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Abstract

Background: Previous research has indicated that at various organ sites there is a subset of
adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal
transduction pathways. We wished to determine if this regulation exists in breast
adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying
potassium channel (GIRKI) has been shown in tissue samples from approximately 40% of primary
human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic
signaling.

Methods: Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of
breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene
expression were determined by both relative competitive and real time PCR. Potassium flux was
determined by flow cytometry and cell signaling was determined by western blotting.

Results: Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed
mRNA for the GIRKI channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was
expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-
MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (I uM)
increased the GIRKI mRNA levels and decreased beta,-adrenergic mRNA levels, while treatment
for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist
for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol
hemifumarate, led to increases in K* flux into MDA-MB-453 cells, and this increase was inhibited
by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino)-I-(3-
pyridyl)-1-butanone (NNK), a high affinity agonist for beta-adrenergic receptors stimulated
activation of Erk /2 in MDA-MB-453 cells.

Conclusions: Our data suggests 3-adrenergic receptors and GIRK channels may play a role in
breast cancer.
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Background

Breast cancer is the leading cancer in women [1] and estro-
gen receptor (ER)(-) breast cancers have a poorer progno-
sis than ER(+) cancers [2,3]. Smoking is a controversial
risk factor for the development of these malignancies [4-
7]. However, increases in pulmonary metastatic disease
and lung cancer have been seen in smokers with breast
cancer [8,9]. The tobacco-specific nitrosamine 4-(methyl-
nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) causes
cancer of the oral cavity, esophagus, respiratory tract and
pancreas, but no breast cancer in laboratory animals [10]
and has not been implicated in breast carcinogenesis to
date.

Recent studies in human cancer cell lines or in animal
models have shown that the growth of adenocarcinomas
of the lungs, pancreas and colon are under B-adrenergic
control [11-15]. Studies in a cohort of 2442 men found an
inverse association between risk of incident adenocarci-
nomas of the prostate and use of antihypertensive medi-
cation, including beta-blockers [16]. The tobacco-specific
carcinogenic nitrosamine NNK has recently been identi-
fied as a high affinity B-adrenergic agonist that stimulated
the growth of pulmonary and pancreatic adenocarcino-
mas in vitro and in animal models [11,13,15]. The expres-
sion of B-adrenergic receptors has been correlated with the
over-expression of the arachidonic acid-metabolizing
enzymes cyclooxygenase-2 (COX-2) and lipoxygenases
(LOX) in adenocarcinomas of lungs [17], colon [18],
prostate [19], and pancreas [15]. Inhibitors of these
enzymes have been identified as cancer preventive agents
in animal models of these cancers [13,20-22]. Collec-
tively, these findings suggest that among the superfamily
of adenocarcinomas at various organ sites, there is a sub-
set of malignancies that is regulated by B-adrenergic and
arachidonic acid-mediated signal transduction pathways.

The majority of breast cancers are also adenocarcinomas
and many of them over express COX-2 and/or LOX [23].
This raises the possibility that comparable to findings in
adenocarcinomas of the lungs, pancreas, colon and pros-
tate, a subset of breast cancers may also be under beta-
adrenergic control. In support of this hypothesis, studies
have demonstrated that three estrogen-responsive and
three non-estrogen responsive human cell lines derived
from breast adenocarcinomas demonstrated a significant
reduction in DNA synthesis in response to beta-blockers
or inhibitors of the arachidonic acid-metabolizing
enzymes COX-2 and 5-LOX [24]. In addition, analysis by
reverse transcription polymerase chain reaction (RT-PCR)
revealed expression of B,-adrenergic receptors in all six
breast cancer cell lines tested (MDA-MB-361, ZR-75-1,
MCF-7, MDA-MB-453, MDA-MB-468, MDA-MB-435S),
whereas [3, receptors were not found in two estrogen non-
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responsive cell lines (MDA-MB-435S, MDA-MB-453)
[24].

Expression of mRNA that encodes a G-protein coupled
inwardly rectifying potassium channel (GIRK1) has been
shown in tissue samples from approximately 40% of pri-
mary human breast cancers tested [25], and this expres-
sion of GIRK1 was associated with a more aggressive
clinical behavior. Increases in GIRK currents by beta-
adrenergic stimulation have been reported in adult rat car-
diomyocytes and in Xenopus laevis oocytes coexpressing
B,-adrenergic receptors and GIRK1/GIRK4 subunits [26].
In addition, in rat atrial myocytes transiently transfected
with B, or B, adrenergic receptors, the beta-adrenergic ago-
nist isoproterenol stimulated GIRK currents, whereas this
stimulation was not seen in non-transfected cells [27].
The current investigations test the hypothesis that GIRK1
channels in human breast cancers are correlated with
beta-adrenergic control.

Methods

Cell culture

The ER(+) human breast cancer cell lines MDA-MB-361,
ZR-75-1, and MCF-7 and the ER(-) cell lines MDA-MB-
453, MDA-MB-468 and MDA-MB-435S were purchased
from the American Type Culture Collection (Rockville,
MD). Cells were maintained in RPMI 1640 medium sup-
plemented with fetal bovine serum (10%, v/v), L-
glutamine (2 mM), 100 U/ml of penicillin and 100 pg/ml
streptomycin  (Invitrogen-Life Technologies, Grand
Island, NY) in an environment of 5% CO,. Exposure of
cells to propranolol, isoproterenol, or clozapine (Sigma,
St. Louis, MO), NNK (Chemsyn, Lexena, KS), or formot-
erol hemifumarate (Tocris, Ballwin, MO) for experiments
was as detailed in the Figure Legends.

RT-PCR

RNA was isolated by Trizol reagent (Invitrogen-Life Tech-
nologies) or by an Absolutely RNA kit (Stratagene, La
Jolla, CA). RT-PCR was done as previously described [28].
The GIRK1 primers are forward 5'-ctatggctaccgatacatcacag-
3" and reverse 5'-ctgttcagtttgcatgcttcge-3' which span exon
1 and 2 [29] and amplifies a 441 bp fragment (bases 631-
1072, Genbank Acession # NM_002239). The GIRK2
primers are forward 5'-atggatcaggacgtcgaaag-3' and reverse
5'-atctgtgatgacccggtage-3' amplifies a 438 bp fragment
(bases 700-1137, Genbank Acession #U52153). The
GIRK4 primers are forward 5'-aaccaggacatggagattgg-3' and
reverse 5'-gagaacaggaaagcggacac-3' which amplifies a 401
bp fragment (bases 117-517, Genbank Acession #
L47208). PCR conditions are 94°C, 30 sec; 55°C, 30 sec;
72°C, 45 sec for 40 cycles. Cyclophylin primers were used
as an internal control (Ambion, Austin, TX).
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Relative competitive RT-PCR

Preliminary experiments were done with MDA-MB-453
cells to determine a cycle number of PCR amplification
that is within the linear range, which is critical for mean-
ingful results to compare expression levels between sam-
ples and to determine the mixture of 18S primers/18S
competimers (Ambion-Classic II). The 18S ribosomal
RNA primers/competimers are used as an invariant inter-
nal control, which allows correction for sample variation.
Results indicated this was 31 cycles of PCR and a 1:9 18S
primer/competimers ratio. For experimental treatments,
as described before [33], cDNA was made and PCR per-
formed except reactions were spiked with 5 uCi [a-32P]-
dCTP (3000 Ci/mmole, Dupont-NEN, Boston, MA).
Reactions were run with the following conditions: 1 cycle
of 2 min. at 94°C, then 31 cycles of 94°C, 30 sec; 55°C,
30 sec; 72°C, 45 sec. A 10 pl sample of each PCR reaction
was heated at 95°C for 3 min., then loaded into a 5% TBE-
urea Ready Gel (Bio-Rad, Hercules, CA). This underwent
electrophoresis at 200 V in TBE buffer until the xylene cya-
nol dye front reached the bottom of the gel. The gel was
transferred to filter paper, dried and exposed to film or
imaged on a Molecular Dynamics 445 SI phosphoimager
(Sunnyvale, CA). A 100 bp DNA ladder (Invitrogen-Life
Technologies) was exchange labeled with T4 polynucle-
otide kinase and 30 pCi [y-32P] ATP (3000 Ci/mM,
Dupont-NEN).

Real-time PCR

The GIRK-1 primers for real time PCR are forward 5'-
ctcteggacctcttcaccac-3' and reverse 5'-gccacggtgtaggtgagaat-
3' (bases 398-477, Genbank Acession # NM002239). and
the internal TagMan probe is 6-FAM-tcaagtggcgctggaacctc-
TAMRA (bases 429-449, Sigma-Genosys, The Wood-
lands, TX), annealing temperature 62°. GIRK2 primers-
forward 5'-gacctgccaagacacatcag-3' and reverse 5'-cggtcag-
gtagcgataggtc-3' (bases 766-886, Genbank Acession #
U52153) and the internal TagMan probe is 6-FAM-
gtgcaatgttcatcacggcaac-TAMRA (bases 837-859), anneal-
ing temperature 56°. GIRK4 primers-forward 5'-agcgcta-
catggagaagagc-3' and reverse 5'-aagttgaagcgccacttgag-3'
(bases 241-358, Genbank Acession # L47208) and the
internal TagMan probe is 6-FAM-accggtacctgagtgacctcttca-
TAMRA (bases 301-324), annealing temperature 62°.
Reactions were run on a Cepheid SmartCycler (Sunnyvale,
CA). Reaction conditions are 200 uM dNTPs, 0.3 uM gene
specific primers, 0.2 uM TagMan probe, 4 mM (GIRK1) or
6 mM (GIRK2or4) magnesium acetate, 2 pl cDNA and 1.5
U MasterTaq (Eppendorf, Westbury, NY) and MasterTaq
buffer in a final volume of 25 pul. TagMan beta-actin detec-
tion reagents (Applied Biosystems) were used with the
same reaction conditions as above except a 5 mM magne-
sium concentration was used and this was run at 95° for
120 seconds, followed by 45 cycles of 95°, 15 seconds;
68°, 30 seconds.
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Measurement of potassium flux

We determined inward potassium flux in these cells by
flow cytometry via the method of Krjukova et al. [30]. The
negatively charged fluorescent dye bis-(1,3-dibutylbarbi-
turic acid)trimethine oxonol (DiBaC,(3)) (Molecular
Probes, Eugene, OR) was added to MDA-MB-453 breast
cancer cell line suspensions of 1 x 100 cells at a final con-
centration of 150 x 10-2 M. Fluorescence intensity meas-
urement after treatment of the cells was obtained from a
FACS Vantage/SE Cell Sorter (San Jose, CA).

Analysis of protein expression by western blots

Following incubation with agents as detailed in the Figure
legends, cells were washed twice with phosphate buffered
saline and lysed with cold RIPA lysis buffer containing
protease inhibitors (50 mM Tris pH 7.4, 150 mM NacCl,
1% NP-40, 1% Triton x 100, 0.1% SDS, 1% sodium deox-
ycholate, 1 mM EDTA, 50 mM NaF, 10 mM sodium pyro-
phosphate, 0.5 mM DTT). Cell lysates were collected from
culture plates using a rubber policeman, and protein col-
lected by centrifugation. Protein concentrations were
determined by BCA protein assay (Pierce, Rockford, IL).
Aliquots of 20 pg protein were boiled in 2x loading buffer
(0.1 M Tris-Cl, pH 6.8, 4% SDS, 0.2% Bromophenyl blue,
20% glycerol) for 4 minutes, then loaded onto 10% Tris-
HCIl-Polyacrylamide gels (Biorad, Hercules, CA), and
transferred electrophoretically to nictrocellulose mem-
branes. Membranes were incubated with primary anti-
bodies (phospho-Erk; Cell Signaling, Beverly, MA) and
appropriate secondary antibodies (Cell Signaling or Rock-
land, Gilbertsville, PA or Molecular Probes, Eugene OR).
In all western blots, membranes were additionally probed
with an antibody for actin (Sigma) to ensure equal load-
ing of protein between samples. The antibody-protein
complexes were detected as previous described [28] or by
the LiCor Odyssey infrared imaging system (Lincoln, NE).

Results

The estrogen-responsive (MCF-7, ZR-75-1, MDA-MB-361)
and estrogen non-responsive (MDA-MB-453, MDA-MB-
435S, MDA-MB-468) human breast cancer cell lines were
screened for the presence of the GIRK1 potassium channel
by RT-PCR analysis. The ER(+) cell lines MCF-7, MDA-
MB-361 and ZR-75-1 and the ER(-) cell line MDA-MB-453
expressed mRNA for the GIRK1 channel (Figure 1). The
ER(-) cell lines MDA-MB-468 and MDA-MB-435S did not
express GIRK1 (Figure 1). GIRK1 is also not expressed in
the normal breast epithelial cell line MCF 10A (data not
shown). The PCR product from the MDA-MB-453 cell line
was sequenced to verify the integrity of the PCR process
and found to be homologous to the published sequence
(data not shown). The PCR primers were designed to span
exon 1 and 2 of GIRK1 [29]. In addition PCR amplifica-
tion of negative control reactions (without the reverse
transcriptase enzyme, data not shown) indicated that this

Page 3 of 11

(page number not for citation purposes)



BMC Cancer 2004, 4:93 http://www.biomedcentral.com/1471-2407/4/93

Figure |

Agarose gel showing expression of mRNA for GIRKI in human breast cancer cell lines by RT-PCR. The GIRKI
primers amplified a 441-bp fragment whereas the cyclophylin primers amplified a 216 bp fragment. For each cell line, a negative
control reaction without M-MLV reverse transcriptase was performed and found to be negative. Lanes | & 7, ZR-75-1; Lanes 2
& 8, MCF-7; Lanes 3 & 9, MDA-MB-361; Lanes 4 & 10, MDA-MB-435S; Lanes 5 & | |, MDA-MB-453; Lanes 6 & 12, MDA-MB-
468, Lane M, a 100 bp marker. PCR reactions resolved on this gel were in the plateau phase of PCR, therefore concentrations
of PCR amplified cDNA samples cannot be compared.

A

M1 2 3 456 7 8 910 1112

GIRK2 GIRK4

BM12 3456

Cyclo.

Figure 2

Agarose gel showing expression of mMRNA for GIRK2 and GIRK4 in human breast cancer cell lines by RT-PCR.
The GIRK2 and 4 primers amplified 438 & 401-bp fragments respectively, whereas the cyclophylin primers amplified a 216 bp
fragment. Cyclophylin was used as a positive control for both GIRK2 and 4. For each cell line, a negative control reaction with-
out M-MLYV reverse transcriptase was performed and found to be negative. Lanes | & 7, ZR-75-1; Lanes 2 & 8, MCF-7; Lanes 3
& 9, MDA-MB-361; Lanes 4 & 10, MDA-MB-435S; Lanes 5 & | |, MDA-MB-453; Lanes 6 & 12, MDA-MB-468, Lane M, a 100 bp
marker. PCR reactions resolved on this gel were in the plateau phase of PCR, therefore concentrations of PCR amplified
cDNA samples cannot be compared.
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Figure 3

Comparison of GIRKI mRNA expression levels by relative competitive RT-PCR in MDA-MB-453 cells treated
with propranolol constantly for é days. Propranolol (I 1M) was added daily for six days. cDNA was amplified by PCR
using GIRK| primers and 18S primers/competimers. Lanes |-5) untreated control; Lanes 6—10) propranolol treated cells; Lane
I'1) untreated control, RT reaction without MMLYV; Lane 12, MDA-MB453 treated with propranolol, RT reaction without
MMLV. Densitometry values were determined using the phosphoimager. Densitometry values of the bands for Girk | were
normalized by the densitometry values of the bands for the 18S primers/competimers. Normalized values for control were
0.5494 £ 0.0285 (SD); and normalized values for propranolol treated were 0.9028 + 0.0348 (SD), p < 0.0001. The bands were
consistent with the expected sizes, 44| bp for the GIRK | primers and 324 bp for the 18S primers/competimers.

was actually representative of mRNA expression and there
was no contaminating genomic DNA. Since the GIRK1
potassium channels work as heterotetramers, we needed
to determine which other GIRK channels were expressed
in these breast cancer cell lines. As determined by RT-PCR,
GIRK4 was expressed in all six breast cancer cell lines (Fig-
ure 2), and GIRK2 was expressed in four of the six cell
lines. GIRK2 was not expressed in ZR-75-1 or MDA-MB-
435S cell lines (Figure 2).

To determine if GIRK channels are functionally linked
with B-adrenergic receptors in breast cancer cells express-
ing this ion channel, we decided to investigate the ER(-)
cell line MDA-MB-453. This ER (-) cell line, which was the
only ER(-) cell line tested that expressed GIRK1, was used
for further experiments due to the fact that ER(-) breast
cancers have a poorer prognosis than ER(+) cancers [2,3].
In addition, previous research in our laboratories indi-
cated that this cell line expressed the B, adrenergic recep-
tor but not the B, receptor [24]. MDA-MB-453 were
continuously exposed to the beta-blocker propranolol (1
puM) for 6 days. Previous results from our laboratories
indicated that maximal inhibition of breast cancer cell
proliferation was at 1 uM propranolol [24]. Using relative
RT-PCR, we saw a significant increase in GIRK1 channel
mRNA expression (1.6 fold, Figure 3) after 6 days of con-

tinuous exposure to propranolol (p < 0.0001 by t-test). In
these experiments, propranolol was added fresh each day.
We also saw a significant decrease (1.5 fold) in p,-adren-
ergic receptor mRNA (p < 0.0079 by t-test) (data not
shown).

Using the same cDNA samples, we performed a real-time
RT-PCR assay using GIRK1 primers designed for real-time
PCR and a TagMan probe. We also saw a significant
increase of GIRK1 mRNA using this method (Figure 4)
and no change in the control, beta-actin values. Threshold
values (C;) were calculated for each sample, which will be
lower for samples with more mRNA expression. Cvalues
for GIRK 1 expression were significantly (p < 0.001 by t-
test) lower for propranolol treated cells (27.808 + 0.107)
(SD) as compared to control MDA-MB-453 cells (28.964
+ 0.338) (SD). Actin C;values were unchanged between
control (13.666 + 0.286) (SD) and propranolol treated
cells (13.404 + 0.427) (SD). The exposure to propranolol
caused a slight decrease in GIRK2 mRNA expression (p <
0.04 by t-test) in the treated cells, opposite the result we
found for GIRK1. Control (Cy cycle values-31.35 + 0.73)
and propranolol (C; cycle values-32.24 + 0.38). GIRK4
expression levels were unchanged between control and
propranolol treated cells, indicated by real time PCR.
Control (C; cycle values-33.0 + 2.3) and propranolol
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Figure 4

Comparison of GIRKI mRNA expression levels by real time RT-PCR in MDA-MB-453 cells treated with pro-
pranolol constantly for 6 days. Propranolol (I M) was added daily for six days. Real time RT-PCR graphs of mRNA
expression levels of GIRK| and beta-actin. The graphs are from a Cepheid Smart Cycler using the same cDNA samples as used

in Figure 2. N =5 for each.

treated (C; cycle values-31.7 + 0.38). By contrast, MDA-
MB-453 cells treated for 30 minutes daily for 7 days with
1 uM propranolol did not show changes in GIRK1 mRNA
expression levels (Figure 5). No significant differences in
GIRK1 mRNA expression were seen when MDA-MB-453
cells were exposed to 1 uM of either propranolol or the

broad spectrum f-adrenergic agonist isoproterenol for 24
hours (data not shown).

Although the gene expression studies showed no effects at
shorter time periods or when it was not in the media
constantly, we wished to determine if other cellular func-
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Comparison of GIRKI mRNA expression levels by relative competitive RT-PCR in MDA-MB-453 cells treated
with propranolol for 30 minutes daily for 7 days. Propranolol (I uM) was added daily for seven days and then removed
after 30 minutes. cDNA was amplified by PCR using GIRK| primers and 18S primers/competimers. Lanes |-5) untreated con-
trol; Lanes 6—10) propranolol treated cells; Lane | I) untreated control, RT reaction without MMLV; Lane 12, MDA-MB453
treated with propranolol, RT reaction without MMLV. Densitometry values were determined using the phosphoimager. Densi-
tometry Girk 1/ Densitometry 18S-control-0.6055 + 0.0685 (SD); propranolol treated 0.5636 + 0.0611 (SD). The bands were
consistent with the expected sizes, 44| bp for the GIRK | primers and 324 bp for the 18S primers/competimers.

tion are affected at shorter time periods in MDA-MB-453
cells. Potassium flux into cells would be an important part
of any cellular response involving GIRK channels. We
determined inward potassium flux in MDA-MB-453 cells
by flow cytometry. The negatively charged fluorescent dye
bis-(1,3-dibutylbarbituric acid)trimethine oxonol
(DiBaC,(3)) was added to MDA-MB-453 breast cancer
cell line suspensions of 1 x 10°¢ cells at a final concentra-
tion of 150 x 102 M. Fluorescence intensity measurement
after treatment of the cells was obtained from a FACS Van-
tage/SE Cell Sorter. An increase of dye fluorescence corre-
sponds to membrane potential depolarization and K+
flux. The B, selective agonist, formoterol hemifumarate (1
puM), added to MDA-MB-453 cell suspensions at the same
time as the fluorescent dye lead to a 2X increase of fluores-
cence inside the cells, indicating inward potassium move-
ment (Figure 6A &6B). Dye alone added to cells had no
effect (data not shown). The GIRK inhibitor clozapine
[31] (50 uM) added just prior to dye and formoterol addi-
tion completely blocked the effect of the beta-adrenergic
agonist formoterol, (Figure 6C) indicating that blockage
of the GIRK channel inhibited potassium flux, and that
effects of beta-adrenergic agents on this breast cancer cell
line are indeed mediated by GIRK channels.

We also determined signaling events in MDA-MB-453
cells that are affected by beta-adrenergic agents. Increased

activation of Erk 1/2 was seen in MDA-MB-453 cells after
treatment with 100 pM NNK at times ranging from 15-
150 minutes (Figure 7). The concentration of NNK used
by us is within the range of systemic NNK concentrations
found in smokers. In addition, an experiment in Patas
monkeys [32] has shown blood levels of 1.6 pg/ml (7.72
x 10-12 M) after exposure to a dose of tritiated NNK equiv-
alent to the amount of NNK found in two packs of ciga-
rettes. Stimulation of Erk 1/2 was also seen using 1 uM of
the beta-adrenergic agonist formoterol, but only at 150
minutes (data not shown).

Discussion

Our data demonstrate expression of the G-protein
inwardly rectifying potassium channel 1 (GIRK1) in 67%
of the breast cancer cell lines tested, with higher levels in
ER(+) cell lines. Approximately 40% of primary human
breast cancers were found to express GIRK1 and expres-
sion of GIRK1 was not found to be correlated with ER
status [25]. These differences in our studies may be due to
the subset of breast cancer cell lines tested. We also found
that the normal breast epithelial cell line MCF 10A lacked
GIRK1 expression (data not shown). GIRK1 cannot form
functional channels by itself, other GIRK channels are
needed [33]. All six breast cancer cell lines tested express
either GIRK2 or GIRK4 indicating that functional GIRK
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Figure 6

Flow cytometry graphs showing potassium flux in MDA-MB-453 cells by the (3, agonist formoterol hemifuma-
rate. A) Fluorescence in R2 (inside the cell) increased from 9.37% to 18.82% after | uM formoterol treatment. B) Fluores-
cence in R2 increased from 8.96% to 21.14% after formoterol treatment C) Fluorescence levels in R2 remained at control
levels at 10.63% after addition of 50 1M clozapine along with formoterol.
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Levels of ERK activation in MDA-MB-453 cells as assessed by western blot analysis. Activation was determined
after indicated times after exposure to 100 pM NNK using a phospho-specific antibody.

potassium channels are possible in these breast cancer cell
lines.

The majority of experiments in the present study were
done with the ER(-) cell line MDA-MB-453 since it was the
only ER(-) cell line tested that expressed GIRK1, and
because ER(-) breast cancers have a poorer prognosis than
ER(+) cancers [2,3]. We saw a significant increase in
GIRK1 channel mRNA expression after 6 days of continu-
ous exposure to propranolol in MDA-MB-453 cells. It is
clear that at least six days of continuous exposure to the
beta-blocker propranolol is necessary to effect gene
expression. Gene expression of f,-adrenergic mRNA was
decreased by the same treatment (data not shown). Addi-
tion of propranolol for 7 days for only 30 minutes daily
had no effect on GIRK1 gene expression. Treatment for a
shorter period of time (24 hours) also had no effect on
GIRK1gene expression in our studies. The 6 day continu-
ous exposure to propranolol caused a barely detectable
decrease in GIRK2 mRNA expression and no change in
GIRK4 mRNA expression levels. Longer treatment times
may be necessary for gene expression changes in GIRK2 or
GIRK4 similar to gene expression changes that are seen in
GIRK1.

Although there were no short-term effects of beta-adrener-
gic agents on GIRK gene expression, we detected other cel-
lular effects. The beta-adrenergic agonist formoterol
hemifumarate stimulated potassium influx in MDA-MB-
453 cells, and this influx was prevented by the GIRK chan-
nel inhibitor clozapine. NNK, a high affinity agonist for
beta-adrenergic receptors [11] increased activation of Erk
1/2 in MDA-MB-453 breast cancer cells. Formoterol also
increased activation of Erk 1/2, but to a lesser degree (data
not shown). Previous studies indicated that the beta-
adrenergic agonist isoproterenol stimulates growth [24].
GIRK currents have been shown to be increased in cells
stimulated with the beta-adrenergic agonist isoproterenol
in rat atrial myocytes transfected with B,or 8, receptors
[27]. Heterologous facilitation of GIRK currents by -
adrenergic stimulation was also seen in rat
cardiomyocytes [26]. Two polymorphisms in the 3, and
B adrenergic receptors were found to be correlated with a
decreased risk for breast cancer [34], suggesting an
important role of this receptor family in the genesis of
breast cancer. In previous work, we demonstrated mRNA
expression by RT-PCR of the 3, adrenergic receptor in the
six breast cancer cell lines used in this study, but expres-
sion of B, in all the estrogen responsive cell lines but not
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in two ER(-) cell lines (MDA-MB-435S and MDA-MB-
453) [24]. Further studies are needed to determine how
GIRK1(+) and ER(-) breast cancers are regulated and if
GIRK channel agonists and antagonists have effect on pro-
liferation in breast cancer. It also remains to be deter-
mined if this same regulation is present in GIRK1(+) and
ER(+) breast cancer malignancies. This is of particular
importance since a recent report indicated that 17-p-estra-
diol can modulate GIRK channel activation in the brain
[35]. Future studies are also needed to determine if GIRK3
is involved in breast cancer. However, we think this
unlikely because one of the functions of GIRK3 is to
inhibit plasma membrane expression of other GIRK sub-
units [36].

Conclusions

All six breast cancer cell lines tested express either GIRK2
or GIRK4 indicating that functional GIRK potassium
channels are possible in these breast cancer cell lines. This
is the first report that implicates B-adrenergic receptors
and G-protein inwardly rectifying potassium channels 1
(GIRK1) in the regulation of human breast cancer cells
and suggests a potential role of the tobacco nitrosamine
NNK in breast cancers expressing these regulatory path-
ways. Beta-adrenergic antagonists have both long term
effects on gene expression and beta-adrenergic agonists
have short term effect on potassium flux and cellular sig-
naling pathways.
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