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Abstract

Background: The roles of mitochondria in energy metabolism, the generation of ROS, aging, and
the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim
to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in
esophageal cancer.

Methods: The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18
esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma)
of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient
gel electrophoresis (TTGE), followed by direct DNA sequencing to identify the mutations.

Results: Fourteen somatic mtDNA mutations were identified in 55% (11/20) of tumors analyzed,
including 2 novel missense mutations and a frameshift mutation in ND4L, ATPé subunit, and ND4
genes respectively. Nine mutations (64%) were in the D-loop region. Numerous germline
variations were found, at least 10 of them were novel and five were missense mutations, some of
them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the
mtDNA content was found to increase in some tumors and decrease in others. Analysis of
molecular and other clinicopathological findings does not reveal significant correlation between
somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic
status.

Conclusion: Our results demonstrate that somatic mtDNA mutations in esophageal cancers are
frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis
of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to
determine the pathological significance of these somatic mutations.

Background stranded DNA of 16.6 kb encoding 13 respiratory chain
The human mitochondrial genome is a circular double  protein subunits, 22 tRNAs, and 2 rRNAs. The mitochon-
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drial mRNA contains no introns. There is a 1.2-kb hyper-
variable non-coding D-loop region that is susceptible to
somatic DNA mutations. Each cell contains hundreds to
thousands of mitochondria, and each mitochondrion
contains 2-10 copies of mitochondrial DNA (mtDNA)
[1]. The major function of mitochondria is to produce
energy to support cellular activities through the oxidative
phosphorylation pathway. During this process reactive
oxygen species (ROS) are generated. Due to the lack of
protective histone proteins and the close vicinity, mtDNA
is an easy target for oxidative DNA damage by ROS. In
addition, the limited DNA repair mechanism allows
mtDNA mutations to accumulate. Thus, the mutation rate
of mtDNA is at least 10 times higher than that of nuclear
DNA. The roles of mitochondria in energy metabolism,
the generation of ROS, aging, and the initiation of apop-
tosis have implicated their importance in tumorigenesis

[2].

Neoplastic transformation is a multi-step process in that
alterations in multiple nuclear genes have been exten-
sively documented. Somatic mitochondrial DNA
(mtDNA) changes during tumorigenesis have also been
recognized in recent years [3-13]. However, unlike the
common mtDNA mutations in maternally inherited
mitochondrial disease, the functional significance and
pathogenic mechanism of somatic mtDNA mutations in
cancer development remains unclear despite the vast evi-
dence of their occurrence in various types of tumors [3-
8,10-13]. The identification of tumor suppressing func-
tions of several genes that are involved in energy metabo-
lism [14-18] and the role of the mitochondria in
apoptotic pathways [19], have suggested that mtDNA
alterations might be an important integral of tumorigene-
sis and programmed cell death. Evidences of down-regu-
lation of bioenergetic function of mitochondria have been
documented [20,21].

Extensive analysis of the mitochondrial genome using
direct sequencing has revealed that approximately 30-
70% of all types of tumors harbor mtDNA alterations [3-
8,10,12,13,22,23]. A majority of these studies focused on
the analysis of hypervariable, non-coding D-loop region
[4,5,10,22-24]. Comprehensive mutational analysis of
the entire mitochondrial genome achieved by direct
sequencing of approximately 80% of the mitochondrial
genome [3,6] or by the use of TTGE mutation screening
method with overlapping primers covering the entire
genome was limited to only a few studies [7,8,11-13]. Pre-
vious reports [3,6] demonstrated that most of the somatic
mtDNA mutations found in cancer were in the homoplas-
mic form. This observation led to the conclusion that
mutant mitochondria gained a replicative advantage dur-
ing tumorigenesis and became homoplasmic within a few
generations [3]. Our recent investigation of somatic
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mtDNA mutations in breast, oral, and brain tumors
revealed that mutations in the coding region did occur
and there were significant number of heteroplasmic alter-
ations [7,8,13].

Esophageal cancer is one of the most common and aggres-
sive cancers in Central and Southeast China, including
Taiwan [25-27]. A high incidence rate of >1.25 per 1,000
and a cumulative mortality rate of 20-25% have been
reported [25,26]. Somatic mtDNA mutations in the non-
coding D-loop region occurred in 5 and 34% of primary
esophageal tumors reported by two Japanese studies
[4,28]. A similar investigation of Chinese patients from
Shanxi province also reported D-loop mtDNA mutations
in 33% of esophageal tumors [26]. These studies were
limited to the non-coding hypervariable region only.
Results from others and our studies of various types of
cancers suggest that the somatic mtDNA mutation spec-
trum may vary among different tissues [3,4,6-8,10-13].
Furthermore, unlike the mutations in the non-coding
region, novel missense and frameshift mutations in cod-
ing region may have pathogenic significance [11,12]. In
addition, changes in mtDNA content in tumors may have
clinicopathological implication in tumorigenesis [12]. In
this report, we use TTGE mutation scanning method to
study somatic mtDNA mutations in the entire mitochon-
drial genome of 20 esophageal tumors and their sur-
rounding tissue. We also evaluated the mtDNA content in
the tumor and its surrounding tissue and correlated the
molecular findings with the clinicopathological profile of
the tumor.

Methods

Tissue specimens and DNA extraction

Paired tumors and surrounding tissues were previously
banked specimens that were surgically removed from
patients with histologically confirmed esophageal cancer
(18 esophageal squamous cell carcinomas, one adenosq-
uamous carcinoma and one adenocarcinoma). The age of
the patients (1 female and 19 male) were from 38 to 73
years old with the mean age of 59 + 14. The specimens
were obtained from the tumor bank of the Pathology
Department of Changhua Christian Hospital, Changhua,
Taiwan, according to an institutionally approved proto-
col. DNA was isolated from frozen tissues using protein-
ase K digestion and phenol/chloroform extraction.

Comprehensive mutational analysis of the entire
mitochondrial genome

Comprehensive mutation analysis of the entire mitochon-
drial genome by temporal temperature gradient gel elec-
trophoresis (TTGE) has been described previously
[7,29,30]. Thirty-two pairs of overlapping primers were
used to amplify the entire 16.6-kb mitochondrial genome
[29]. The DNA fragments vary in size from 306-bp to 805-
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Novel somatic mtDNA mutations in esophageal cancer detected by TTGE and sequencing. A: Homoplasmic to
heteroplasmic GI0500A (A11T in ND4L) mutation in case E12 B: Heteroplasmic change of A1544T in 12S rRNA in case E05
C: Heteroplasmic deletion of | 1bp (del TAACAACCCCC)at np10941 (110 x in ND4) in case E18 D: Heteroplasmic to homo-
plasmic change of A9182G (N219S) in ATPase 6 in case E15. The multiple banding pattern of TTGE in tumor confirms hetero-

plasmic change. tu: tumor, nl: normal

bp with an average of 594-bp [7,29,30]. Each fragment
has an average of 74-bp on each end overlapping with the
neighboring fragments. PCR products were denatured at
95°C for 30 s and slowly cooled to 45°C for a period of
45 min at a rate of 1.1°C/min. TTGE was performed on a
Bio-Rad D-Code apparatus. The polyacrylamide (acryla-
mide:bisacrylamide 37.5:1) gels were prepared in 1.25 x
Tris-Acetate-EDTA buffer containing 6 mol/L urea. Elec-
trophoresis was carried out at 135 V for 4-6 h at a con-
stant temperature increment of 1-2°C/h. The beginning
and ending temperature were determined by computer
simulation from the melting curve (50% denatured) of
the DNA fragment [7,29,30]. On TTGE analysis, a single
band shift represents a homoplasmic DNA alteration, and
a multiple-banding pattern represents a heteroplasmic

mutation. The DNA fragments from tumor and surround-
ing tissue of the same patient were analyzed side-by-side.

Identification of mutations by DNA sequencing

Any DNA fragments showing differences in banding pat-
terns between tumors and surrounding samples were
sequenced to identify the exact mutations. The DNA
sequencing was performed by using the big dye termina-
tor cycle sequencing kit (Perkin Elmer) and an ABI 377
(Applied Biosystems) automated sequencer. The results of
DNA sequence analysis were compared with the complete
human mitochondrial sequence deposited in GenBank
(accession number NC _001807) http://www.mito

map.org; http://www.ncbi.nih.gov[31] using MacVector
7.0 (Oxford Molecular Ltd, Oxford, England) software.
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Table I: Somatic mtDNA mutations in esophageal cancer
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Case Gene Tuvs NI Pattern Codon AA change Comment Frequency in
normal
population
(Genbank)
(%)
E02 D-loop T310C, 303- HT— HT polymorphism 16/1622 (0.99)
315ins C (CI5)
EO5 D-loop 303-309 del C HM— HT polymorphism 71/1622 (4.38)
(C8— C7/8)
EO5 128 A1544T HM— HT novel 0/2460 (0)
EO9 D-loop 303-309 del C HT— HT polymorphism 71/1622 (4.38)
(C9/8— C8/9)
EIO D-loop 303-309 ins C HM— HT polymorphism  50/1622 (3.08)
(C8— C8/9)
El2 NDA4L GI10500A HM— HT GCA— ACA AllT novel 0/1622 (0)
El4 D-loop 303-309ins CC HM— HT polymorphism  24/1622 (1.48)
(C7— C9/10)
El4 coilll G9377A (back HM— HM TGG— TGA WS57W polymorphism  42/2460 (1.71)
change)
EIS D-loop 303-309 del C HT— HM polymorphism 71/1622 (4.38)
(C8/9— C8)
EI5 ATPase 6 A9182G (back HT— HM AAC— AGC N219s novel 0/2460 (0)
change)
El6 D-loop 303-309 ins C HT— HT polymorphism  50/1622 (3.08)
(C7/8— C7/8/
9)
EI7 D-loop 303-309 ins C HM— HM polymorphism  50/1622 (3.08)
(C8— C9)
EI8 ND4 10941 del HM— HT frameshift 110X novel 0/2460 (0)
TAACAACC
CCC
EI9 D-loop 303-309 del HT— HM polymorphism  24/1622 (1.48)
CC (C9/10—
C7)

12S:12S ribosomal RNA, ND4L: NADH dehydrogenase subunit 4L, ND4:NADH dehydrogenase subunit 4, ATPase 6:ATP synthase FO subunit 6,

COlll: Cytochrome C oxidase subunit Il

HT: Heteroplasmy; HM: Homoplasmy, AA: Amino Acid, Tu: tumor, NI: Normal

Missense and novel mutations are in bold

Total mutation: 14, hm— ht: 6, ht— hm:3, hm— hm: 2, ht— ht: 3
Any DNA sequence differences between tumor and
matched normal mtDNA were scored as somatic muta-
tions. Sequence variations found in both tumor and
matched normal mtDNA but different from that recorded
in the GenBank were scored as germline variations. Those
not recorded in MitoMap database were categorized as
novel mtDNA variations, and those appear in the data-
base were categorized as reported polymorphisms or
mutations.

Measurement of mtDNA contents in tumor and
surrounding tissue

The mtDNA content was determined using real time
quantitative PCR analysis [32] on ABI sequence detection
system 7700 (Applied Biosystems) and was expressed as
ratio of copy number of mtDNA to copy number of 32
microglobulin (f2M) gene (nDNA). The mtDNA/nDNA
ratio in tumor was divided by the ratio in the surrounding
non-cancerous tissue to obtain the ratio of mtDNA level

in tumor to that in normal tissue. The ratio of >1 means
that the mtDNA content in the tumor is higher than that
in the surrounding tissue. The ratio of <1 means that the
mtDNA content is reduced in the tumor when compared
to its surrounding non-cancerous tissue.

Statistical analysis

Fisher's exact test is used to analyze whether there is asso-
ciation between the mtDNA content change in tumors
and the presence of mutations. Non-parametric Mann-
Whitney test was also used to test if mtDNA content alter-
ation in tumor is different in patients with or without
mtDNA mutations. P-values less than 0.05 are considered
statistically significant.

Results

Somatic mtDNA mutations in esophageal primary tumors
To test if somatic mtDNA mutation is a general phenom-
enon in esophageal cancer and to characterize the muta-
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Table 2: Novel germ-line sequence variations in esophageal cancer
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Case Gene Change Pattern Position Codon AA change Frequency Frequency
in this study  in normal
population
(Genbank)
%)
EOI ND5 T12957C Hm 12957 AAT— AAC N207N | 912461 (3.66)
E02 ND4 Al1976C Ht 11976 TAC— TCC Y406S | 0/2461 (0)
E03 Dloop C48IT Hm 481 | 3/1901 (0.16)
E08 ND5 GI2561A Hm 12561 CAG— CAA Q75Q | 4/2461 (0.16)
EI3 D- G251A Hm 251 | 0/1624 (0)
loop(mtTFI
binding site)
EI3 NDA4L T10609C Hm 10609 ATA— ACA M47T | 44/2461
(1.79)
EI3 ND5 G13928C Hm 13928 AGC— ACC S53IT | 7812461
3.17)
EI5 ATPase 6 G9182A Ht 9182 AGC— AAC S2I19N [ 4/2461 (0.16)
El6 coll G7912C Hm 7912 GAG— GAC EI109D | 0/2461 (0)
EI9 call T7711C Hm 7711 CTT— CTC L42L | 8/2461 (0.32)

MtTFI: mitochondrial transcription factor, ND5:NADH dehydrogenase subunit 5, COIll: Cytochrome c oxidase subunit Il

Missense mutations are in bold

tion spectrum, the TTGE mutation detection method was
used to screen the entire mitochondrial genome of tumor
and surrounding normal tissues. Figure 1 depicts the four
novel somatic mtDNA mutations. Panels A-C each
showed single band to multiple band change from sur-
rounding normal tissue to tumor tissue indicating a
homoplasmy to heteroplasmy alteration, while panel D
showed an alteration from a heteroplasmy to homo-
plasmy. Direct sequencing of the DNA fragment allowed
the identification of the mutations as shown in Figure 1
and listed in Table 1. Eleven out of 20 (55%) tumors har-
bored somatic mtDNA mutations with a total of 14 muta-
tions. Nine mutations were found in the D-loop region,
one in 128 rRNA and four in mRNA. Eleven tumors were
found to have somatic mutations (Table 1). All nine
mutations in the D-loop involved an insertion or deletion
within the poly C stretch of the nucleotide positions (np)
303-309 hot spot region. One of them, the T at nucleotide
position 310 was changed to C, resulting a homopolycyti-
dine stretch of 15 C's. The long stretch of poly C might
increase the instability of this region. Two of the somatic
mutations changed from the homoplasmic state in sur-
rounding tissue to a mutant homoplasmic state in tumor.
Three changed from heteroplasmic state in normal to
homoplasmic state in tumor, and 6 changed from homo-
plasmic wild type to heteroplasmic mutant. Three had
heteroplasmy in both the surrounding tissue and the
tumor, but the proportions of the mutant mtDNA in the
paired tissues are different.

Germline sequence variations
When the sequence of surrounding tissue was compared
with revised Cambridge reference mtDNA sequence

deposited in GenBank (accession No: NC 001807) and
MitoMap http://www.mitomap.org, numerous germline
sequence variations were found. A total of 185 distinct
germline variations have been identified from the
sequenced fragments. These do not represent all the
sequence variations in the specimens analyzed since only
the DNA regions that show somatic mutations, either
homoplasmic or heteroplasmic, by TTGE were sequenced.
Ten of these variations are novel (Table 2), and 175 (data
not shown) of them have been recorded in the Mitomap
database. Fight of these novel variations occurred in
mRNA region, and five were missense variations (Table
2). Among them, the most remarkable is A11976C in
NADH dehydrogenase subunit 4 (ND4) where tyrosine at
amino acid position 406 is replaced by serine. Other
novel missense variations are M47T in NADH dehydroge-
nase subunit 4 (ND4L), S531T in NADH dehydrogenase
subunit 5 (ND5), S219N in ATP synthase subunit 6
(ATPase 6), and E109D in cytochrome c oxidase subunit
IT (COII). The reported polymorphisms are mostly unre-
markable. Other frequent germ-line polymorphisms are
C16233T, T16189C, T16519C in D-loop region, and
C12705T in ND5, and T9540C in cytochrome c oxidase
subunit IT (COII) are silent variations with no amino acid
change.

Significance of novel somatic and germline mutations

The frameshift mutation, 10941del TAACAACCCCC,
causing frame-shift and premature termination at amino
acid 110 of ND4, is expected to be a deleterious mutation.
It involves a homoplasmy to heteroplasmy change.
G10500A somatic mutation changes a moderately con-
served alanine residue to threonine in ND4L (Fig. 2A).
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Alignment of novel somatic missense mutations. A: Case EI2, GI0500A mutation (Al1T in ND4L) and B: Case EI5,

A9182G (N219S in ATPase 6)

The A9182G mutation in ATPase6 is a back change from
asparagine to serine. The wildtype is serine, but it is aspar-
agine in the patient's normal tissue and changes back to
serine in the tumor. The amino acid is located in a mod-
erately conserved region (Fig. 2B). One silent mutation
G9377A in COIII (cytochrome c oxidase subunit IIT) does
not change the amino acid. However, it does not exclude
the possibility that the nucleotide substitution may cause
impairment in RNA processing due to improper precursor
RNA folding. Another mutation, A1544T in 12S rRNA
occurs at a stem region. This mutation causes the disrup-
tion of a critical base pair. It may destabilize the rRNA
structure.

In addition to somatic mtDNA mutations, novel missense
germline mutations may also cause affect on mitochon-
drial function. For instance, A11976C changes an evolu-

tionary highly conserved hydrophobic tyrosine to
hydrophilic serine at amino acid position 406 of ND4
subunit (Fig. 3A), would potentially cause functional
effect. Another example is the E109D mutation in COII
(Fig. 3B). Although it involves a conserved amino acid
change, the shortening of hydrocarbon chain may have
subtle effects on mitochondrial function. Accumulation
of the subtle effect over time may increase an individual's
risk of developing cancer. All five novel missense germline
variations were not detected in 19 breast cancers, 31 neu-
rofibromas, and 15 medulloblastomas, all of Caucasian
origin in previous studies [7,11,13]. They were also not
present in 18 oral cancers and 20 liver cancers of Taiwan-
ese patients [8,12].
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Figure 3

Alignment of novel germline missense mutations A: Case E02, Al 1976C (Y406S in ND4) and B: Case El6, G7921C

(E109D in COIl)

Molecular and clinicopathological characteristics

To investigate if the down-regulation of mitochondrial
function in cancers is due to regression of mtDNA biogen-
esis, the relative amount of mtDNA in tumor compared to
that in the surrounding non-cancerous tissue was meas-
ured by real-time quantitative PCR analysis. Table 3 lists
the results and clinicopathological characteristics of each
tumor. The mean value of tumor/normal mtDNA ratio in
the tumors with mtDNA mutation was 1.32 + 0.31 and
that of the tumors without mtDNA mutation was 1.45 +
0.22. Thus, tumor with or without somatic mtDNA muta-
tions show no significant difference (p value = 0.59 using
non-parametric Mann-Whitney test) in mtDNA content
change from normal to tumors. The majority (6 outof 11)
of tumors with somatic mtDNA mutations have either ele-
vated (>2) or reduced (<0.5) mtDNA content in tumors
compared to surrounding normal tissue. However the p

value (0.27) does not reach a statistically significant level
as analyzed by Fisher's exact test. Analysis of a larger sam-
ple size will be required. The patient (case E18) whose
mtDNA content is severely reduced in tumor harbored a
frameshift deleterious mutation (10941 del 11bp). He
was also the youngest patient (38 years of age). His tumor
was at stage III and metastasized to lymph nodes. He
expired 12 months after surgery. The patient (case E18)
had a previous history of tongue cancer. The patient (case
E05) who had the most reduced mtDNA content in
tumor, harbored the A1544T novel mutation in 12S rRNA
gene. His tumor was at stage III and had metastasized. He
expired 4 months after the surgery. These two cases are
consistent with the possibility that mtDNA mutations are
associated with impaired biogenesis of mitochondrial
genome. Four tumors had more than 2 fold increase in
mtDNA content. Two of them (case E10 and E17) had
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Table 3: The somatic mtDNA mutations and clinicopathological characteristics of esophageal tumors.

Case Sex Age (Yrs) Tumor Size TNM Survival Stage mtDNA tu/  Number of Mutation
(ecm3) nl Ratio Mutation
EOI M 42 24.75 T3NIMO Alive, 51 1 0.67 0
month post
surgery
E02 F 57 8.6 T3NOMO Alive, 48 A 1.56 T310C,
month post 303— 315
surgery ins C
EO3 M 46 12 T2N1MO 10 month 1B 0.71 0
E04 M 65 0.2 TINOMO Alive, 48 | 2.7 0
month post
surgery
E05 M 50 19.5 T3NIMO 4 month 1 0.25 2 303-309 del
C (C8—
C7/8),
A1544T
E06 M 70 0.65 T2NOMO Alive, 4 A 1.6 0
month
E07 M 52 36 T3NOMO 13 month A 1.8 0
E08 M 62 18 T4NOMO 12 month n 1.6 0
E09 M 66 12 T3NIMO 12 month 1 0.8 | 303-309 del
C (C9/8—
C8/9)
EIO M 73 9 T3NIMO 6 month 1 2.0 | 303-309ins
C (C8—
C8/9)
Ell M 68 10 T2N1MO 34 month 1B 1.8 0
El2 M 51 2.55 TINOMO Alive, 60 | 3.1 | GI10500A
month post
surgery
EI3 M 52 2 TINOMO 3 month | I.5 0
El4 M 60 11.25 T3NIMO 7 month 1] 1.4 2 303-309ins
CC(C7—>
C9/10),
G9377A
EI5 M 67 26.4 T3NIMO 5 month n 0.75 2 303-309 del
C, A9182G
El6 M 68 0.06 T2NOMO Alive, 38 A 0.48 | 303-309ins
month post C (C7/8—
surgery C7/8/9)
EI7 M 6l 24.75 T2N1MO 20 month 1IB 3.1 | 303-309ins
C (C8—>
C9)
EI8 M 38 20 T4NIMO 12 month n 0.35 | 1094 1del
TAACAAC
CCCC
EI9 M 68 36 T2NIMO 14 month 1B 0.7 303-309 del
CC (Cy/
10— C7)
E20 M 6l 39 T3NIMO 8 month n 0.7 0

TNM: tumor-node-metastasis classification

303-309 hot spot poly C mutation. Both patients had
metastatic tumors, and died post-surgery. Two other
patients had small non-metastatic tumors.

The relationship of the mtDNA content changes in tumor
with tumor size, and metastatic status is depicted in figure

4. The majority of tumors display an inverse relationship
between tumor size and mtDNA content change (Fig. 4).
Eight out of 11 tumors with mtDNA mutations became
metastaticc, whereas only 4 out of 9 tumors without
somatic mtDNA mutations became metastatic. The analy-
sis of odds ratio showed that the patients with somatic
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Figure 4

Histogram of mtDNA content change and tumor size with metastatic status of tumor.

mtDNA mutation has 3.33 times higher risk of metastasis
compared to patients without somatic mutations. How-
ever, due to a small sample size, it does not reach the sta-
tistic significant level (odds ratio: 3.33, 95% CI: 0.515-
21.6). In order to reach statistical significance, the study of
a larger sample size will be necessary.

Discussion

This study represents the first mutational scanning of the
entire mitochondrial genome of esophageal cancer. We
screened the entire mitochondrial genome of 20 esopha-
geal primary tumors and their surrounding tissues for the
presence of somatic mutations using the TTGE mutation
detection method. Fourteen somatic mtDNA mutations
were found in 11 (55%) tumors.

The specificity and sensitivity of TTGE in screening both
nuclear and mitochondrial DNA mutations have been

evaluated in detail [29,30]. In general, TTGE can detect
low levels of heteroplasmy that cannot be detected by
direct DNA sequencing. Although the sensitivity of detect-
ing nuclear gene mutations has been reported to be
around 97%, the detection rate for mtDNA may be lower
due to low percentage of heteroplasmy and the limit of
DNA sequencing [29,30,33]. Thus, the mutations
detected represent an underestimate of the total somatic
mutation load in the tumor mtDNAs. Although homo-
plasmy to homoplasmy change was reported as the most
frequent mtDNA alterations in tumors, the majority of
esophageal cancers harbored heteroplasmic changes. The
observation of heteroplasmic to heteroplasmic or hetero-
plasmic to homoplasmic changes and back changes from
surrounding normal to tumor tissues suggests that
mtDNA alterations may have already occurred before the
pathological changes can be detected [6]. These results,
although contradicted with the previous report that
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majority of the mutations involved in homoplasmy to
homoplasmy changes, were consistent with random
occurrence of mtDNA alterations at different times during
tumorigenesis, or, mutations that might become homo-
plasmic at different rate. The mutant mitochondria may
be present at either homoplasmic or heteroplasmic state
depending on the number of cell division they have gone
through, and their replicative advantage. Heteroplasmic
mutations have been found in other tumors [8,11,12].
Thus, histologically normal surrounding tissues may not
be normal at molecular level. In this regard, peripheral
blood may be a better choice. Our results suggest that
mtDNA alterations may potentially be good biomarkers
for early detection and/or prognosis of cancer.

Frequency of mutations in the non-coding D-loop region
is high, but the missense and frameshift mutations found
in the coding region are the ones likely to cause an effect
on mitochondrial function. Mitochondrial DNA deple-
tion may not be the general mechanism for reduced mito-
chondrial oxidative phosphorylation activity in tumors as
it has been reported [34,35]. Both somatic mutations and
altered mtDNA content could be responsible for the
down-regulation of bioenergetic function of mitochon-
dria observed in most tumors [20]. In this study, the
number of tumors with increased mtDNA content is just
about equal to the number of tumors containing reduced
mtDNA. This phenomenon was also observed in liver can-
cer where tumors bearing somatic mtDNA mutation had
either markedly reduced or elevated mtDNA content in
tumor [12]. It is not clear if the down-regulation of mito-
chondrial function by somatic mutation or reduced mito-
chondrial biogenesis is the cause or result of tumorigenic
growth. In the cases where increased mtDNA content in
tumor was observed, it could be explained by the amplifi-
cation of mtDNA to compensate for mitochondrial dys-
function. This compensatory mechanism may be
beneficial as observed in patients E04 and in mitochon-
drial disease [36].

In this study, several novel germline missense mutations
were identified. Although the biochemical consequence
of homoplasmic polymorphisms are considered too sub-
tle to cause any detectable effect on oxidative phosphor-
ylation, long term accumulation of the subtle difference
in oxidative phosphorylation activity may eventually
result in oxidative stress. Thus, in the late onset of a dis-
ease such as cancer, mtDNA polymorphisms can poten-
tially play a role in modifying the cancer risk. The
missense variations, Y406S in ND4, M47T in NDA4L,
S219N in ATPase 6, and E109D in COII, might function
as cancer predisposition factors. Our unpublished obser-
vations have demonstrated that certain mtDNA haplo-
groups and mtDNA variations (polymorphisms and
mutations) modify an individual's cancer risk. In order to

http://www.biomedcentral.com/1471-2407/6/93

understand the actual functional effect of the mtDNA
mutations on susceptibility to cancer and tumorigenic
process, functional analysis of mitochondrial bearing
such mutations or polymorphisms in a transmitochon-
drial cybrid system will be necessary.

Conclusion

We used TTGE to scan the entire mitochondrial genome
for somatic mtDNA mutations in esophageal cancer, fol-
lowed by DNA sequencing to identify the exact mutations
and found that 55% of the tumors harbored somatic
mtDNA mutations. Several novel missense mutations at
both germline and somatic levels are likely to have an
effect on mitochondrial function. Since reduction in
mtDNA content is not the only mechanism leading to
down-regulation of mitochondrial function in cancer, the
possibility that a mutant protein generated by somatic
mtDNA mutation plays a role in tumor formation can not
be ruled out.

The results from this study indicate the importance of
complete analysis of the entire mitochondrial genome
when the functional significance of somatic mtDNA alter-
ations in cancer is to be investigated. In addition to qual-
itative alterations, quantitative changes in mtDNA
content are also important markers responsible for down-
regulation of mitochondrial function in cancer. Both
germline and somatic mtDNA mutations appeared to
have effects in modifying cancer risk or are directly
involved in the pathogenic mechanism of tumorigenesis.
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