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Abstract
Background: The apparent dominant model of colorectal cancer (CRC) inheritance in several large families, without
mutations in known CRC susceptibility genes, suggests the presence of so far unidentified genes with strong or moderate
effect on the development of CRC. Linkage analysis could lead to identification of susceptibility genes in such families. In
comparison to classical linkage analysis with multi-allelic markers, single nucleotide polymorphism (SNP) arrays have
increased information content and can be processed with higher throughput. Therefore, SNP arrays can be excellent tools
for linkage analysis. However, the vast number of SNPs on the SNP arrays, combined with large informative pedigrees (e.g.
>35–40 bits), presents us with a computational complexity that is challenging for existing statistical packages or even
exceeds their capacity. We therefore setup a procedure for linkage analysis in large pedigrees and validated the method by
genotyping using SNP arrays of a colorectal cancer family with a known MLH1 germ line mutation.

Methods: Quality control of the genotype data was performed in Alohomora, Mega2 and SimWalk2, with removal of
uninformative SNPs, Mendelian inconsistencies and Mendelian consistent errors, respectively. Linkage disequilibrium was
measured by SNPLINK and Merlin. Parametric linkage analysis using two flanking markers was performed using MENDEL.
For multipoint parametric linkage analysis and haplotype analysis, SimWalk2 was used.

Results: On chromosome 3, in the MLH1-region, a LOD score of 1.9 was found by parametric linkage analysis using two
flanking markers. On chromosome 11 a small region with LOD 1.1 was also detected. Upon linkage disequilibrium removal,
multipoint linkage analysis yielded a LOD score of 2.1 in the MLH1 region, whereas the LOD score dropped to negative
values in the region on chromosome 11. Subsequent haplotype analysis in the MLH1 region perfectly matched the mutation
status of the family members.

Conclusion: We developed a workflow for linkage analysis in large families using high-density SNP arrays and validated
this workflow in a family with colorectal cancer. Linkage disequilibrium has to be removed when using SNP arrays, because
it can falsely inflate the LOD score. Haplotype analysis is adequate and can predict the carrier status of the family members.
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Background
Colorectal cancer (CRC) is the one of the most common
malignancies in the Western world. Already in 1913,
familial aggregation of CRC was described by Warthin [1]
and later Lynch et al. described an additional family with
clustering of colorectal and endometrial cancer [2]. Clini-
cal definition of Lynch syndrome, or HNPCC, in 1991
[3,4] was instrumental for linkage analysis, and ultimately
for the identification of the underlying gene defects in
HNPCC families. The first HNPCC loci were mapped to
chromosomes 2 and 3 using microsatellite markers [5,6].
This eventually led to the identification of germ line muta-
tions in MSH2 [7] and MLH1 [8], respectively. Later,
PMS2 [9], MSH6 [10,11] and recently MutYH [12] were
identified as CRC susceptibility genes. However, the so far
identified CRC susceptibility genes can only explain up to
5% of all cases [13], while in ~35% of all colorectal cancer
cases familial clustering is seen [14]. Furthermore, it is
shown that first degree relatives of patients with colorectal
cancer have a relative risk of 2.3 to develop the disease
[15]. This indicates that still some genes with strong or
moderate effect on CRC development remain to be iden-
tified. In order to identify these genes, linkage analysis in
families could point to the loci where unknown suscepti-
bility genes may reside. Indeed, different linkage analysis
studies revealed potentially interesting regions on chro-
mosomes 3q, 9q, 11q, 14q, 15q and 22q [16-20].

Families with a clustering of colorectal cancer but without
germ line mutations in CRC genes have been under sur-
veillance in Leiden since the 1980s. Due to the long
period of follow-up, with three to four affected genera-
tions, these Dutch HNPCC-like families have become
informative for linkage analysis.

Traditionally, linkage analysis is performed with multi-
allelic microsatellite markers. Recently, however, the
more advanced single nucleotide polymorphism (SNP)
arrays were brought into use for linkage analysis. It was
shown that the information content of a dense SNP map
is significantly and uniformly higher than that of a
genome wide microsatellite marker map [21]. Several
studies conducting linkage analysis on genotype data
from SNP arrays appeared in recent years [22-24]. In these
studies non-parametric as well as parametric linkage anal-
ysis was performed in sib pairs or in small to moderate
size pedigrees. However, to date, no studies have been
published on linkage analysis using SNPs in large pedi-
grees (e.g. >35–40 bits).

Studying large families with thousands of SNPs results in
a computational complex analysis that is challenging for
existing statistical packages and that may even exceed their
capacity. Current linkage analysis programs can handle
either large pedigrees or large numbers of markers,

depending on the underlying algorithm. In order to per-
form linkage analysis in large pedigrees using SNP arrays,
we explored the possibilities of currently available linkage
analysis software. Most currently available programs are
based on the Lander-Green or the Elston-Stewart algo-
rithm or both. The computation time of the former algo-
rithm increases exponentially with the number of bits (2n
- f, where 'n' is the number of non-founders and 'f' the
number of founders) in a pedigree, whereas the latter
scales exponentially with the number of markers. To per-
form multipoint linkage analysis in a large family with
SNP arrays in one run would probably take several
months computation time, if at all possible.

Several programs are suitable for linkage analysis with bi-
allelic markers. Genehunter and Merlin can handle a rela-
tive large numbers of markers, however the analysis is
restricted to pedigrees of up to ~30-bits [25,26]. Both pro-
grams are based on the Lander-Green Hidden Markov
Model algorithm and can perform non-parametric as well
as parametric linkage analysis. In Genehunter, the Elston-
Stewart algorithm is also implemented, allowing the per-
formance of simultaneous analysis of several markers as
well as analysis of pedigrees of moderate size. A third pro-
gram based on the Lander-Green Hidden Markov Model
algorithm is Allegro 2. This program can handle large ped-
igrees (up to ~40 bits), although the computational costs
increase substantially when not all genotype information
of the family is available [27,28]. Allegro calculates para-
metric LOD scores as well as NPL scores and allele-sharing
LOD scores. Another program, SNPLINK [28,29] can per-
form automated linkage analysis with LD removal using
either Allegro or Merlin. However, for all the above men-
tioned programs the different branches of large families
(i.e. >35–40 bits) need to be analyzed separately. This will
lead to substantial loss of information and potential
undetected linkage.

MENDEL [30] is a program that is suitable for linkage
analysis with SNPs in large pedigrees. It allows adjusting
the maximum number of meioses, though the computa-
tion time will increase in that case. Both parametric and
non-parametric linkage analysis can be performed in
MENDEL. The program will either use the Lander-Green
or the Elston-Stewart algorithm, depending on whichever
is more efficient for the pedigree. SimWalk2 is a program
that can perform multipoint parametric linkage analysis,
haplotype analysis and a few other analyses in large pedi-
grees using bi-allelic markers. It uses Markov chain Monte
Carlo methods to compute the likelihood [31]. Simwalk2
uses the MENDEL program for computing location scores.
With the aim to detect linkage in CRC families exceeding
40 bits we established a procedure using freely available
software packages and validated this in a large colorectal
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cancer family, with a known causal MLH1 germ line muta-
tion on chromosome 3.

Methods
Patients
A large colorectal cancer family (Figure 1) with a recently
identified mutation in the MLH1 gene (c.1046dupT,
p.Pro350fs) was studied. Nine family members are
affected with colorectal cancer. Another two family mem-
bers are affected with polyps and three cases with skin can-
cer (non-specified) and one case with endometrium
cancer (non-specified) are seen as well. Peripheral blood
lymphocytes were collected from the family members.
DNA was extracted using standard procedures. A total of
thirteen family members were genotyped on Affymetrix
GeneChip Human Mapping 10K 2.0 SNP arrays. The
arrays were processed according to the instructions of the
manufacturer. The mean SNP call rate was 96.3% (89.0%-
98.5%).

The study was approved by the Medical Ethical Commit-
tee of the LUMC (protocol P01-019).

Workflow
We processed the data according to the following work-
flow: 1) First, the genotype data were generated by Gene-
Chip DNA Analysis Software (GDAS) from Affymetrix. 2)
These genotype data were combined with the pedigree
and the marker information in Alohomora. 3) In this pro-
gram the uninformative SNPs were removed as well. 4) To
be able to perform linkage analysis in the desired pro-
gram, the output files (in Merlin-format) of Alohomora
were by Mega2 converted to the proper format. 5) Mega2
also removed the Mendelian inconsistent errors. 6) The
files were then ready to perform parametric linkage analy-
sis using 2 flanking markers in MENDEL; affected-only
analysis as well as parametric linkage analysis using liabil-
ity classes was performed. 7) Based on the second analy-
sis, regions of interest were defined that were further
tested for Mendelian consistent errors and 8) possible
linkage disequilibrium was removed in SNPLINK. 9)
Multipoint parametric linkage analysis using the liability
classes was then performed in Simwalk2 for the ROIs and
10) finally, the haplotypes were inferred in Simwalk2.

Data formatting and quality control
Genotype data of the individual family members were
generated using GeneChip DNA Analysis Software
(GDAS) from Affymetrix. In the Alohomora program [32]
the pedigree information, allele frequencies and map
position of the SNPs were combined with the genotype
data generated by GDAS. The uninformative SNPs in this
pedigree, that show either only A alleles and No Calls or
only B alleles and No Calls, were removed from further
analysis by Alohomora. The data files were exported in

Merlin format. Subsequently, in Mega2 [33] these Alo-
homora files were converted into the appropriate format
for the programs used for linkage analysis, i.e. either the
Mendel 5 format or the SimWalk2 format. Mendelian
inconsistent errors were removed from analysis with
Mega2 by setting all genotypes of these SNPs to unknown.

Mendelian consistent errors
Mendelian consistent errors were identified by mistyping
analysis. Since this analysis is computationally complex
and therefore time consuming (2 1/4 hours for 35 SNPs),
only the regions of interest were analyzed for Mendelian
consistent errors. All chromosomal regions with LOD
scores exceeding 1 and lacking negative LOD scores were
defined as regions of interest (ROI). SimWalk2 [31] was
used to check all ROI for Mendelian consistent errors by
performing mistyping analysis. An error model with a uni-
form error rate for all mistypings was used. The overall
rate of mistyping was set at 0.004 [34,35]. The threshold
for the posterior probability of mistyping was set at 0.5
[36].

Linkage disequilibrium estimation
In the ROI the pair-wise correlation coefficient r2, as a
measure of linkage disequilibrium (LD) between adjacent
SNPs, was estimated using SNPLINK [29] and Merlin [26].
Since we are only interested in estimates of r2, we split the
large family into nuclear families. In addition to the fam-
ily under study, genotypes from 12 Dutch nuclear families
from other studies (unpublished results) were used to cal-
culate LD. The program SNPLINK provides a list of SNPs
to be removed. We used as cut off value for LD removal an
r2 ≥ 0.4. The information content was computed before
and after removal of the SNPs using Merlin.

Linkage analysis
To determine the power to detect linkage in the MLH1
family, we performed a simulation study using Simlink
[37] under the assumption of a dominant trait with a
piecewise linear penetrance. Subsequently, we performed
an affected-only linkage analysis and modeled a domi-
nant trait with an allele frequency of 0.001. For parametric
linkage analysis, the proper assignment of affected status
to family members is crucial since, due to the surveillance
of the families, adenomas will be detected and removed
before they can develop into a carcinoma. Additionally,
the risk of cancer increases with age. And the risk of devel-
oping an adenoma is different from the risk of developing
a carcinoma. To adjust for these phenomena, we defined
10 liability classes: four classes were defined with different
penetrances for colorectal cancer; four classes for polyp
carriers and two more liability classes for spouses, that
carry a population risk of developing polyps or colorectal
cancer and one for the family members of which the dis-
ease status is not known. These liability classes are based
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Haplotype analysis in a HNPCC family segregating the MLH1 Pro350fs mutationFigure 1
Haplotype analysis in a HNPCC family segregating the MLH1 Pro350fs mutation. The haplotypes were constructed 
in SimWalk2 and subsequently visualized with HaploPainter [39]. CRC:55, colorectal cancer diagnosed at age 55; Endo, 
endometrial cancer; Skin, skin cancer; P, polyps; Pro350fs, carrier of the Pro350fs mutation in MLH1; wt, non-carrier; black 
dot, DNA of this family member has been typed on a 10K SNP array.
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on the incidences of CRC and adenomas in the members
of HNPCC families in the Netherlands, that do not carry
the disease causing mutation [38].

In MENDEL [30], an affected-only parametric linkage
analysis was performed using two flanking markers (com-
putation time: ~20 sec per chromosome). In this analysis
only family members with colorectal cancer were defined
as affected and all other persons were set to unknown.
Parametric linkage analysis with liability classes was per-
formed thereafter, using two flanking markers (computa-
tion time: ~20 sec per chromosome). Cancers other than
colorectal cancer were not considered to be part of the
syndrome. In the ROIs appearing from this linkage analy-
sis, possible Mendelian consistent errors were removed as
well as the possible presence of linkage disequilibrium.
Subsequently, multipoint parametric linkage analysis was
performed in SimWalk2 [31], using the ten liability
classes. In this multipoint analysis no more than 30 SNPs
were analyzed, limited by the computational complexity
(analysis time: 1 3/4 hours for 30 SNPs).

Haplotype analysis
Haplotype analysis was performed in the ROI, using
SimWalk2. All SNPs in the region of interest (~18) were
included in this analysis (computation time: 1 1/3 hours
for 18 SNPs). The results of the haplotyping were visual-
ized in HaploPainter [39]. The haplotype segregation in
the family could then be compared to the segregation of
the mutation in MLH1 in this family.

Results and discussion
Linkage analysis using bi-allelic genotype data from SNP
arrays and large families is a computational challenge
using commonly used, freely available analysis software.
For the different steps of the linkage analysis; e.g. data for-
matting, detection of Mendelian inconsistencies, mistyp-
ing analysis, LD removal and single to multipoint linkage
analysis, we have chosen the following programs that can
handle large pedigrees and many SNPs where required;
Alohomora [32], Mega2 [33], MENDEL [30], SNPLINK
[29] and SimWalk2 [31].

In advance of the linkage analysis we performed a simula-
tion study to calculate the power using Simlink. The mean
LOD score in 1000 simulations in this family was 2.0.

The Alohomora program [32] was used first to combine
the genotype data generated with the SNP arrays, and the
pedigree and SNP information and secondly, to convert
these data into the appropriate format for further analysis.
In addition, 1256 of the 10053 SNPs were uninformative
and were therefore removed from analysis by Alohomora.

Since errors in genotyping can easily mask linkage, the
data were checked for different types of errors. First, we
have estimated the genotyping error rate in five duplicate
experiments. The mean genotyping error rate between the
duplicates was only 0.0051.

Mega2 was then used for several data validation checks,
including errors in the pedigree data or Mendelian incon-
sistent errors. Mega2 was used since it supports 28 differ-
ent programs, including the programs MENDEL and
SimWalk2, which we have used for linkage analysis and
haplotype analysis. The genotypes of 18 SNPs (0.21%)
were removed from analysis, because of Mendelian incon-
sistencies. However, with bi-allelic markers not all errors
appear as Mendelian inconsistent errors [40]. The data
were therefore also checked for Mendelian consistent
errors. Because of the computational complexity of these
multipoint analyses, this error check was performed only
in the regions of interest. The mistyping analysis option in
SimWalk2 was used, since this program can handle such a
complex analysis in a large pedigree. No Mendelian con-
sistent errors were identified in the ROI.

Affected-only parametric linkage analysis and parametric
linkage analysis using liability classes was performed in
MENDEL, using two flanking markers. This analysis
showed a maximum LOD score of 1.8 in the affected-only
analysis and 1.9 using liability classes for a 1.7 Mb region
around the MLH1 gene on chromosome 3 (Figure 2). A
second region with a LOD 1.1 was found, both in the
affected-only analysis and using liability classes, near the
centromere on chromosome 11.

Current linkage analysis programs assume LD between
markers and a disease locus and importantly, linkage
equilibrium between markers. The presence of linkage
disequilibrium between two markers can falsely inflate
the LOD score and missing genotypes can increase this
effect. Therefore, the r2 as a measure of LD was computed
in Merlin and SNPLINK. Using the threshold r2 ≥ 0.4, 5 of
the 27 SNPs in the region on chromosome 3 were
removed from the analysis. From the region of interest on
chromosome 11, 14 of the 30 SNPs with an r2 ≥ 0.4 were
removed from the analysis. After LD removal, multipoint
linkage analysis in the region on chromosome 3 yielded a
LOD score of 2.1, whereas on chromosome 11 negative
LOD scores were seen by multipoint linkage analysis after
LD was removed. This indicates that the strong LD in the
region on chromosome 11 was responsible for the peak in
the LOD in that region. On both chromosomes, the
removal of SNPs with high LD had no significant effect on
the information content (not shown).

We inferred the haplotypes of the family members, using
SimWalk2 for the linkage region on chromosome 3. All
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known affected MLH1-mutation carriers share the same
haplotype, as well as the affected obligate carriers. There-
fore, this haplotype perfectly co-segregates with the clini-
cal phenotype of the family members (Figure 1). Case 23,
who had developed polyps at age 60, does not share this
haplotype. Subsequent mutation analysis showed that
this individual indeed did not carry the disease causing
mutation in MLH1. Therefore, this case showed to be a
phenocopy. Another family member, case 39, has to date
not developed clinical symptoms of HNPCC, although he
did inherit the disease causing allele according to the hap-
lotype analysis. Indeed, sequence analysis showed that
this person carries the mutation.

Conclusion
In conclusion, we show that we can perform linkage anal-
ysis with high-density 10K SNP arrays in large families for
which not all members could be genotyped. We devel-
oped a workflow with different publicly available soft-
ware to perform the analyses: removal of Mendelian
consistent and Mendelian inconsistent errors, two and
multipoint parametric linkage analysis, removal of link-
age disequilibrium and haplotype analysis. The procedure
was validated in a large CRC family carrying a known
germ line mutation in MLH1. Linkage was found with the
MLH1 gene and subsequent haplotype analysis corre-
sponds to the mutation status of the family members. This
procedure can now be used for linkage analysis of large
families with an inherited condition, such as hereditary
colorectal cancer.
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