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Abstract

Background: High risk HPVs are causative agents of anogenital cancers. Viral E6 and E7 genes are continuously
expressed and are largely responsible for the oncogenic activity of these viruses. Transcription of the E6 and E7
genes is controlled by the viral Long Control Region (LCR), plus several cellular transcription factors including
API and the viral protein E2. Within the LCR, the binding and activity of the transcription factor APl represents
a key regulatory event in maintaining E6/E7 gene expression and uncontrolled cell proliferation.
Glycosaminoglycans (GAGs), such as heparin, can inhibit tumour growth; they have also shown antiviral effects
and inhibition of API transcriptional activity. The purpose of this study was to test the heparinoid GAG-hed, as
a possible antiviral and antitumoral agent in an HPV 18 positive Hela cell line.

Methods: Using in vivo and in vitro approaches we tested GAG-hed effects on Hela tumour cell growth, cell
proliferation and on the expression of HPV 8 E6/E7 oncogenes. GAG-hed effects on API binding to HPV18-LCR-
DNA were tested by EMSA.

Results: We were able to record the antitumoral effect of GAG-hed in vivo by using as a model tumours induced
by injection of Hela cells into athymic female mice. The antiviral effect of GAG-hed resulted in the inhibition of
LCR activity and, consequently, the inhibition of E6 and E7 transcription. A specific diminishing of cell proliferation
rates was observed in Hela but not in HPV-free colorectal adenocarcinoma cells. Treated Hela cells did not
undergo apoptosis but the percentage of cells in G,/M phase of the cell cycle was increased. We also detected
that GAG-hed prevents the binding of the transcription factor AP to the LCR.

Conclusion: Direct interaction of GAG-hed with the components of the APl complex and subsequent
interference with its ability to correctly bind specific sites within the viral LCR may contribute to the inhibition
of E6/E7 transcription and cell proliferation. Our data suggest that GAG-hed could have antitumoral and antiviral
activity mainly by inhibiting AP| binding to the HPVI8-LCR.
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Background

Cervical cancer represents the second most frequent
malignant tumour found in women worldwide, with an
estimated frequency of approximately 440,000 new cases
per year, corresponding to about 5.8% of global cancer
incidence [1]. In countries like Mexico, cervical carcinoma
stands as the leading cause of death among the female
population, with 14 deaths per 100,000 women (15 years
old or more), representing 34% of all new female cancer
cases reported [2,3]. Human papillomaviruses (HPVs),
especially the high risk types 16 and 18, have been identi-
fied as causative agents of at least 90% of cervical cancer
cases and are also linked to more than 50% of other ano-
genital cancers [4]. The HPV genome consists of around
8000 base pairs (bp) of closed-circular double-stranded
DNA containing up to nine genes, functionally divided
into three regions: a long control region (LCR) covering
about 10% of the genome, and early (E) and late (L)
regions [4]. The regulation of viral gene expression is com-
plex and is controlled by multiple cellular and viral tran-
scription factors. Most of the regulation occurs within the
LCR, which varies substantially in nucleotide composi-
tion between individual HPV types. Within the LCR, cis-
active elements regulate transcription of the E6/E7 genes,
which represent the transforming genes for immortaliza-
tion and for maintenance of the malignant phenotype in
HPV-positive cervical cancer cells [5-7].

A number of cellular transcription factors, such as NF1,
AP1, KRF1, Octl, SP1, YY1, and the glucocorticoid recep-
tor, have been shown to bind and regulate HPV18-LCR
activity [8-15]. AP1 represents a key regulatory protein in
the maintenance of E6/E7 gene expression in almost all
HPV types hitherto investigated [14,16]. HPV18-LCR con-
tains two identical AP1 binding sites (TGACTAA) in oppo-
site orientations, one located in the promoter
(nucleotides 7792-7798) and the other one in the
enhancer (nucleotides 7607-7613) [17]. Both sites are
essential for HPV18 transcription from the early P, 5 pro-
moter [8,13,16,18] and AP1 transactivation is required for
tumour promotion in vivo [19]. AP1 also appears to be
involved in negative regulation of HPV transcription,
since treatment of HPV16 immortalized human keratino-
cytes with the anti-oxidant pyrrolidine-dithio-carbamate
(PDTC) selectively reduced the amount of viral mRNA by
blocking transcription initiation, an effect that is pro-
foundly associated with alterations of the AP1 het-
erodimerization pattern [20]. Therefore, there is
considerable interest in identifying compounds able to
down-regulate AP1 activity for the treatment of HPV
related malignant lesions.

Glycosaminoglycans (GAGs) are unbranched polysaccha-
ride chains composed of repeated disaccharide sequences
that consist of sulphate groups in various positions [21];
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these groups give the GAG chains a net negative charge. In
1989, Regelson reported that polyanionic substances such
as heparin, a member of the GAG group, are tumour
inhibitors [22]. This effect may result from the binding of
anionic heparins to a wide range of proteins and mole-
cules, thus affecting their biological activities. As a conse-
quence, heparins have a wide variety of biological
properties other than their anticoagulant effects, and
those properties may interfere with the malignant proc-
esses [23]. Heparin can affect proliferation, migration,
and invasiveness of cancer cells in various cell types,
including those derived from epithelial cells [24-27]. Tt
has been shown that heparins selectively inhibit the phos-
phorylation of mitogen activated protein kinases [28,29],
and there is direct evidence that heparin penetrates into
the cell nucleus and causes inhibition of Fos-Jun/AP1
activity as a direct result of its nuclear localization in HeLa
cells [30]. Additionally, heparin and the heparinoids dex-
tran sulfate and pentosan polysulfate, potently and selec-
tively inhibit the in vitro replication of herpes simplex
virus 2 (HSV-2), cytomegalovirus (CMV), AIDS virus
(HIV), vesicular stomatitis viruses, respiratory syncytial,
influenza type A, Sendai, Junin, and Tacaribe viruses [31-
35]. The growth of rat vascular smooth muscle cells trans-
formed by SV40 was also inhibited by heparin [36].

In this work, we use the heparin analogue GAG-hed to
determine its effect on HPV18 early expression in two
murine models and in cultured Hela cells. Our results
demonstrate that GAG-hed inhibits tumoral growth in a
model generated using Hela cells in nu/nu mice. A direct
inhibitory effect of GAG-hed on the activity of HPV18-
LCR was also noticed, as shown by the inhibition of B-
galactosidase expression in HPV18-LCR-LacZ transgenic
mice. Additionally, in HeLa cells, Northern and RT-PCR
analysis showed that GAG-hed treatment resulted in a
suppressive effect on EG6/E7 viral expression and also
GAG-hed has a significant negative effect on cell viability
in HeLa cultures. Finally, this product also inhibited the
sequence specific binding of the nuclear factor AP1 to
HPV18-LCR. When tested by an in wvitro approach, we
found a blockade in protein/DNA binding activity due to
GAG-hed treatment. All of these data suggest a potential
antitumoral and antiviral application for GAG-hed.

Methods

Materials

GAG-hed was isolated from porcine intestine mucosa and
obtained from PROBIOMED laboratories (México). In
comparison with standard heparins, this molecule has a
higher average in the amount of sulfate groups with a
molecular weight ranging from 3-14 kDa.
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Cell culture and cell proliferation assay

HelLa cells (HPV18 positive cervical carcinoma derived
cell line), C33-A (HPV negative cervical carcinoma
derived cell line) and SW480 (colorectal adenocarci-
noma) were routinely cultured in Dulbecco's modified
Eagle's medium (DMEM, Invitrogen Gaithersburg, MD)
supplemented with 10% fetal calf serum, with the appro-
priate antibiotic mix at 37°C in a 5% CO, atmosphere.
Culture media was replaced every two days.

Cell viability was measured by the MTT (3-(4, 5-dimethyl-
thiazolyl-2)-2, 5-diphenyltetrazolium bromide) reduc-
tion assay, performed as first described by Mosmann [37].
Cells were seeded on a 24-well plate in 500 pl culture
media with or without GAG-hed, incubated for indicated
times and analyzed (quadruplicates). After incubation of
the cells with the MTT reagent (5 mg/ml) for approxi-
mately 4 h, an isopropanol: HCI solution was added to
lyse the cells and solubilize the coloured crystals. The sam-
ples were read using an ELISA plate reader (wavelength of
630 nm) Opsys MR (Dynex Technologies).

Athymic mice

Athymic nude mice were obtained from Instituto
Nacional de la Nutricién animal facility, bred and main-
tained in the animal facilities at the Instituto Nacional de
Cancerologia of México. Athymic female mice, 5-6 week
old were housed (3 animals/cage, n = 12) in holding
rooms that were kept at 21-25°C, and 40-60% relative
humidity.

Tumorigenicity

HelLa cell cultures at 80% of confluence were trypsinized,
washed twice and resuspended in 200-500 ul phosphate
buffered saline (PBS). Hela cells were subcutaneously
(S.C.) inoculated in the dorsal position in only one inoc-
ulation place in each female nu/nu mice. After a period of
10 to 16 days, when small nodules were already palpable,
GAG-hed was administrated at three different concentra-
tions of GAG-hed, two doses per week, all applied intra-
tumoral and tumour growth was monitored. Tumours
were measured twice a week and tumour volume in cubic
millimetres was calculated as vol = (d,d,d;n)/6, where the
width of the tumour is used twice as d, and d, and the
length as d; [38]. The two dimensions were measured at
least twice using Venire callipers.

Transgenic mice and GAG-hed treatment

Female mice expressing the LacZ gene under the control of
the HPV18-LCR were reported previously [39,40]. Trans-
genic mice (line 406) were crossed back to C57Bl/6] X
C3HeB/Fe] F1 no transgenic strain and hemizygous 3 to 6
months old F1 females were obtained for our experi-
ments. A volume of 50 pl of GAG-hed (10 mg/ml) or
physiological solution as placebo, were introduced into
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the vagina of the female mice with a small probe attached
to an insulin syringe. Doses were applied at noon and at
night along 6 days. The seventh day vaginal smears were
spread in slides for fixation and staining with hematoxy-
lin-eosin and the phase of the oestrous cycle was deter-
mined by microscopic examination of the cells.
Immediately after, the animals were sacrificed, dissected,
and organs were frozen for transgene activity quantifica-
tion. Two groups of three females each in estrogenic phase
(proestrous-oestrous) were selected for these experiments.

[-galactosidase assay

Determination of B-galactosidase activity was described
by Cid-Arregui et al. [41]. Briefly, crude extracts from
organs were prepared homogenizing with polytron in PM-
2 buffer containing 33 mM NaH,PO,, 66 mM Na,HPO,,
0.1 mM MnCl,, 2 mM MgSO,, 40 mM B-mercaptoetha-
nol, pH 7.3 and centrifuging twice for 10 min in a micro-
fuge, discarding the pellet and lipid layer. Reactions were
carried out with 200 pg of protein and 800 pg of ONPG
(o-nitrophenyl-p-D-galactopyranoside) as substrate in a
final volume of 1 ml of PM-2, and incubated at 37°C for
1 h. Color development was measured at A,,, against a
blank without protein. B-galactosidase-specific activities
were calculated, after subtracting the initial absorbance of
the reaction, using the formula: units = 380 X A,,,/time
(min), such that 1 unit is equivalent to the conversion of
1 nM of ONPG per min at 37°C [42]. For whole-organ
staining vaginas were dissected and immediately fixed in
1% formaldehyde, 0.2% glutaraldehyde in PBS (pH 7.3)
for 1 h at room temperature and then washed 4-5 times
in PBS. Staining was performed with 1 mg/ml of X-Gal (5-
bromo-4-chloro-3-indolyl-B-D-galactopyranoside;
Sigma) in 0.01% sodium deoxycolate, 0.02% Nonidet P-
40 in PBS at 30°C for 6 h in the dark. Finally, a second fix-
ation was performed in 1% formaldehyde/2% glutaralde-
hyde in PBS.

Northern blot

Total RNA was extracted from HeLa cells employing the
Chomczynski method [43], with minimal modifications.
RNA was run in de-naturalizing gels, checked for equally
loading RNA amounts, transferred to Hybond-N nylon
membranes and fixed by baking membranes to 80°C for
2 h. As probe we used the fragment BamH1/EcoR1 con-
taining the viral early region, obtained from plasmid
PBR2.4 reported by Lazo [44]. Labelling was performed
by nick translation (Amersham Biosciences, Buckingham-
shire, UK) using 32P-dCTP. Filters were hybridized for 16—
24 h at 65°C, washed and analyzed by autoradiography.

RT-PCR

Total RNA was isolated from confluent C33-A cells, and
from treated and non treated HeLa cells. Treatment was
performed with increasing GAG-hed concentrations for
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48 h. Total RNA was extracted from cells using the Trizol
method (Invitrogen Gaithersburg, MD). All samples were
treated with RNAse-free DNAse (Invitrogen Gaithersburg,
MD) to prevent genomic DNA contamination during PCR
amplification. First strand cDNA was prepared from 1 pg
of total cellular RNA using First Strand cDNA Synthesis
Kits with oligo dT as a primer (Invitrogen Gaithersburg,
MD). All PCR reactions were carried out in a 25 pl total
volume containing 1 X PCR buffer, 4 mM MgCl,, 200 uM
dNTP, 100 ng each of forward and reverse primers (Sigma
Aldrich St. Louis, MO), and 1 unit of Taq polymerase in a
Peltier Thermaln Cycle (Perkin-Elmer). Amplification
conditions for both E6/E7 and B2-microglobulin were as
follow: after an initial 94°C incubation for 3 min, reac-
tions were amplified for 35 cycles at 94°C for 30 s, 58°C
for 60 s and 72°C for 90 s. The reactions were then incu-
bated at 72°C for 10 min. PCR amplification products
were separated on a 1% agarose gel and visualized by
ethidium bromide staining. Primers used to amplify the
E6/E7 gene were as follows: forward, 5'"TGTCAAAAAC-
CGITGTGTCC-3', and reverse, 5'-GAGCTGTCGCT-
TAATTGCTC-3' [45]. Primers used to amplify the B2-
microglobulin were: forward 5'-ACCCCCACTGAAAAA-
GATGAGTAT-3', and reverse, 5'- ATGATGCTGCTTACAT-
GTCTCGAT-3'.

Cell cycle analysis

For determination of cell percentage in each phase of the
cell cycle a standard procedure based on the established
method of whole-cell staining with propidium iodide (PI)
was followed [46]. Briefly, cells were trypsinized, fixed
and permeabilized in 70% ice cold ethanol to make them
accessible PI. Once fixed, cells were rinsed with PBS and
stained with a PBS solution containing 0.1% Triton X-
100, 0.2 mg/ml DNase free RNase A and 0.02 mg/ml of PI.
Triton X-100 was included to decrease the cell loss result-
ing from electrostatic cell attachment to tubes and the
RNase to digest the double stranded sections of RNA that
might stain with PI. Measurements were done on a FACS-
Calibur Instrument (Becton-Dickinson) with an excita-
tion of 488 nm (argon-ion laser line). Data were analyzed
using the ModFit LT V2.0 (PMac) DNA content histogram
de-convolution software.

Apoptosis determination

Translocation of phosphatidylserine (PS) to the external
surface of the membrane was determined using the
Annexin V-FLUOS staining kit (Roche Applied Science)
according to the manufacturer's instructions. Hela cells
were treated for 12 hours with staurosporine (1 uM,
Sigma) as a positive control of apoptosis induction. The
percentage of early apoptotic and apoptotic lysed cells was
determined on a Becton-Dickinson FACS Vantage SE flow
cytometer.
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Chromatin condensation and/or nucleus fragmentation
were investigated morphologically by DAPI (4',6-Diami-
dine-2'-phenylindole dihydrochloride) staining. Apop-
totic cells were estimated by counting cells on UV
microscopy after staining.

Electrophoretic Mobility Shift Assay

We performed gel mobility shift experiments (EMSA) uti-
lizing nuclear extracts of HeLa cells prepared as previously
described [47]. All buffers contained a protease inhibitory
cocktail to prevent nuclear factor proteolysis. Protein con-
centration was measured by the Bradford method using
the Bio-Rad protein assay reagent [48]. Double stranded
oligonucleotides were end-labelled with [a-32P] dATP or
[a-32P] ACTP (3000 Ci/mMol) and Klenow enzyme.
Labelled oligonucleotides were incubated with up to 7-8
pg nuclear protein in a reaction mixture with 2x BDG
buffer containing 24 mM HEPES, pH 7.8, 20% glycerol,
0.1 mM EDTA, 8 mM MgCl,, 20 mM KCl, 2 mM dithioth-
reitol, 4 mM spermidine for 10 min on ice; 0.5 pg poly
[dI-dC] was added as unspecific competitor (Pharmacia
Biotech). After probe addition, the reaction mixtures were
incubated for 10 min on ice, electrophoresed in 6% poly-
acrylamide gels using a low ionic strength 0.5X TBE buffer.
The gels were dried and exposed to an autoradiography
film. The double stranded oligonucleotides used were:

AP1 from HPV18 [49] 5'- CTAGAATATGACTAAGCT-3'
CITATACTGATTCGAGATC;

SP1 (bona fide SV40) 5'-CTAGATTCGATCGGGGCG-
GGGCGA-3' TAAGCTAGCCCCGCCCCGCTGATC;

5'-CTAGGATCCAGCG-
CCTAG-

Egr-1  (bona  fide) [50]
GGGGCGAGCGGGGGCGA-3'
GTCGCCCCCGCTCGCCCCCGCTGATC

Results

GAG-hed inhibits tumour growth in nu/lnu mice

In order to induce tumours derived from Hela cells, 1 x
106 cells were injected into athymic female nude mice.
Tumours developed within 16 days following subcutane-
ous cell injection. Treatment began at day 16, when
tumours in all mice in the groups A, B and C received
intra-tumoral GAG-hed, 0.08, 0.8 and 8 mg per injected
dose, respectively. Control group D received only intra-
tumoral saline injections; three mice were included in
each group. Tumour size was measured twice a week and
tumour volumes calculated as stated in Methods. Mice
that received saline injections developed tumours whose
size was measured as 100% of tumour growth. Much less
accelerated growth was observed over time for mice that
were treated with GAG-hed, a comparison of the tumour
volume is plotted in Figure 1A. At day 30, the mean
tumour volume +/- SE was calculated for each group of
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GAG-hed affects growth rates in a HeLa tumoral model induced in athymic female mice. Nude female mice were
subcutaneously inoculated on the dorsal part with Hela cells (12 mice total, three mice per group); each animal received only
one cell injection (I x 106 cells in suspension, in a total volume of 20 pl). On established tumours, GAG-hed doses applied

were: 0.08 mg/dose, group A; 0.8 mg/dose, group B; and 8 mg/dose, group C. Control animals were injected with saline solu-

tion and are denoted as group D. Panel A; Data showing the average tumour volume determined from day 16 after cell inocu-

lation (day taken as starting point for treatment) to day 30th. Tumour volume was determined by two dimensions

measurement: width and length. Z axis: average of total tumour volume (expressed in mm?3) of all animals (n = 3); Y axis: days

after Hela cells inoculation; X axis: applied GAG-hed treatment. (B) Comparison and statistic analysis values at day 30th under
differential dose application. *p < 0.05, **p < 0.005, Student's t-test in comparison to saline treated control.
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GAG-hed down-regulates the HPV 18 LCR activity in
transgenic mice. Female transgenic mice were used to test
GAG-hed effects on the expression of lacZ reporter gene
whose transcription is driven by HPV18-LCR. GAG-hed vagi-
nal washes (10 mg/ml, 50ul) were applied twice a day for 6
days. Six vaginal and tongue specimens were stained or
tested for [-galactosidase activity. (A) Relative activity is
expressed as the relationship between [-galactosidase units
in vaginal (V) and tongue (T) tissues (3 mice) for the unique
concentration employed compared with the effects of saline
application (3 mice). (B) Images obtained from vaginal sam-
ples stained for [-galactosidase using X-Gal. Left panel, vagi-
nal sample treated with saline solution (control); right panel,
vagina treated with GAG-hed.

independent experiments and homogeneous data were
evaluated by an unpaired Student's t-test in order to detect
overall differences between control and treated groups on
the final day. Statistically significant differences in tumour
size were noticed in animals receiving treatment, irrespec-
tive of applied doses. Tumour growth was maintained
below 37% in treated animals compared with non treated
controls (Figure 1B). These results suggest that GAG-hed
inhibits tumour growth rates but growth inhibition did
not show a dose-dependent behaviour.

In vivo effect of GAG-hed on HPVI8-LCR activity

The mechanisms of how GAG-hed may inhibit the devel-
opment of a large tumour mass are not well understood.
We wondered if part of this effect may be mediated by a
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direct inhibition of HPV18-LCR transcriptional activity.
To further investigate if the GAG-hed effect seen in Hela
induced tumours is affecting papillomavirus oncogene
expression, we used transgenic mice carrying one inte-
grated copy of the HPV18-LCR-lacZ reporter gene per
genome. This model has proven to be useful in determin-
ing the effect of different exogenously administrated com-
pounds on HPV expression [39,40]. The encoded B-
galactosidase enzyme was detected in epithelia of specific
organs (e.g. vagina, cervix) when tissue extracts were
tested in proper assays containing substrates such as
ONPG or X-Gal. Under the same experimental condi-
tions, no B-galactosidase activity was detected for normal
mice tissues (vagina, cervix, tongue)[40]. As seen in Figure
2A, the activity of the HPV18-LCR in the genital tract of
female mice dropped to one-fifth after local treatment
with GAG-hed as compared to mice treated only with
saline solution. Here, we decided to report the obtained
values as the ratio of values recorded from vagina divided
by the endogenous activity found in the tongue of the
same mice (e.g. vagina/tongue ratio) to reflect a more real-
istic result. As expected, transgene expression was specifi-
cally inhibited in vagina and cervix after heparin
treatment as shown by an intense blue indigo colour
which turns into a lighter one in the organ pieces shown
in Figure 2B. The activity values of saline-treated mice cor-
relate well with those previously found in untreated
females (data not shown), and is quite different when
compared with non-transgenic mice tissue, where activi-
ties are virtually zero [40].

Effect of GAG-hed on E6/E7 expression in HeLa cells

With the demonstration that GAG-hed inhibits LCR-
directed expression in vivo, we focus our attention on the
possibility that GAG-hed treatment may inhibit HPV18
E6/E7 viral transcription. In order to verify this, E6/E7
mRNA expression was detected by Northern blot and RT-
PCR in GAG-hed treated and control HeLa cells. Total
RNA was extracted from cells after variable times and
treatment doses. For Northern blot, we treated cells with a
fixed concentration of GAG-hed (2 mg/ml) and harvested
them after 72 or 96 h. As a probe, we used a labelled DNA
fragment taken from plasmid pBR2.4 which contains the
HPV18 early viral region [44]. In Figure 3A, the E6/E7
transcript is undetectable after GAG-hed treatment. A gel
image showing similar RNA loading was taken before
transferring (Figure 3A, lower panel). For RT-PCR, HeLa
cells treated with five increasing concentrations of GAG-
hed were employed. The HPV-negative cervical carcinoma
cell line C33-A was used as a negative control. Figure 3B
shows a dramatic decrease in the levels of HPV18 E6/E7
mRNA after GAG-hed treatment. This decrease is evident
for cells treated with GAG-hed at concentrations as low as
0.25 mg/ml, while repression is complete at higher con-
centrations (0.5 and 1.0 mg/ml; Figure 3B, top). As can be
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GAG-hed causes repression of HPV 18 E6/E7 tran-
scription in HeLa cells. (A) Northern blot was performed
with total RNA obtained from Hela cells treated with 2 mg/
ml of GAG-hed and harvested 72 or 96 h later. During treat-
ment, cells were grown in media with 2% serum. Control
cells were harvested after 72 h. Gel image showing similar
RNA loading in gel was taken before transfer and shown as
reference. (B) Cells were treated with the indicated increas-
ing concentrations of GAG-hed and total RNA was extracted
after 48 h. RT-PCR assays were performed and DNA prod-
ucts were separated on agarose gels. RNA used as negative
control was from C33-A cell line. E6/E7 transcript is denoted
as a 270 bp band (top); same mRNAs were used to test the
expression of f2-microglobulin, denoted as a 100 bp band
(bottom). (C) Plot represents densitometryc data normalized
against microglobulin optical density.

E6/E7/B2microglobulin

seen in the lower panel, the expression of f2-microglobu-
lin was not affected by treatment. Plotted data were
obtained by scanning and quantifying of labelled bands.
Optical densities for E6/E7 bands were normalized to the
B2-microglobulin signal (Figure 3C).
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GAG-hed dffects cell proliferation rates but did not induce
apoptosis

In concordance with other reports [51], the same suppres-
sive effects of GAG-hed over E6/E7 expression shown by
Northern blot and RT-PCR analyses can be translated into
a significant decrease in proliferation rates for HeLa cell
cultures, when this parameter was assessed by the MTT
method (Figure 4A). As a comparison, the SW480 color-
ectal adenocarcinoma cell line was tested using the same
experimental conditions. No significant changes in cell
proliferation were noticed in this case, supporting a corre-
lation between loss of E6/E7 expression and GAG-hed
effects. Additionally, cell proliferation assays demon-
strated that Hela cells treated with GAG-hed proliferated
at a lower rate than those untreated. Again, SW480 cells
did not show any differences in their proliferative rates
when those treated with GAG-hed were compared to
untreated (Figure 4B).

At this point, it was important to determine if GAG-hed
treatment induced apoptosis. Apoptotic cells were identi-
fied by transport of phosphatidylserine to the membrane
surface (Figure 5A) and by microscopic observation of
DNA fragmentation in the nucleus (Figure 5B). We
noticed the absence of apoptosis, by using Annexin-V
with flow cytometry and DAPI nuclear staining. As a pos-
itive control, we treated HelLa cells with staurosporine,
recording a clear change in the flow-cytometry output,
indicative of apoptosis induction (Figure 5A). Character-
istic condensed nuclei of apoptotic cells were clearly visi-
ble when cells were treated with staurosporine and
stained with DAPI (Figure 5B).

Furthermore, flow-cytometric analysis showed that cells
treated for 48 h with GAG-hed underwent a change in cell
cycle progression. Cells accumulated in the G,/M phase
after GAG-hed treatment depending on applied dose (Fig-
ure 5C and 5D). The percentage of cells in G,/M increased
from 4 % in the control to 18.43% in those treated with
10 mg/ml of GAG-hed.

Sequence specific binding of nuclear factor AP is inhibited
by GAG-hed

Among heparin effects, a direct inhibition of AP1 binding
has been reported [30]. To further investigate the molecu-
lar mechanism implicated in the inhibition of viral onco-
gene transcription shown in our study, we tested the
possibility that GAG-hed blocks the binding of AP1 tran-
scription factor to HPV18-AP1-binding sequences using
an electrophoretic mobility gel shift assay (EMSA). We
used Hela nuclear extracts for EMSA analysis and selected
as a probe an oligonucleotide containing the sequence of
the AP1 elements from HPV18-LCR. The two AP1 binding
sites in HPV18 are located at nucleotides 7795 and 7613,
at positions -171 and -349 with respect to the P, starting
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Figure 4

Cell viability and proliferation rates were affected by GAG-hed. Hel.a and SW480 cell viability was assessed by the
MTT method. Cells were seeded on a 24-well plate. In (A), cells were treated with increasing doses of GAG-hed for 48 h. In
(B), after GAG-hed treatment (5 mg/ml) cells were incubated and analyzed at 12 h intervals for 3 days. *, differences were sig-
nificant when compared with equivalent untreated cells (control) in all cases (Student's t-test p < 0.001; n = 4).
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GAG-hed arrest cell cycle but did not induce apoptosis. (A) | x 10¢ cells were treated with GAG-hed (5 and 10 mg/ml)
for 48 h. The cells were then permeablized, stained for Annexin V, and stored on ice until analyzed by FACS. The upper panels
show representative examples of control Hela cells either untreated (left) or treated with staurosporine to induce apoptosis
(right). Increased Annexin V staining was seen in Hela cells only in the presence of staurosporine. In all panels, cells in the
lower left quadrant are alive, cells in the lower right quadrant are in early apoptosis, in the upper right are in late apoptosis, and
cells in the upper left quadrant are dead. Percentage of total signal within the quadrant is indicated. (B) Fluorescent micro-
scopic analysis of cells stained with DAPI. Forty-eight hours after GAG-hed treatment the cells were fixed, stained with DAPI
and analyzed for morphological characteristics associated with apoptosis. (C) Cell cycle distribution in Hela cells treated with
GAGe-hed. Histograms are derived from a single experiment that was repeated three times with similar results, that in (D) are
expressed as percentages for each of the three cell cycle phases, mean + SE of three independent experiments.
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GAG-hed blocks AP binding. APl DNA binding was performed using electrophoretic mobility shift assays (EMSA) with
oligonucleotides containing the HPV18 AP| binding sequence and the SV40 SPI bona fide site. Oligomers were end labelled
with [0-32P] dATP or [a-32P] dCTP. Nuclear extracts obtained from Hela cells were exposed to GAG-hed at indicated con-
centrations for 10 min before labelled probe addition (Panels B and D). On panel A and C, complex specificity is denoted by
competition assays with a 100 fold excess of indicated oligonucleotide competitor. In panel E and F, API and SP| binding
respectively, was tested with the same nuclear protein extract obtained from Hela cells treated in vivo with 5 mg/ml of GAG-
hed and harvested 48 h post-treatment. Control indicates untreated cells.

site. Both sites contain identical sequences 5'-TGACTAA-3'
that have been shown to be recognized by JunB/c-Fos het-
erodimers in HaCat cells [14]. The binding specificity for
the AP1 and SP1 complexes was determined in competi-
tion experiments by the addition of a 100-fold molar
excess of either unlabeled homologous or heterologous
oligonucleotides, before adding end-labelled DNA probe.
Competition experiments are displayed in Figure 6A and
6C for AP1 and SP1, respectively, where homologous
unlabeled oligonucleotide effectively competes for the
major binding factors present in HeLa nuclear extracts. In
contrast, under similar conditions, a heterologous oligo-
nucleotide such as the bona fide site for Egr-1 (Early
growth response gene transcription factor 1) did not com-
pete for binding in both cases. In Figure 6B, nuclear
extracts from HeLa cells shifted 32P-labeled AP1 oligomers
from HPV18, and in the presence of increasing amounts
of GAG-hed, specific complexes are progressively lost. To
exclude unspecific effects of GAG-hed, nuclear transcrip-
tion factor SP1 was tested using the very same nuclear
extracts in similar EMSA studies. During employment of
SP1 labelled oligonucleotide, no inhibitory effect on com-
plexes was observed, indicating that GAG-hed does not
interfere with the DNA binding of SP1 (Figure 6D).
Finally, in Figure 6E, we show that GAG-hed treatment
caused the very same effects on AP1 when treatment was

applied to cells in culture, before harvesting them for
nuclear extract processing. In this case, labelled AP1 oli-
gomer was not retained when cells were treated with
GAG-hed. Therefore, by blocking AP1 binding, GAG-hed
may inhibit HPV18 expression and E6/E7 associated
uncontrolled cell proliferation (see Figure 7). Note the
lack of effect in Figure 6F when SP1 was tested.

Discussion

The present study provides a closer look into the effects of
heparinoids over the expression of HPV type 18, employ-
ing different methods and experimental systems. All
assays were performed with GAG-hed, a highly sulphated
heparinoid formulation which is heterogeneous in molec-
ular weight (3-14 kDa), that has been used here to pro-
vide four lines of evidence suggesting that this compound
blocks AP1 binding to HPV18 LCR. First, HeLa derived
tumours developed in athymic mice grew significantly
less under treatment with GAG-hed. Second, in transgenic
female mice containing the HPV18-LCR-LacZ transgene,
GAG-hed negatively affects the LCR activity based on the
reduction of B-galactosidase reporter expression after
treatment. Third, GAG-hed abolished the expression of
HPV18 E6/E7 genes in Hela cells and cell proliferation
was profoundly affected. Finally, GAG-hed also reduced
the binding of AP1 to its DNA sequence in HPV18 LCR,
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Proposed model for GAG-hed modulation of API transcription factor in HPV18 LCR. Fos-Jun/API transcription
factor complex is bound off in the presence of GAG-hed. GAG-hed-AP| complex is rendered stable and unable of binding to
DNA. Model in based in data reported in previous work [30,69] and particularly adapted to HPVI8-LCR. Circular HPVI8
genome showing the early and late open reading frames (ORF). The LCR has been expanded to show clearly the promoter and
enhancer regions in front of E6 and E7 genes. The AP binding sites located in the promoter and the enhancer are indicated.
Apart from the TATA sequence, the other known binding sites for transcription factors in the LCR of HPV 8 have not been
indicated.
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separately shown both by direct in vitro application and
when cells in culture were previously treated for two days.

In HPV containing carcinoma cells, the GAG-hed antipro-
liferative effect may also be the result of an antiviral effect.
The transcription of the HPV18 P, ,s promoter, which con-
trols expression of the E6 and E7 transforming genes, is
regulated by a combination of viral and cellular factors.
The transcription factor AP1 is essential for the activity of
this promoter, a finding mainly based on the observation
that mutation of the corresponding binding sites within
the HPV18-LCR completely abolishes P, ;5 promoter activ-
ity in human keratinocytes [14,16]. Indeed, it has been
shown that AP1 also plays a central role in positive tran-
scriptional regulation of several other human pathogenic
HPVs [52,53]. JunB is an important factor in HPV18 tran-
scription in keratinocytes. In nuclear extracts prepared
from human keratinocytes, JunB was the predominant
Jun component bound to the DNA probe containing the
same cis element we tested here (Figure 6) [14]. It is there-
fore reasonable to assume that all selection mechanisms
during HPV-linked carcinogenesis which enhance AP1
activity are required for HPV to exert its function as a DNA
tumour virus. In HPV-positive carcinoma cells, GAG-hed
causes a strong inhibition of AP1 binding to specific sites
located on the viral LCR (Figure 6), which probably
explains the decrease in E6/E7 mRNA synthesis. Diminu-
tion in B-galactosidase activity observed here (Figure 2), in
addition to Northern blot and RT-PCR experiments in
HelLa cells (Figure 3), are both highly suggestive of a direct
affectation in AP1 regulatory activity within HPV18 LCR.
Diminished expression in E6/E7 transcripts has been
shown to be associated with inhibition of proliferation of
cervical tumour cells [7,51,54]. Consistently, we noticed a
significant loss in HeLa proliferation rates (Figure 4),
which may be associated with the importance of AP1's
role in E6/E7 expression. AP1 also plays a crucial role in
cell proliferation [55], regulating gene expression in the
pre neoplastic-to-neoplastic progression in cell culture
models [56-63]. It is also possible that AP1 binding is
blocked at the level of several cellular promoter regions of
genes involved in cell proliferation, enhancing the antitu-
moral capabilities of GAG-hed. Heparin may have multi-
ple targets for its antiproliferative activity; it can bind to
Fos and Jun peptides, rendering the AP1 factor unable to
bind DNA. Heparin selectively blocks the induction of
immediate-early genes like c-fos and c¢-jun and other genes
which are involved in cell cycle progression, including c-
myc, c-myb, tissue plasminogen activator and ornithine
decarboxylase [28]. Heparin suppresses PMA induced
expression of c-jun and Jun B mRNA and protein in
baboon VSMC [28]. Blocking c-fos and c-jun transcription
by heparin is particularly important for transit through
the cell cycle. However, the most significant effect of
heparin on Jun family members occurs post-translation-

http://www.biomedcentral.com/1471-2407/6/218

ally. As Jun B is synthesized, it is converted to a higher
molecular weight form by phosphorylation(s). Heparin
prevents the transition to the higher molecular weight
species, which is presumably the active form of Jun B, sug-
gesting that heparin- mediated inhibition of Jun B may
account for the reduced AP1-binding to the phorbol ester
response element found on promoter regions upstream of
the collagenase and tissue-type plasminogen activator
(TPA) genes [64]. Highly specific effects of heparin on sig-
nal transduction pathways involving MAPK, PKC and
CaMK II have also been reported and may be reflected in
the effects of heparin on gene regulation.

GAG-hed treatment affects cell proliferation but did not
induce apoptosis (Figure 5). In HPV positive cells, p53
levels are regulated by the continuous expression of E6.
The E6 oncoprotein has been shown to recruit the cellular
ubiquitin-protein ligase E6-AP to target the tumor-sup-
pressor protein p53 for ubiquitin-proteasome-mediated
degradation [65,66]. Treatment with antiE6 resulted in
down-regulation of E6/E7 mRNA and an increase in p53
levels accompanied with a significant decrease in the
growth rate [51]. Part of the mechanism by which p53
blocks cells at the G, checkpoint involves inhibition of
Cdc2, the cyclin-dependent kinase required to enter mito-
sis. Cdc2 is inhibited simultaneously by three transcrip-
tional targets of p53, Gadd45, p21, and 14-3-36 [67]. We
observed an increase in the percentage of Hela cells in G,/
M phase together with a slight decrease in the number of
cells in G1 and S phases with GAG-hed treatment, which
may be associated with a recovery in cell cycle control by
the increase in p53 after lowering E6/E7 expression. Cur-
rent work in our laboratory is exploring this point.

GAGs are acidic and highly negatively charged molecules,
which interact with a large number of proteins and basic
molecules through ionic and hydrogen bonding interac-
tions [68]. There is direct evidence for heparin incorpora-
tion into cell cytoplasm and its presence in the nucleus
[30,69]. There is also evidence that heparan sulfate and
glycosaminoglycans in the Extracellular Matrix and on the
cell surface can be internalized by cells while bound to
receptors. The uptake of heparin involves complexation
and internalization with fibroblast growth factor and
fibroblast growth factor receptor [70,71]. Once in nuclei,
heparin binds AP1; in 1992, Busch showed that 125I-
labeled-heparin also binds directly to Fos and Jun pep-
tides. In line with these observations, important changes
in the levels of "free" transcription factors can be observed
as a result of heparin internalization. It has been recently
shown that heparin complexation with transcription fac-
tors may result in their inability to bind DNA regulatory
elements, increasing factor levels in the cytoplasm and
nuclei and culminates in apoptosis and cell death [69,72].
Heparin also inhibits other important transcription fac-
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tors in VSMC, such as ¢c-myb and Oct-1, which presumably
play a role in cell proliferation [73-75].

Conclusion

Model depicted in Figure 7 summarizes our current
understanding of how GAG-hed may block HPV18. Based
on previous studies [30,69,72], plus our present data, we
suggest a possible molecular mechanism by which GAG-
hed displays the effects described here, supporting the
idea of heparinoids as plausible anti-viral and anti-
tumoral drugs.
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