
BioMed CentralBMC Cancer

ss
Open AcceResearch article
High-resolution DNA copy number and gene expression analyses 
distinguish chromophobe renal cell carcinomas and renal 
oncocytomas
Maria V Yusenko1, Roland P Kuiper2, Tamas Boethe3, Börje Ljungberg4, Ad 
Geurts van Kessel2 and Gyula Kovacs*1

Address: 1Laboratory of Molecular Oncology, Medical Faculty, Ruprecht-Karls-University, Heidelberg, Germany, 2Department of Human Genetics, 
Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands, 3Department of Urology, University of Pécs Medical School, Pécs, 
Hungary and 4Department of Urology, Umeå University, Umeå, Sweden

Email: Maria V Yusenko - maria.yusenko@uni-heidelberg.de; Roland P Kuiper - r.kuiper@antrg.umcn.nl; Tamas Boethe - beothe@chello.hu; 
Börje Ljungberg - borje.ljungberg@urologi.umu.se; Ad Geurts van Kessel - a.geurtsvankessel@antrg.umcn.nl; 
Gyula Kovacs* - gyula.kovacs@urz.uni-heidelberg.de

* Corresponding author    

Abstract
Background: The diagnosis of benign renal oncocytomas (RO) and chromophobe renal cell
carcinomas (RCC) based on their morphology remains uncertain in several cases.

Methods: We have applied Affymetrix GeneChip Mapping 250 K NspI high-density oligoarrays to
identify small genomic alterations, which may occur beyond the specific losses of entire
chromosomes, and also Affymetrix GeneChip HG-U133 Plus2.0 oligoarrays for gene expression
profiling.

Results: By analysing of DNA extracted from 30 chRCCs and 42 ROs, we have confirmed the high
specificity of monosomies of chromosomes 1, 2, 6, 10, 13, 17 and 21 in 70–93% of the chRCCs,
while ROs displayed loss of chromosome 1 and 14 in 24% and 5% of the cases, respectively. We
demonstrated that chromosomal gene expression biases might correlate with chromosomal
abnormalities found in chromophobe RCCs and ROs. The vast majority genes downregulated in
chromophobe RCC were mapped to chromosomes 2, 6, 10, 13 and 17. However, most of the
genes overexpressed in chromophobe RCCs were located to chromosomes without any copy
number changes indicating a transcriptional regulation as a main event.

Conclusion: The SNP-array analysis failed to detect recurrent small deletions, which may mark
loci of genes involved in the tumor development. However, we have identified loss of chromosome
2, 10, 13, 17 and 21 as discriminating alteration between chromophobe RCCs and ROs. Therefore,
detection of these chromosomal changes can be used for the accurate diagnosis in routine
histology.
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Background
Renal oncocytomas (RO) and chromophobe renal cell
carcinomas (RCC) make up approximately 10% of renal
cell tumors (RCT). Although chromophobe RCC has a
better prognosis than conventional or papillary RCC, it is
a malignant tumor with a tendency to sarcomatoid trans-
formation and metastatic growth in around 10% of the
cases [1-4]. Renal oncocytoma, in spite of its growth into
small veins or "infiltration" to the parenchyma or perine-
phric fatty tissue, is a benign tumor [5]. Taking into
account the biology of the two types of neoplasms, the
differential diagnosis is of clinical importance.

We have detected complex losses of chromosomes 1, 2, 6,
10, 13, 17 and 21 in 70%–90% of the chromophobe
RCCs by karyotyping, chromosomal CGH and microsatel-
lite analysis [6-9]. Recently, the specificity of these chro-
mosomal changes has been confirmed by other
investigators [10]. Loss of chromosomes 1, 14 and the Y
chromosome or translocation between chromosome
11q13 and other chromosomes or random genetic
changes have been described in ROs [11,12]. The lack of
genetic changes specific for other types of RCTs combined
with the histological characteristics may also be helpful in
the diagnosis of RO [13,14]. The complex genetic altera-
tions occurring in conventional, chromophobe or papil-
lary RCCs can also be used for differential diagnosis of
"unclassified" RCTs by karyotyping, microsatellites and
BAC-array technologies [15-17].

The resolution of karyotyping and chromosomal CGH is
limited by DNA alterations of approximately 5–10 Mb.
These techniques revealed the loss of entire chromosomes
or chromosomal arms making it impossible to localize
putative tumor suppressor genes. Global gene expression
studies suggested that genes mapped to chromosomes dis-
playing monosomie in chromophobe RCCs are generally
down-regulated but no specific genes have been selected
and confirmed at the protein level [18]. Other studies ana-
lysing the global gene expression profiling showed that
several hundreds of genes are over-expressed in both
chromophobe RCCs and renal oncocytomas irrespectively
of their chromosomal localization and down-regulated in
other types of renal cell tumors [19-21]. However, immu-
nohistochemical studies of selected genes did not confirm
the high specificity gene expression data [22,23].

Recent development in the array technology enables the
detection of small DNA copy number changes throughout
the entire genome, which may mark the locus of putative
tumor genes. To detect such regions, we have analysed 30
chRCCs and 42 ROs using high-density SNP-based oli-
goarrays. We have also applied gene expression profiling
to examine the molecular signature in a series of RCTs
including chromophobe RCCs and ROs. The data

obtained from both sources were combined and a consist-
ent relationship between underexpression of genes
located on chromosomes, which are lost from the genome
of chRCC, was detectable.

Methods
Tumor samples
Fresh tumor and corresponding normal parenchymal tis-
sues were obtained by nephrectomy at the Departments of
Urology, Ruprecht-Karls-University Heidelberg, Germany,
University of Pecs, Hungary and University of Umea, Swe-
den from 30 chromophobe RCCs and 42 ROs. One part
of the tumor and normal kidney tissues was immediately
snap-frozen in liquid nitrogen and stored at -80°C
whereas the remaining tumors with the nephrectomy
specimen was fixed in 4 per cent buffered formalin and
processed for histological examination. The histological
diagnosis according to the Heidelberg Classification of
Renal Cell Tumours was established by one of the authors
[24]. The collection and use of tissue samples for this
study was approved by the Ethics Committee of the Uni-
versity of Heidelberg.

DNA and RNA extraction
A frozen tumor sample was placed in a plastic Petri dish,
covered with 1 ml TE9 buffer (0.5 M Tris-HCl, pH 9.0; 0.1
M EDTA), and allowed to thaw. The tumor cells were then
carefully scraped or pushed out to separate them from
stromal tissue under an inverted microscope by a pathol-
ogist (GK) experienced in this technique. The stromal
rests were discarded. By this method contamination by
normal cells was reduced to a minimum as it was demon-
strated by previous microsatellite analysis [13]. Tumor
cells were resuspended in 5 ml TE9 buffer with 1% SDS
and 0,2 mg/ml proteinase K and incubated for 3 hours at
55°C. DNA was extracted by phenol-chloroform and dis-
solved in TE (10 mM Tris-HCl, pH 8.0; 1 mM EDTA)
buffer after ethanol precipitation. Frozen tissue samples
from chRCCs and ROs, other types of renal cell tumors as
well as of adult normal kidneys were homogenized in TRI-
zol reagent (Invitrogen), and high-quality total RNA was
extracted according to the manufacturer's recommenda-
tions. The quality was assessed using the ratio of absorb-
ance at 260 nm to 280 nm (A260/A280) and by running on
denaturing 1% agarose gel to confirm the presence of
non-degraded RNA.

SNP-array study and data analysis
The oligonucleotide array experiments were performed
using the Affymetrix GeneChip Mapping 250 K NspI
arrays (Affymetrix Inc., Santa Clara, CA, USA). Male and
female reference DNA pools containing equal amounts of
genomic DNA from 10 healthy donors were used for nor-
malisation purposes.
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DNA labeling, hybridization, washing and staining of the
250 K NspI arrays were performed according to the man-
ufacturer's instructions. First, 250 ng of genomic DNA was
digested with NspI and then ligated to an adaptor with T4
ligase. A generic primer recognizing the adapter sequence
was used to amplify adapter ligated DNA fragments with
PCR conditions optimized to amplify preferentially frag-
ment in the range of 200 to 1.100 bp. To obtain enough
PCR product, three 100 μl PCRs were set up for each adap-
tor ligated DNA sample. The PCR products from the three
reactions were then pooled and purified with the DNA
amplification clean up kit (Clontech Laboratories, Moun-
tain View, CA, USA). A final 90 μg PCR product was frag-
mented with DNaseI and a sample of the fragmented
product was visualized on a 2% agarose gel to confirm
that the average size was smaller than 180 bp. Fragmented
PCR products were then end labeled with biotin, dena-
tured and hybridized to the arrays for 18 hrs. After hybrid-
ization the arrays were washed and stained using an
Affymetrix GeneChip Fluidic Station 450 and scanned by
the GeneChip Scanner 3000 7 G.

Mapping information for SNP, RefSeq and Cytoband
locations were determined based on Affymetrix annota-
tions and HG17 build of the genome sequence (May
2004) from http://genome.ucsc.edu/. The allelic intensity
of each SNPs from the GeneChip Operating Software was
measured using the GeneChip Genotyping analysis soft-
ware (GTYPE v4.0). Copy number intensities were calcu-
lated using the public domain software package CNAG
(Copy Number Analyser for GeneChip), version 2.0, and
detected using the implemented Hidden Markow Model
as well as by visual inspection [25]. To distinguish
between tumor-associated copy number changes and nat-
urally occurring copy number variation (CNV), all
changes were compared with public databases containing
normal copy number variants occurring in the general
population http://projects.tcag.ca/variation/ as well as
with a in-house database of 250 unrelated healthy indi-
viduals. Regions of overlap after excluding CNVs were cal-
culated using a standard Microsoft Excel software package.
To obtain genome-wide view of chromosomal imbalance
in chRCCs and ROs the output files (.TXT) from CNAG
2.0 were converted into the format suitable for processing
in WEB-interface GWA http://bioinformatics.cancerre
searchuk.org/cazier01/GWA_Events.html.

Gene expression profiling and data analysis
Gene expression profiling in 66 samples (26 conventional
RCCs, 17 papillary RCCs, four chromophobe RCCs, four
ROs, two collecting duct carcinomas, one mucinous and
spindle cell tumor, four Wilms' tumors, one clear cell sar-
coma of the kidney, one rhabdoid tumor of the kidney as
well as four adult and two fetal normal kidneys) was
obtained using HG-U133 Plus2.0 GeneChip oligonucle-

otide microarray (Affymetrix Inc.; see manufacturer's
manual for detailed protocol) containing 54,675 probe
sets that correspond to 38,500 genes (and > 47,400 tran-
scripts). Total RNA was purified with Qiagen RNeasy Mini
Kit (Qiagen), and the cRNA synthesis and hybridization
was performed by the Genomics Core Facility of EMBL
(Heidelberg, Germany). The stained arrays were scanned,
and perfect match and mismatch features on the scanned
microarray images were quantified using default settings
in Microarray Suite 5.0 software (MAS 5.0, Affymetrix
Inc.) yielding signal intensity for each probe on the array.
The hybridization (raw) data have been deposited in
NCBI's Gene Expression Omnibus repository http://
www.ncbi.nih.gov/geo/ and are available under the acces-
sion number "GSE11151".

The robust multi-array average algorithm of R and RMA
implementation in Bioconductor package http://
www.bioconductor.org was used to perform preprocess-
ing of the .CEL files, including background adjustment,
quartile normalization, and summarization. Expression
measurements were transformed by computing the base-
two logarithm before further analysis. Relative expression
profiles were generated from the individual tumor expres-
sion profiles and the mean expression values of the four
individual normal adult kidney expression profiles.

Quantative real-time PCR
Two μg of total RNA was reverse transcribed with Super-
Script II Reverse Transcriptase (Invitrogen) in 25 μl reac-
tion volume. Six μl of 1:16 diluted cDNA was amplified
with 0.5 μM of each forward and reverse primer and 7.5 μl
of the Platinum SYBR Green qPCR SuperMix UDG kit
(Invitrogen) in 15 μl final volume. The PCR was per-
formed in the Opticon Real Time PCR Machine (MJ
Research Inc., Watertown, MA.). Primer sequences and
PCR conditions used in this study are available upon
request. Specificity of the PCR products was verified by
analysis of melting curves generated at the end of the
cycles. For relative quantification, standard curves were
performed from a 5-step dilution series of pooled normal
kidney cDNA for both gene specific and also GAPDH and
ACTB reactions. The relative expression level was calcu-
lated by dividing the gene specific expression with the par-
allel GAPDH and ACTB expression.

Results
Copy number changes in chromophobe RCCs
In our series of chromophobe RCCs loss of the entire
chromosome 1, 2, and 10 was the most frequently
observed alteration followed by loss of chromosomes 17,
6, 13 and 21 (Figure 1 and Figure 2). In addition, we
found a frequent loss of chromosome 9 (40%), 5 (27%),
and 3 (23%). Evaluating the PAR1 on X and Y chromo-
somes indicated a loss of X and Y in 37% of the cases each.
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Some other chromosomal losses occurring in 3 to 15% of
the cases may be classified as random genetic change. Tak-
ing all chromosomal losses into account, chromophobe
RCCs in this series are characterised by loss of 5 to 13
chromosomes leading to low chromosome number. Sev-
eral hemi- or homozygous deletions or gains of hundreds
of kb to several Mb in size occurred at distinct chromo-
somal regions, each only in one or two cases (Table 1). We
have analysed smaller deletions, which occurred at the
chromosomes specifically involved in the genetics of
chromophobe RCCs. A homozygous loss of 710 kb at
chromosome 1p22.1 including five genes and another
homozygous losses of 5.9 Mb at chromosome 2q22.3-
q23.2 and 29.17 Mb at chromosome 10q11.23-q22.3
were seen in the same chromophobe RCC (Figure 3). In
two other cases of chRCC, an approximately 950 kb
homozygous deletion at chromosome 2q13 affecting 5
genes and a homozygous loss of approximately 600 kb at
chromosome 21q21.3-q22.11 including 6 genes were
revealed. A quantitative RT-PCR analysis of the genes
BUB1 and CLDN8 in 19 chromophobe RCCs and 29 ROs
did not revealed a correlation between copy number
changes, e.g. loss of one allele and gene expression and
(data not shown). The lack of expression of CLDN8 were
seen only in the single case showing the homozygous
deletion, which suggests the complete loss of gene
sequences (Figure 3). Evaluating of the other genes (Table
1) from the small homozygous deletions on the Affyme-
trix panel has not showed a correlation between expres-
sion level and chromosomal loss. Large deletions
involving a high number of genes were detected at chro-

mosome 1q, 6, 17 and 21q whereas loss or gains at dis-
tinct loci occurred at chromosome 10.

Copy number changes in renal oncocytomas
Loss of the entire chromosome 1 occurred in 33% of the
ROs. The loss at the PAR1 region indicated the loss of the
Y chromosome in 29% of the cases (Figure 2). We also
found loss of the entire chromosome 14 in two cases. Loss
of chromosomes 3, 6, 8, 9, 18, and 22 occurred each in
one case. A smaller deletion of 14.6 Mb and 18,1 Mb was
detected at chromosome 1p36.33-p36.21 and 1q42.13-
q44 region, respectively. Whether these deletions mark
genes involved in the development of ROs is not yet
known. The smallest overlapping deletion occurring in
two ROs at 11p15.2-p15.1 includes the SOX6, whereas
the smallest overlapping gain at 11p11.2 in three ROs
includes five members of the olfactory receptor proteins.
A hemizygous loss of 22 Mb was seen at chromosome
14q31.3-q32.33 in one of the ROs, which may mark the
loci of candidate genes. We have also detected a gain of
signal at chromosome 3p14.2 in three ROs developed in
the same kidney. The duplicated region corresponds to
exon 5 of the FHIT gene at the most common fragile site
FRA3B. Several other changes, each occurring in one case,
are listed in Table 1. Of interest, gains at distinct chromo-
somes were more frequent in ROs than loss of DNA
sequences.

Common and discriminating DNA alterations of diagnostic 
importance
Some of the chromosomal changes occurred in both type
of tumors albeit at different frequency (Figure 2). Loss of
chromosome 1p occurred in 23% of the ROs and 93% of
chromophobe RCCs. Whether the same genes are affected
by the copy number alterations in chromophobe RCCs
and ROs remains to be cleared. Loss of the entire chromo-
some 6 was seen in 88% of chromophobe RCCs, whereas
two ROs showed loss of the long arm of chromosome 6.
Overlapping alterations at chromosome 10 in one chRCC
and two cases of RO defined two common regions,
namely a 1.5 Mb region within 10q11.23-q21.1 (ACF,
D45864, PRKG1 and CSTF2T) and a 2.5 Mb region within
10q21.1 (ZWINT). Evaluating the global gene expression
of distinct types of renal cell tumors, we did not find cor-
relation between loss of the chromosome 10q regions and
expression of the genes mentioned above. Loss at chromo-
some 11p15.2-p12 including a loss of 1.2 Mb region
(SOX6) was found in two ROs and a chromophobe RCC.
Partial losses of chromosome 12 (p13.33-p12.1) were
seen in three chRCCs and gain at this region in one RO.

Comparing the genetic changes in 30 chromophobe RCCs
and 42 ROs, we found some highly discriminating altera-
tions. Loss of chromosome 2, 10, 13, 17 and 21 occurred
in 93%, 93%, 87%, 90% and 70% of chromophobe

Copy number alteration in a chromophobe RCC and ROFigure 1
Copy number alteration in a chromophobe RCC and 
RO. (A) Representative genome view of copy number altera-
tions of chromosomes 1, 2, 6, 10, 13, 17 and 21 in a chromo-
phobe RCC and of chromosome 1 as a single genomic 
change in a RO. (B) The dark green bars represent hetero-
zygous SNP calls in tumors. (C) The yellow bar marks the 
copy number data in a color-coded HMM model (pink: copy 
number 3, yellow: copy number 2, blue: copy number 1).
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RCCs, respectively. None of the 42 ROs displayed loss of
these chromosomes (Figure 4).

Comparison of gene expression level and copy number 
changes
To evaluate the impact of specific chromosomal losses on
gene expression, we analysed the gene expression data of
the four chromophobe RCCs and four ROs that have also
been analysed by the SNP array. First, to identify and sum-
marize the regional (chromosomal) expression biases we
segregated individual gene expression values into sets
based on entire chromosome mapping. For each set,
expression values from multiple probes that map within a
given chromosome were condensed by averaging. Finally,
gene expression profiles in four chromophobe RCCs and
four ROs were organized by hierarchical clustering (Figure
5A). The chromosomal profiles correspond well with

chromosomal losses obtained by the SNP array study for
these chRCCs (Figure 5B). Namely, frequent downward
expression biases were identified for chromosomes 1, 2, 3,
6, 10 and 13, which are commonly lost from the genome
of chRCC. In the RO HD37 monosomie of chromosomes
1 and 14 were accompanied by decreased expression of
genes from these two chromosomes. Similarly, mono-
somies of chromosomes 7, 9, 12 and 18 in the chromo-
phobe RCC HA315 was associated with decreased
expression of genes localized to these chromosomes.
Chromosomes 8 and 16 were duplicated in the chromo-
phobe RCC HD88 and corresponding to the three copies,
genes were over-expressed from these chromosomes.
Additionally, this approach predicted frequent over-
expression of genes localized to chromosomes 14, 15, 16,
19, 20 and 22 in chRCC and to chromosome 19 in RO.
Because several hundred genes are affected by the copy

Summary of genomic imbalances in 30 chRCCs and 42 ROs obtained with 250 K SNP array analysisFigure 2
Summary of genomic imbalances in 30 chRCCs and 42 ROs obtained with 250 K SNP array analysis. Green lines 
on the right of ideograms indicate losses, whereas red lines represent gains. Notice the smaller overlapping deletions at chro-
mosome 11p and 12p in two and three cases of chRCC, respectively. Notice the loss of chromosome 1 and gain of the X chro-
mosome in RO. Loss at the PAR1 region indicates the loss of the Y chromosome.
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number and expression changes, it is impossible to iden-
tify specific genes, which may be involved in the genetics
of chromophobe RCC or ROs.

Discussion
We have applied high-density SNP-oligoarray to detect
copy number alterations at specific chromosomal regions
in chromophobe RCCs and ROs, which may mark the loci
of genes involved in tumor development. Although we
have detected genetic changes at several small regions of
10–100 kb in size, no recurrent alterations at these regions
have been found in the tumors. As the high resolution
SNP array is suitable to detect DNA alterations in a range
of 10–30 kb, we can exclude the presence of recurrent
small interstitial deletions in chromophobe RCCs and
ROs with all certainty. The small random "losses" or
"gains" may result from mitotic recombination events and
probably do not play a role in the biology of tumor cells
at all. Detection of such random genetic events in tumor
cells by LOH studies may be misleading, as in our study,
when searching for tumor suppressor genes [26].

The gain of a small DNA segment around exon 5 of the
FHIT gene in three ROs from the same patient resulted
also from the plasticity of genome, in this case from the
instability of the most common fragile site FRA3B, rather
than a positive selection of gene alteration responsible for
tumor development

Although our genome wide SNP-array analysis failed to
identify tumor suppressor gene loci, we have confirmed
the high specificity of losses of chromosomes 1, 2, 6, 10,
13, 17 and 21 in chromophobe RCCs as it was shown by
classical karyotyping, chromosomal CGH and microsatel-
lite allelotyping several years ago [8,13,16,27]. Our study
also revealed other chromosomal losses including mono-
somy of chromosome 3, 5 and 9 in 23–40% of the cases.
Comparing the global gene expression to the expected
DNA copy number changes in conventional, papillary
and chromophobe RCCs, a frequent downward biases has
been identified for chromosomes 1, 2, 6, 10q, and 17q in
chromophobe RCCs [18]. We also found a decreased
expression of genes from the chromosomes showing
monosomies and also an increased expression of genes
from chromosomes showing increased copy number in
both chromophobe RCCs and ROs.

Which of the genes down-regulated by multiplex chromo-
somal losses in chromophobe RCCs or ROs are responsi-
ble for the tumor development and progression remains
from these studies unknown. Loss of chromosome 17,
which occurs in 90% of chromophobe RCCs, is associated
with p53 tumor suppressor gene mutations in only 27%
of the cases [28]. In spite of the frequent loss (86%) of
chromosome 10, no mutation of the PTEN tumor sup-
pressor gene has been found in chromophobe RCCs [29].
The germ line mutation of the folliculin gene is associated
with the BHD syndrome and the development of so-
called "mixed" chromophobe-oncocytic renal cell tumors
[30]. However, the folliculin gene has been excluded to be
instrumental in the development of sporadic chromo-
phobe RCCs and ROs [31].

During preparation of this manuscript, a paper on the
combined DNA and RNA analysis of chromophobe RCCs
and ROs has been published [32]. They found an over-
expression of genes from chromosome 19, especially the
specific over-expression of ELGN2 in renal oncocytomas.
We confirmed the increased transcriptional activity at 19
in both types of tumors, but also found frequent over-
expression of genes along chromosomes 14, 15, 16, 20
and 22 in chromophobe RCCs. We found an elevated
expression the ELGN2 in chromophobe RCCs and ROs,
and also in some conventional and papillary RCCs as
well. There are some discrepancies between the results
regarding the DNA copy number changes. They found "an
amplification of the entirety of chromosome 19 in

Homozygous deletion and gene expressionFigure 3
Homozygous deletion and gene expression. (A) A case 
of chromophobe RCC with a homozygous deletion at 
21q21.3-q22.11 as revealed by SNP-based analysis. (B) Cor-
responding to the loss of both copies of the gene sequences 
the lack of expression of CLDN8 gene as obtained by quanti-
tative real-time PCR.
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Table 1: Gains and losses of DNA segments larger than 0.5 Mb in 30 chromophobe RCCs and 42 ROs.

Tumor Chromosomal location Size, Mb G/L/HL* Genes

chRCC 1p36.21-q44 232.12 L
RO 1p36.33-p36.21 14.6 L

chRCC 1p22.1 0.71 HL MTF2, TMED5, NY-SAR-41, DR1, BCAR3
RO 1q42.2-q44 18.1 L

chRCC 2q13 0.95 HL BENE, NPHP1, LIMS3, RABP2L1, BUB1
chRCC 2q22.3-q23.2 5.9 HL

RO 3p14.3 1.10 G IL17RD, HESX1, APPL, FLJ44290, ARF4, SLMAP, FLNB
RO 3q13.11 2.72 L ALCAM, CBLB

chRCC 5p14.1 1.54 G CDH9
RO 5q21.3-q35.3 71.48 G

chRCC 6p22.2-q27 145.86 L
RO 6q13-q27 96.3 L
RO 6q15 0.74 G GABRR2, UBE2J1, RRAGD, ANKRD6, MDN1, CASP8AP2, OX62, BACH2
RO 6q24.2-q24.3 0.69 G EPM2A, FBXO30, SHPRH
RO 7q11.22-q11.23 5.65 G
RO 7q11.22-q11.23 3.30 G

chRCC 7q11.22-q11.23 0.92 G CALN1
RO 7q22.1 2.78 G
RO 7q34 0.52 G TIF1, Loc136306, ATP6V0A4
RO 9p24.3-p23 31.65 G
RO 9q22.1-q33.2 32.75 L
RO 10p15.3-p11.1 38.92 G

chRCC 10q11.22 0.63 G PPYR1, ANXA8
RO 10q11.23-q21.1 1.4 L
RO 10q11.23-q21.1 10.2 L

chRCC 10q11.23-q22.3 29.17 HL
RO 10q21.1-q26.3 78.1 L
RO 10q21.1-q26.3 78.1 L
RO 10q22.3 1.71 G
RO 11p15.2-p15.1 1.2 L SOX6
RO 11p15.5-p12 43.10 L

chRCC 11p15.5-p12 37,64 L
RO 11p11.2 0.52 G OR4X2, OR4X1, OR4S1, OR4C3, OR4A47
RO 11p11.2 0.40 G
RO 11p11.2-p11.12 0.63 G
RO 11q13.2 2.07 G
RO 11q22.3-q23.1 2.18 L

chRCC 12p13.33-p12.1 22.49 L
chRCC 12p13.33-p12.1 24.61 L

RO 12p13.33-p11.1 32.76 G
chRCC 12p13.2-p11.21 20.49 L
chRCC 12q13.13-q21.1 20.12 G

RO 12q13.2-q24.33 79.05 G
RO 14q31.3-q32.33 22,4 L

chRCC 15q13.3 1.01 G CHRNA7, ARGHAP11A
RO 16p13.3 1.57 G

chRCC 17p13.3-q23.3 59.77 L
chRCC 18q22.2-q23 10.32 G

RO 20p13-p11.1 26.22 G
chRCC 20q11.1-q11.22 4.30 L
chRCC 20q13.2-q13.33 10.01 L
chRCC 21q21.3-q22.11 0.59 HL CLDN17, CLDN8, Loc138818, KRTAP13-1, KRTAP19-1, KRTAP19-3
chRCC 22q11.1-q12.3 16.5 L
chRCC Xp22.33-q22.3 105.26 L

RO Xq13.3-q21.1 1.76 G

* G – gain, L – loss, HL – homozygous loss
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chromophobe RCCs" and presented a slightly elevated
signal at chromosome 19 in all the three tumors in Figure
1C. In contrary, we did not find any gain but the loss of
chromosome 19 in four of the 30 chromophobe RCCs in
our series. They also showed a gain at chromosome 7 in
all the three chromophobe RCCs, the alteration that
occurred only in one of the 30 chromophobe RCCs in our
series.

Until now, the global gene expression of over 300 renal
tumors including about 24 chromophobe RCCs and 20
renal oncocytomas in different series have been studied by
filter and microarray hybridization. Most of these studies
separated the group of chRCC/RO from other types of
renal cancers by expression profile, but did not distinct
chromophobe RCCs from ROs [19-21,23]. Some ran-
domly selected antibodies were used to characterize dis-
tinct types of renal tumors, including chRCCs and ROs,
but with controversial results. Markers such as cytokeratin
7, parvalbumin or claudin 7 were found to be expressed in
the majority of chromophobe RCCs, but rarely in renal
oncocytomas [20,23,33-35]. It was suggested that the kid-
ney-specific cadherin is specifically expressed in chromo-
phobe RCC, but others challenged their results [36,37].
Recently, MAL2 protein was found to be preferentially
expressed in chromophobe RCCs, paralleling its mRNA
differential expression according to the array analysis
[22]. However, its expression was seen in one of five RO
cases tested, and therefore the clinical diagnostic useful-
ness of this marker needs to be further validated by addi-
tional large-scale studies. Summing up the data from the
literature, only spare and not specific data are available on
the expression signature of chromophobe RCCs and renal
oncocytomas and no reliable molecular targets have been
identified in any examinations for the critical differential

diagnosis of chromophobe RCC versus oncocytoma. Gen-
erally, 100% diagnostic tumor classification and discrim-
ination cannot be based on a single gene product. Only a
panel of marker genes could result in additive diagnostic
reliability and would increase discriminative efficiency.

Conclusion
In conclusion, in this first report on the high resolution
DNA-array analysis on a large number of chromophobe
RCCs and ROs we have excluded with all certainty the
occurrence of small specific deletions. These types of renal
cell tumors are characterised by the monosomies of spe-
cific chromosomes. Some of the genetic changes may
occur in both types of tumors but the loss of entire chro-
mosomes 2, 10, 13, 17 and 21 occurs exclusively in
chromophobe RCCs. We have detected the loss of at least
three of them in addition to the loss of chromosome 1 in
each case analysed. Based on our results, any microsatel-
lites or BAC clones localised at these chromosomes can be

Frequency of loss of entire chromosomes in chRCCs and ROsFigure 4
Frequency of loss of entire chromosomes in chRCCs 
and ROs. Chromosomal changes occurring exclusively in 
chromophobe RCCs are marked by star.

Hierarchical clustering of gene expression profiles and com-parative genomic microarray analysis of RO and chRCCFigure 5
Hierarchical clustering of gene expression profiles 
and comparative genomic microarray analysis of RO 
and chRCC. (A) Genomic regions showing a significant 
number of up- and down-regulated genes are red and green, 
respectively. (B) Copy number changes of chromophobe 
RCCs and ROs are marked by green (loss) and red (gain). 
Generally, loss of chromosomes 1, 2, 6, 10, 13, 17 and 21 is 
associated with the downregulation of genes. However, 
genes at chromosomes 16, 19, 20 and 22 found to be over-
expressed in spite of the normal diploid copy number of 
these chromosomes.
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used to establish the diagnosis of chromophobe RCCs in
cases with uncertain histology. This can be achieved in
most histopathological laboratories by applying microsat-
ellite analysis or FISH to detect the specific genetic altera-
tions.
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