to overcome this resistance have suggested the utilization
of a combination of single-pathway targeted antiangiogenic
agents [26]. Another alternative is to use broad-spectrum
antiangiogenic agents. Endostatin, for example, is a 20-
kDA C-terminal cleavage fragment of collagen type XVIII
and possesses the broadest anti-cancer spectrum. It targets
angiogenesis regulatory genes that comprise of more than
12% of the human genome [27]. Approved by the State
Food and Drug Administration of the People’s Republic of
China, Endostatin is currently a treatment option for non-
small-cell lung cancer. Several reports also suggest that
Endostatin might be effective in inhibiting tumour growth
in malignant glioma in animal models [28-30].

Endostatin represents a group of endogenous angiogenic
inhibitors that are fragments of larger extracellular matrix
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(ECM) molecules. During angiogenesis, the breakdown of
the ECM is a prerequisite for the initiation of sprouting.
Endogenous antiangiogenic components are released dur-
ing this process and act as focal natural feedback [15].
Among them are the NC1 domains cleaved from collagen
molecules. Endostatin is the NC1 domain of collagen
XVIIL Others include Arresten, Canstatin and Tumstatin
from collagen IV, Restin from collagen XVal, and Vastatin
from collagen VIII [13, 31-34]. They form a family col-
lectively referred to as collagen-derived antiangiogenic fac-
tors (CDAFs). In cancer studies CDAFs have been
reported to be effective in suppressing tumour progres-
sion, both in vitro and in vivo [35—-37]. Furthermore, these
endogenous inhibitors, having been demonstrated to be
safe, acting on multiple proangiogenic pathways, are
therefore attractive therapeutic candidates [38, 39].
Vastatin is a CDAF from type VIII collagen. Type VIII
collagen is present in the ECM of sclera, skin and the
renal glomerulus participating in their vascularization
[40]. In contrast, Vastatin, contributes to the suppression
of ocular neovascularization [15]. The potential of Vastatin
in tumour treatment is not fully explored, even though
type VIII collagen is highly expressed in selected solid tu-
mours. As far as we know, we are the first to introduce
Vastatin into preclinical malignant tumour studies. In our
previous report, Vastatin is absent in human HCC, and
rAAV-Vastatin infection effectively inhibites proliferation,
migration and microvessel formation activities in MECs
[14]. In this study we further demonstrate that Vastatin
can inhibit angiogenesis and may be of therapeutic benefit
in GB. Mechanism studies from our previous HCC re-
search showed that Vastatin inhibited cellular metabolism,
Notch and AP-1 signaling pathways [14]. Considering this
result was from an in vitro study using MECs not specific-
ally originated from HCC, we believed it could also be
used for explaining the Vastatin induced antiangiogenesis
in the GB model. The Notch signaling pathway in tumour
angiogenesis is well-characterized. In general, delta-like
ligand 4 (DIl4) interacts with Notch receptors and reduces
VEGEF signal transduction on stalk cells during sprouting,
which contributes to the structural and functional integ-
rity of newly formed vessels [41]. Inhibition of DIl4 and
Notch signaling leads to functionally compromised vessels
and suppresses tumour growth [42]. This may help to ex-
plain why Vastatin aggravated necrosis in our previous
HCC study [14]. Changes in the degree of necrosis was
not so obvious in current GB study, probably because the
nature of the tumour inherently exhibits an abundance of
necrosis as a hallmark feature. In GB, the Notch ligands
provided by endothelial cells were also shown to be im-
portant for maintaining cancer stem-like cells (CSLCs)
[43]. Inhibition of Notch signaling may cause growth in-
hibition of GSCs [44], which we believed was a possible
mechanism underlying Vastatin’s anti-glioma effect and
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group was significant lower than in the PBS and H1-EGFP treated groups. (n = 3; * P < 0.05 against PBS treated group, # P < 0.05 against H1-EGFP

H1/Vastatin

distinguished Vastatin from traditional antiangiogenic
agents. Unlike Notch signaling, the down-regulation of
AP-1 and cell metabolism pathways seems to have a more
direct influence on reducing MEC viability. AP-1 is a tran-
scription factor that regulates a wide range of cellular pro-
cesses, including cell growth, differentiation and apoptosis.
In GB, it mediates anoxia induced up-regulation of
interleukin-8 (IL-8), a tumourigenic and proangiogenic
chemokine [45]. In addition, AP-1 is involved in epidermal
growth factor receptor (EGFR) mediated TMZ resistance
[46]. Although we did not investigate the relationship be-
tween endothelium metabolism and antiangiogenic therap-
ies, it was generally accepted that insufficient nutrients
metabolism would lead to cell cycle arrest and apoptosis
[47]. This is substantiated by evidence showing that en-
hanced glucose and glutamine metabolism in proliferating
endothelial cells promotes tumour angiogenesis [48].
Altogether these findings depict a multi-targeted antiangio-
genic pattern for Vastatin and considerably promotes its
potential as an effective therapy for GB.

Safety is a primary concern in the treatment of brain tu-
mours. Vastatin has been proven to be generally safe for
systemic administration in previous HCC study [14].
However in this report, we highlighted the feasibility of
recruiting H1 for local administration of antiangiogenic
therapeutics. H1 induces endocytosis by binding to folate
receptors that are highly expressed on certain tumour cell
surfaces but not MECs [18]. Both the co-culture and con-
ditioned medium test results imply that HI1-Vastatin

induced inhibition of MECs proliferation can be achieved
by Vastatin secreted from adjacent GB tumour cells. In
other words, H1-Vastatin selectively infects GB cells,
restricting its antiangiogenic effects to the vicinity of the
tumor thereby reducing the possibility of systemic adverse
effects. Our observations that no deleterious effects were
detected during the subsequent animal study is consistent
with this hypothesis. This type of paracrine inhibition is
also compatible with the “angiogenic switch” theory and
restores the balance between angiogenic stimulators and
inhibitors in the perivascular tumor microenvironment.
Whether antiangiogenic treatments could promote or
attenuate chemotherapies is controversial, since changes
in vascular integrity and permeability might complicate
the passing of medications across the blood brain barrier.
Clinical studies have combined bevacizumab with differ-
ent cytotoxic chemotherapeutic agents in the treatment of
either primary or recurrent GB. The results, unfortunately,
were negative [12, 49, 50]. Nevertheless, the present study
showed H1-Vastatin had a significant synergistic effect
with TMZ in a chemoresistant GB murine model. This
might be explained by the difference in anti-angiogenic
mechanisms of bevacizumab and Vastatin, especially with
regards to the Notch signaling regulation. Notch ligands
expressed by endothelial cells are crucial for maintaining
self-renewal of cancer stem cells [43]. Notch signaling
pathway inhibition coupled with TMZ has been proven to
exert an anti-glioma stem cell effect [51]. Moreover, the
negative Notch-1 expression state was associated with
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longer patient survival [52]. During the development of
our mouse model, we introduced a group of cells with ac-
quired TMZ resistance from original U87MG cells. These
U87-ATR cells exhibited significant stem cell properties as
evidenced by the high expression of cancer stem cell
marker CD133 (Fig. 4b). The synergistic effect between
Vastatin and TMZ in U87-ATR bearing mice might pos-
sibly be mediated by the suppression of Notch signaling in
MECs, which subsequently lead to the eradication of peri-
vascular niches for U87-ATR and other chemoresistant
cancer stem like cells. However, it is one of our limitations
that we did not show a direct inhibition effect of Vastatin
treated MECs on U87-ATR cells, due to the lack of effi-
cient cell-cell interaction model as well as the complica-
tions caused by the paracrine angiogenesis inhibition
strategy. Studies to further investigate the synergistic effect
between Vastatin and TMZ are ongoing, which we believe
will help to discover the underlying mechanisms not just
limited to a single pathway.

Conclusion

We report for the first time that Vastatin can induce anti-
angiogenesis and prolong survival in mice bearing GB
orthotopic xenografts. We also confirm that H1-Vastatin

offers a safe and efficient targeting method for GB antian-
giogenic therapeutic tests. More importantly, a synergistic
treatment effect is observed when Vastatin is coupled with
TMZ therapy, which leads to the resensitization of initial
chemoresistant GB model to TMZ treatment. At present,
there is no effective treatment for patients with recurrent
GB. Our results regarding the anti-tumor effects of Vastatin
bear potential clinical therapeutic significance. The limita-
tion of this study was that only used one animal model with
one GB cell line were employed. Future studies should con-
firm these findings in models with more cell lines and dif-
ferent animals. Studies are also needed to further elucidate
the pharmacological properties of Vastatin and its toxico-
logical profile. In addition, combination effect of Vastatin
and radiotherapy should be tested, since radiotherapy is a
first-line treatment to GB patient and radioresistance is re-
lated to CSCs as well.
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