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Abstract
Background: Tocopherols are lipid soluble antioxidants that exist as eight structurally different
isoforms. The intake of γ-tocopherol is higher than α-tocopherol in the average US diet. The clinical
results of the effects of vitamin E as a cancer preventive agent have been inconsistent. All published
clinical trials with vitamin E have used α-tocopherol. Recent epidemiological, experimental and
molecular studies suggest that γ-tocopherol may be a more potent chemopreventive form of
vitamin E compared to the more-studied α-tocopherol. γ-Tocopherol exhibits differences in its
ability to detoxify nitrogen dioxide, growth inhibitory effects on selected cancer cell lines, inhibition
of neoplastic transformation in embryonic fibroblasts, and inhibition of cyclooxygenase-2 (COX-2)
activity in macrophages and epithelial cells. Peroxisome proliferator activator receptor γ (PPARγ)
is a promising molecular target for colon cancer prevention. Upregulation of PPARγ activity is
anticarcinogenic through its effects on downstream genes that affect cellular proliferation and
apoptosis. The thiazolidine class of drugs are powerful PPARγ ligands. Vitamin E has structural
similarity to the thiazolidine, troglitazone. In this investigation, we tested the effects of both α and
γ tocopherol on the expression of PPARγ mRNA and protein in SW 480 colon cancer cell lines.
We also measured the intracellular concentrations of vitamin E in SW 480 colon cancer cell lines.

Results: We have discovered that the α and γ isoforms of vitamin E upregulate PPARγ mRNA and
protein expression in the SW480 colon cancer cell lines. γ-Tocopherol is a better modulator of
PPARγ expression than α-tocopherol at the concentrations tested. Intracellular concentrations
increased as the vitamin E concentration added to the media was increased. Further, γ-tocopherol-
treated cells have higher intracellular tocopherol concentrations than those treated with the same
concentrations of α-tocopherol.

Conclusion: Our data suggest that both α and γ tocopherol can upregulate the expression of
PPARγ which is considered an important molecular target for colon cancer chemoprevention. We
show that the expression of PPARγ mRNA and protein are increased and these effects are more
pronounced with γ-tocopherol. γ-Tocopherol's ability to upregulate PPARγ expression and achieve
higher intracellular concentrations in the colonic tissue may be relevant to colon cancer
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prevention. We also show that the intracellular concentrations of γ-tocopherol are several fold
higher than α-tocopherol. Further work on other colon cancer cell lines are required to quantitate
differences in the ability of these forms of vitamin E to induce apoptosis, suppress cell proliferation
and act as PPAR ligands as well as determine their effects in conjunction with other
chemopreventive agents. Upregulation of PPARγ by the tocopherols and in particular by γ-
tocopherol may have relevance not only to cancer prevention but also to the management of
inflammatory and cardiovascular disorders.

Background
Vitamin E is a generic term that describes a group of lipid-
soluble chain breaking antioxidants that exist in nature as
eight structurally related forms; four tocopherol and four
tocotrienol (α, β, δ, and γ) isoforms. The isoform found in
highest concentration in serum and dietary supplements
is α-tocopherol. However, the primary form in the typical
American diet is γ-tocopherol, which is present at 2–4
times higher concentrations than α-tocopherol [1]. Recent
experimental and epidemiological studies suggest that γ-
tocopherol may be superior to the commonly tested, α-
tocopherol, as a cancer chemopreventive [2–5].

Newly recognized properties of γ-tocopherol provide a
basis for its superior cancer preventive activity. γ-Tocophe-
rol was found to be superior to α-tocopherol at inhibiting
cell growth in vitro in human prostate cancer cells [4].
Cooney et al. found that γ-tocopherol was a much more
potent inhibitor of neoplastic transformation in 3-methy-
cholanthrene-treated C3H/H10T/1/2 murine fibroblasts
than α-tocopherol. [5]. In a nested case-control study [2]
examining the effects of tocopherols and selenium on
incident prostate cancer, Helzlsouer et al. found that sta-
tistically significant protective associations for high levels
of selenium and α-tocopherol were found only when γ-
tocopherol levels were high. Together, these data indicate
that γ-tocopherol may be a better chemopreventive agent
than α-tocopherol. We have shown that dietary γ-toco-
pherol, but not α-tocopherol, is capable of down regulat-
ing the expression of the fecal ras-p21 gene. [6] in a rat
model system. γ-Tocopherol may also possess superior
anticarcinogenic action through effects on cell cycle pro-
teins and prostaglandin suppression [7]. In addition,
Jiang, et al. have demonstrated that γ-tocopherol sup-
presses the activity of cyclooxygenase (COX-2) in (LPS)-
stimulated RAW264.7 macrophages [8].

Members of the nuclear receptor superfamily, peroxisome
proliferator activator receptors (PPARs) are ligand-acti-
vated transcription factors that regulate gene expression
by binding to DNA. PPARs bind to peroxisome prolifera-
tor responsive elements (PPREs) in the promoter region
of several target genes after heterodimerization with the 9-
cis retinoic acid receptor X (RXR). PPARs are activated by
a wide variety of structurally diverse compounds that

include fatty acids, eicosanoids [9], and hypolipidemic
drugs like thiazolidinediones (TZDs). TZDs (troglitazone,
rosiglitazone, pioglitazone, ciglitazone) are selective lig-
ands for PPARγ. TZD drugs were shown to inhibit cell pro-
liferation in adipocyte cells undergoing differentiation
[10]. These drugs have been further tested in human
breast, prostate, and colon cancer cells resulting in inhibi-
tion of cell proliferation [11]. There is great interest in the
use of TZDs as chemopreventive agents in a variety of
malignancies including liposarcomas and cancers of the
breast, colon and prostate. [12–15].

PPARγ has an important role in colon carcinogenesis.
PPARγ is necessary for the normal growth and differentia-
tion of colon epithelium and may achieve this by main-
taining adequate levels of β-catenin. PPARγ ligands have
been shown to be effective chemopreventive agents in a
rat model of carcinogenesis and in azoxymethane-
induced colon cancer in mice [16]. Since vitamin E pos-
sesses structural similarities to the PPARγ ligand, troglita-
zone (Figure 1), we were interested to study the effects of
vitamin E isoforms on PPARγ expression in SW480 colon
cancer cell lines. Since PPARγ is a recognized as an impor-
tant molecular target in cancer chemoprevention strate-
gies [17], the ability of an agent to modulate PPARγ would
be an important observation that may have clinical impli-
cations in colon cancer chemoprevention. This study
demonstrates the ability of γ-tocopherol to upregulate the
mRNA and protein expression of PPARγ in SW480 colon
cancer cell lines.

Methods
Cell Culture
SW480 human colon cancer cell lines were purchased
from American Type Culture Collection (Rockville, MD)
and grown in RPMI 1640 medium containing 10% heat-
inactivated fetal bovine serum (FBS), penicillin G (100 U/
mL), and streptomycin (100 U/mL) in a humidified
atmosphere of 5% CO2 at 37°C. COS-7 cells (a generous
gift from Jonathan Moorman, M.D., East Tennessee State
University, Johnson City, TN) were also grown in Dul-
becco's Modified Eagle Medium with high glucose and L-
glutamine.
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The structure comparison of the tocopherols A) with troglitazone B)Figure 1
The structure comparison of the tocopherols A) with troglitazone B).
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Enrichment of Tocopherol Medium
Prior to treatment, the cell culture medium was enriched
with tocopherol by adding the appropriate amount of
tocopherol to 50 µL ethanol, followed by 1 mL of 7.5%
bovine serum albumin (BSA). The BSA/tocopherol mix-
ture was vortexed and added to 74 mL of culture medium
supplemented with 10% fetal bovine serum (FBS) and 50
IU penicillin/streptomycin. In the vehicle-treated cells,
BSA/ethanol without tocopherol was added to the culture
medium.

Treatment of Cells
SW480 human colon cancer cells were seeded at a concen-
tration of 5 × 106 in 100 × 20 mm plates 24 hours before
treatment with either 5 µM or 10 µM α-tocopherol, γ-
tocopherol, vehicle (BSA + ethanol) or 100 µM troglita-
zone (positive control) for 24 hours for mRNA expression
or 48 hours for protein expression.

Quantitative PCR
Total RNA was extracted from the cells using the RNAzol
B isolation kit (Tel-Test, Inc., Friendswood, TX) and quan-
tified using an Eppendorf BioPhotometer 6131. mRNA
levels of each PPAR were measured by reverse tran-
scriptase-polymerase chain reaction (rt-PCR) using total
RNA isolated from the SW480 cells and the Gene Amp kit
(Perkin Elmer, Boston MA). Toaccurately quantify the
cDNA from the RNA aquantitative polymerase chain reac-
tion (QPCR) system was used. The primer pair used to
amplify PPARγ was upper 5' AAG CCC TTC ACT ACT GTT
GAC T 3' and lower 5' CAG GCT CCA CTT TGA TTG 3'.
The PCR system useda fluorescent dye (SYBR Green).
QPCR optimization was performed using PPARγ plasmid
clones. Once optimized, cDNA standard curves were pre-
pared using the PPARγ plasmids to calibrate PPARγ. Assay-
swere performed in triplicate with negativecontrols (no
reverse transcriptase) and blank reactions to assure
thespecificity of the reactions. To verify that the correct
sequence was amplified, the cloned and uncloned prod-
ucts were sequenced by the Molecular Core Facility (James
H. Quillen College of Medicine, Johnson City, TN). The
sequence obtained matched the proposed product with
100% accuracy.

Western Blot Analysis
Nuclear proteins were extracted from SW480 cells by a
method previously described with modifications [18].
SW480 cells were harvested with trypsin-EDTA from 100
× 20 mm plates at ~5.0 × 106 cells per plate and pelleted
by centrifugation. The cell pellets were rinsed three times
with phosphate buffered saline (138 mM NaCl; 2.7 mM
KCl; 1.5 mM KH2PO4; 10 mM NaH2PO4, pH 7.5) PBS. To
the rinsed cell pellet 100 mL of ice cold hypotonic buffer
was added containing 10 mM HEPES pH 7.9, 10 mM KCl,
0.1 mM EDTA, 0.1 mM EGTA, 1 mM dithiothreitol (DTT),

0.5 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM
aprotinin, 1 mM pepstatin, 14 mM leupeptin, 50 mM
NaF, 30 mM b-glycerophosphate, 1 mM Na3VO4, and 20
mM p-nitrophenyl phosphate. Cells were incubated on
ice for 30 minutes and vortexed after the addition of 6.25
mL of 10% Nonidet P-40. After 2 minutes of centrifuga-
tion at 30,000 × g, supernatants were kept at -80°C while
the pellets were collected and vortexed every 20 minutes
in 60 mL of a hypertonic salt solution containing 20 mM
HEPES pH 7.9, 0.4 M NaCl, 1 mM EDTA, 1 mM EGTA, 12
mM DTT, 1 mM PMSF, 1 mM apotinin, 1 mM pepstatin,
14 mM leupeptin, 50 mM NaF, 30 mM β-glycerophos-
phate, 1 mM Na3VO4, and 20 mM p-nitrophenyl phos-
phate. The nuclear and cytosolic proteins were quantified
by the BCA protein assay (Pierce, Rockford, IL, USA). 50
µg protein was subjected to electrophoresis in a 10 %
polyacrylamide ready gel in Tris HCl buffer (BioRad, Her-
cules, CA). The gel was blotted to a nylon membrane
using a Protean II electroblotter at 100 V for 1 hour. The
membrane was blocked with 10% milk and co-incubated
with the primary antibodies to PPARγ and β-actin conju-
gated with a FITC label in 5% milk (Santa Cruz Biotech-
nology, Santa Cruz, CA).

For blots using whole cell lysates, the cells were lysed in
cell lysis buffer (50 mM Tris HCl, pH 7.5, 150 mM NaCl,
1 mM EDTA, 1% Triton X-100 and 0.5% SDS). The pro-
tein in each lysate was quantified using the BCA assay
(Pierce, Rockford, IL, USA). 100 µg protein from whole
cell lysate was subjected to electrophoresis in a 10 % poly-
acrylamide ready gel in Tris HCl buffer (BioRad, Hercules,
CA) followed by blotting as previously described.

Transient Transfection of COS 7 cells with pCMX-PPARγ 
expression vector
COS-7 cells at a density of 5 × 106 cells were transiently
transfected with 24 µg pCMX-mPPARγ expression vector
(a generous gift from Doug Thweke, PhD, East Tennessee
State University, Johnson City, TN 37604) by Lipo-
fectamine 2000 reagent (Invitrogen, Carlsbad, CA)
according to the manufacturers directions. After a 24-hour
incubation period, the cells were lysed and proteins were
isolated (as previously described) for use as positive con-
trol for the Western Blot analysis.

HPLC Analysis
Media from treated SW480 cells were collected in 400 µL
aliquots in glass vials for HPLC analysis. The adherent
cells were washed three times with phosphate buffered
saline (138 mM NaCl; 2.7 mM KCl; 1.5 mM KH2PO4; 10
mM NaH2PO4, pH 7.5), then overlaid with 400 µL of
Lysis Buffer (1% Triton X-100, pH 7.5, 20 mM HEPES
buffer with 0.1 mM EDTA), scraped and collected into a
glass vial for tocopherol analysis by HPLC. The media
sample or cell sample was mixed with 1.0 mL ethanol and
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1.0 mL hexane. After vortexing the mixture was centri-
fuged at 1020 × g for 5 minutes and a 400 µL sample of
the upper layer was removed, dried under N2 and taken up
with 100 µL of mobile phase. The mobile phase was
methanol: water (90:10) containing 3 fM EDTA and 20
mM ammonium acetate, pH 4.4. The tocopherol content
was measured using a HPLC equipped with a Coulochem
II Electrochemical Detector, a ESA model 580 solvent
delivery module, a catecholamine HR-80 column (C18, 3
mm, 8 cm), a Model 5011 Analytical Cell, a Model 5020
guard cell (Chelmsford, MA), a PE Nelson 900 Series
interface with PE Nelson Turbochrom V4 software (Perkin
Elmer, San Jose, CA). The flow rate was adjusted to 1.5
mL/min with E1 = -600 mV (the first analytical cell poten-
tial), E2 = 400 mV (the second analytical cell potential),
and E3 = 300 mV (the conditioning cell potential). The
response factors of tocopherols relative to tocol were
determined in triplicate. The concentrations of α-toco-
pherol and γ-tocopherol were measured using a Spec-
tronic Genesys 5 spectrophotometer and published
extinction coefficients [19]

Results
PPARγ mRNA expression
To determine whether α-tocopherol or γ-tocopherol could
upregulate PPARγ mRNA expression, total RNA was iso-
lated from SW480 colon cancer cells at 24 hours after
treatment with α-tocopherol, γ-tocopherol (5 µM or 10
µM) or 100 µM troglitazone (positive control). The total
RNA was reverse transcribed to cDNA. Changes in the
mRNA expression were quantified using the cDNA and
QPCR reaction with SYBR green. Figure 2a shows the dif-
ferences in mRNA expression as a result of treatment with
5 µM tocopherols compared to the vehicle and troglita-
zone-treated cells. Figure 2b represents the 5 µM data nor-
malized to the vehicle treatment and expressed as a fold
increase in PPARγ copy number. Figure 2c is an average of
three treatments at 5 µM normalized to the vehicle treat-
ment and expressed as a fold increase in PPARγ copy
number. Figure 3a shows the differences in mRNA expres-
sion as a result of treatment with 10 µM tocopherols com-
pared to the vehicle and troglitazone-treated cells. Figure
3b represents the 10 µM data normalized to the vehicle
treatment and expressed as a fold increase in PPARγ copy
number. Figure 3c is an average of three treatments at 10
µM normalized to the vehicle treatment and expressed as
a fold increase in PPARγ copy number. The results pre-
sented here (Figures 2a,2b, 3a and 3b) are representative
of three independent experiments at the stated tocopherol
concentrations. The relative copy number varies from cell
population to cell population. According to Gupta, [17],
the highest level of receptor expression in colonic tissue
occur in postmitotic cells. The data represented in figure
2a and figure 3a are representative of two different cell
populations seeded and treated on different days. For this

reason we have averaged the fold increase data at each
concentration (Figures 2b and 3b). The error bars in figure
2c and 3c are the Standard Error of the Mean for the three
experiments. HCT-116 cells have been tested at each of
these tocopherol concentrations with similar results (data
not shown). α-Tocopherol and γ-tocopherol can upregu-
late mRNA expression when compared to the vehicle.
However, at both concentrations tested, γ-tocopherol was
more efficient at upregulation of PPARγ mRNA.

Protein expression of PPARγ
To determine whether there was a concomitant increase in
PPARγ protein expression, Western blot analysis was per-
formed at 24 or 48 hours after treatment with 5 µM or 10
µM tocopherols or 100 µM troglitazone. Figure 4a shows
the Western Blot of the nuclear fraction of proteins
extracted from SW480 cells after 24 hours of tocopherol
treatment. Figure 4b is a bar graph representing the densi-
tometry of the gel shown in figure 4a. This demonstrates
that γ-tocopherol upregulates PPARγ protein expression in
the nucleus where gene regulation occurs. The protein in
the cytosolic fraction at this treatment time did not vary
with respect to treatment (data not shown). Figure 5a
shows the Western blot of a whole cell lysate after 48
hours of 10 µM tocopherols treatment. Figure 5b is a bar
graph that represents the densitometry of figure 5a. γ-
Tocopherol up regulates protein expression much more
efficiently than does α-tocopherol or troglitazone at a
concentration of 20 times in excess.

Cellular uptake of tocopherols
To determine the amount of tocopherol taken up by the
cell, an HPLC analysis of the cell lysates was performed.
Table 1 shows the results of this analysis performed in
triplicate for the SW480 cells. Using treatment concentra-
tions of both 5 and 10 µM for 24 hours, the SW480 cells
incorporated 20 times more γ-tocopherol than α-tocophe-
rol. The data from the LOVO cell line is representative of
one independent experiment that give similar results to
the SW480 cells.

Discussion and Conclusions
γ-Tocopherol may be a better cancer chemopreventive
agent based on the following evidence from the literature.
γ-Tocopherol inhibits the activity of COX-2 in lipopoly-
saccharide (LPS)-stimulated RAW264.7 macrophages and
IL-1β-treated A549 human epithelial cells [8,20]. Inhibi-
tion of COX-2 results in a block in tumor growth [21,22].
In addition, inhibition of COX-2 reduces inflammation in
a number of proinflammatory disorders and degenerative
diseases such as rheumatoid arthritis, asthma, hepatitis
and cardiovascular disease [7]. Also, γ-tocopherol is supe-
rior to α-tocopherol for growth inhibition of prostate can-
cer cells [4]. Cooney et al. found that γ-tocopherol was a
more potent inhibitor of neoplastic transformation in 3-
Page 5 of 13
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Tocopherol upregulation of PPARγ mRNA expression detected by QPCR after 24 hours of treatment with 5 µM tocopherolFigure 2
Tocopherol upregulation of PPARγ mRNA expression detected by QPCR after 24 hours of treatment with 5 µM tocopherol. 
A) Relative copy number of a representative QPCR AT 5 µM tocopherol concentration. B) Fold increase data of the repre-
sentative QPCR data shown in figure 2A. C) Average fold increase data of three independent experiments at 5 µM tocopherol 
concentration. * shows sample statistical difference compared to the vehicle-treated.

R
el

at
iv

e 
C

op
y 

N
um

be
r

0

20

40

60

80

100

120

Vehicle-treated
5 uM α-Tocopherol 
5 uM γ−Tocopherol
100 uM Troglitazone

F
ol

d 
in

cr
ea

se
 o

ve
r 

ve
hc

le
 tr

ea
te

d 
ce

lls
 

0

1

2

3

4

5

6

7

8

Vehicle-treated
5 uM  α-tocopherol 
5 uM γ-tocopherol 
100 uM  Troglitazone 

Average PPAR γ fold increase over vehicle 
with 5 micromolar tocopherol treatments

F
ol

d 
in

cr
ea

se
 o

ve
r 

ve
hi

cl
e 

0

2

4

6

8

5 uM α−tocopherol  

5 uM γ-tocopherol
100 uM Troglitazone 

A.

B.

C.

*

*

*

Page 6 of 13
(page number not for citation purposes)



BMC Cancer 2003, 3 http://www.biomedcentral.com/1471-2407/3/25
Tocopherol upregulation of PPARγ mRNA expression detected by QPCR after 24 hours of treatment with 10 µM tocopherolFigure 3
Tocopherol upregulation of PPARγ mRNA expression detected by QPCR after 24 hours of treatment with 10 µM tocopherol. 
A) Relative copy number of a representative QPCR AT 10 µM tocopherol concentration. B) Fold increase data of the repre-
sentative QPCR data shown in figure 3A. C) Average fold increase data of three independent experiments at 10 µM tocophe-
rol concentration. * shows sample statistical difference compared to the vehicle-treated.
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methylcholanthrene-treated C3H/10T1/2 murine fibrob-
lasts than α-tocopherol [5]. Furthermore, γ-tocopherol
shows a remarkable ability to reduce nitrogen dioxide to
nitric oxide that is not shared with α-tocopherol [5,23].
Likewise, Bittrich et al. found that NO2 can induce single-
strand DNA breaks in V79 cells that were better reduced
by γ-tocopherol in comparison to other lipid soluble anti-
oxidants [24]. Christen et al. found that peroxynitrite-

induced lipid peroxidation in liposomes was more effec-
tively inhibited by γ-tocopherol than α-tocopherol [20]
These authors also suggest that γ-tocopherol is required to
effectively remove peroxynitrite-derived nitrating species.
It also has recently been found that γ-tocopherol, in con-
trast to α-tocopherol, can suppress the expression of ras-
p21 in rat colonocytes [6]. The role of ras-p21 in promot-
ing oncogenesis has been described [25]. Gysin, et al. has

Tocopherol upregulation of PPARγ protein by Western Blot analysis of A) 24-hour tocopherol-treated SW480 nuclear extracts: lane 1 – 10 µM γ-tocopherol, lane 2 – 5 µM γ-tocopherol lane 3 – 10 µM α-tocopherol, lane 4 – 5 µM α-tocopherol, lane 5 – 100 µM troglitazone, lane 6 – blank, lane 7-ethanol carrier controlFigure 4
Tocopherol upregulation of PPARγ protein by Western Blot analysis of A) 24-hour tocopherol-treated SW480 nuclear 
extracts: lane 1 – 10 µM γ-tocopherol, lane 2 – 5 µM γ-tocopherol lane 3 – 10 µM α-tocopherol, lane 4 – 5 µM α-tocopherol, 
lane 5 – 100 µM troglitazone, lane 6 – blank, lane 7-ethanol carrier control.B) Bar graph of densitometries for Western Blot 
shown in figure 4A.
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shown that γ-tocopherol down-regulates cyclin D1 and E
in cancer cell lines [26]. Recent work from Jiang, et al.
shows that γ-tocopherol is superior to α-tocopherol at
decreasing proinflammatory eicosanoids and inflamma-
tion damage in rats. Several lines of evidence hence point
to the superiority of γ-tocopherol in cancer prevention.

With these data in mind, we sought to determine if γ-toco-
pherol could modulate PPARγ expression in SW480 colon
cancer cells better than α-tocopherol. Neoplastic cell
growth results from an imbalance between cell prolifera-
tion, apoptosis and terminal differentiation. In normal
cells, activation of certain pathways lead to cellular differ-
entiation which is accompanied by inhibition of cell
proliferation. Malignant cells are uniformly characterized

Tocopherol upregulation of PPARγ protein by Western Blot analysis of A)48-hour tocopherol-treated SW480 whole cell lysates: lane 1 – PPARγ control from transfected COS cells, lane 2 – negative control from untreated Jurkat cells, lane 3 – vehi-cle-treated control, lane 4 – 10 µM α-tocopherol, lane 5 – 10 µM γ-tocopherol, lane 6 – 100 µM troglitazoneFigure 5
Tocopherol upregulation of PPARγ protein by Western Blot analysis of A)48-hour tocopherol-treated SW480 whole cell 
lysates: lane 1 – PPARγ control from transfected COS cells, lane 2 – negative control from untreated Jurkat cells, lane 3 – vehi-
cle-treated control, lane 4 – 10 µM α-tocopherol, lane 5 – 10 µM γ-tocopherol, lane 6 – 100 µM troglitazone. B) Bar graph of 
densitometries for Western Blot shown in figure 5A.
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by uncontrolled growth and inability to express the differ-
entiated features characteristic to the tissue from which
they arise. Treating cancer through the induction of cell
differentiation has been an appealing concept, but devel-
opment of differentiation inducing agents to treat cancer
has been limited. Certain TZD drugs act as agonists for the
PPARs and were shown to inhibit cell proliferation in adi-
pocyte cells undergoing differentiation [10]. These drugs
were further tested in human breast, prostate, and colon
cancer cells resulting in inhibition of cell proliferation
[27]. A pilot study has demonstrated that treatments of
patients with solid liposarcomas with PPARγ agonists
result in antineoplastic pro-differentiation. Further, PPAR
agonists were shown to inhibit cell growth and suppress
the expression of cyclin D1 and EGF-like growth factors in
ras-transformed rat intestinal epithelial cells [28]. PPAR
activation in non-small cell lung cancer cell lines resulted
in growth arrest, irreversible loss of capacity for anchor-
age-independent growth, decreased activity and expres-
sion of matrix metalloproteinase 2 and modulation of
multiple markers consistent with differentiation as well as
the upregulation of markers consistent with a differenti-
ated state [29]. Target genes of PPARγ were determined by
microarray analysis through the efforts of Gupta, et al. As
expected, genes regulated by PPARγ were those involved
in lipid transport and storage such as adipophilin and
liver fatty acid binding protein. However, genes that are
linked to growth regulatory pathways such as regenerating
gene IA, and colon epithelial cell maturation such as
GOB-4 and keratin 20 were also regulated by PPARγ [30].
All of the above data suggest that PPARγ has a function to
protecting cells against cellular transformation. Therefore,
using PPARγ agonists could slow the proliferative rate,
thereby slowing the progression of disease [27]. The most
effective PPARγ agonist, troglitazone, has lost FDA
approval due to liver toxicity. Finding a nutrient based

PPARγ agonist could prove beneficial in future chemopre-
vention strategies.

γ-Tocopherol may be superior to α-tocopherol as a cancer
preventive based upon recent epidemiological, experi-
mental and molecular data. Epidemiological studies relat-
ing vitamin E to colon cancer have been inconsistent and
mixed. Most studies in the past provided data regarding α-
tocopherol.

One epidemiological study has shown an emerging role
for γ-tocopherol in the reduction of cancer. A nested case-
control study in Washington County, MD [2] examining
the effects of α-tocopherol, γ-tocopherol and selenium on
the incidence of prostate cancer determined that
significantly protective associations for selenium and α-
tocopherol were found only when γ-tocopherol concen-
trations were high. A possible reason for the protective
effects in the presence of high γ-tocopherol concentrations
is that γ tocopherol enhances the cellular uptake of α-
tocopherol. This was demonstrated by Gao et al. which
show that uptake of α-tocopherol is enhanced by the pres-
ence of γ-tocopherol in RAW 264.7 macrophages [31]. In
an animal model graded dietary levels of RRR-γ-tocophe-
rol induced marked increase in tissue concentrations of α
– and γ-tocopherol in heart, liver, nervous tissue and mus-
cle of vitamin E deficient rats [32]. These observations
would suggest that the tocopherol isoforms work in con-
cert for delivery to tissues. Our data show that γ-tocophe-
rol accumulates in colon cancer cells at a twenty fold
increase over α-tocopherol (Table 1). This data in combi-
nation with that of Gao, et al. provides an explanation as
to why γ-tocopherol is better at modulation of PPARγ(as
seen here), is superior to α-tocopherol for growth inhibi-
tion of prostate cancer cells [4] and is a more potent inhib-
itor of neoplastic transformation in 3-

Table 1: SW480 intracellular tocopherol concentrations (pmoles/well) after 24 hour treatments with 5 or 10 µM tocopherols as 
determined by HPLC analysis. The result is an average of three trials and the Standard Error of the Mean (SEM) is reported. γ-
Tocopherol incorporates into the SW 480 cells at levels up to 20-fold that of α-tocopherol at the same treatment concentration.

Treatment Cell Line Mean Tocopherol Concentration (pmole/well) N Standard Error of Mean

5 µM α-tocopherol 10.20 4.11
SW-480 cells 3

5 µM γ-tocopherol 197.5 49.52
SW-480 cells 3

10 µM α-tocopherol 17.42 5.81
SW-480 cells 3

10 µM γ-tocopherol 360.54 69.97
SW-480 cells 3

5 µM α-tocopherol 4.10 N/A
LOVO cells 1

5 µM γ-tocopherol 152.50 N/A
LOVO cells 1
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methylcholanthrene-treated C3H/10T1/2 murine fibrob-
lasts than α-tocopherol [5]. Further evidence of this is pro-
vided by the Ingles study [3]. Ingles assayed plasma α –
and γ-tocopherol concentrations in 332 subjects with
colorectal adenomas and 363 control subjects. They
found increasing plasma α-tocopherol and decreasing γ-
tocopherol levels were associated with the decreased
occurrence of large (> or = 1 cm) but not small (< 1 cm)
adenomas that were not statistically significant. They
observed a stronger trend (p = 0.02) when the plasma α-
tocopherol:γ-tocopherol ratio had an odds ratio of 0.36
(95% confidence interval, 0.14 – 0.95) for large adeno-
mas. Of the quintile where protective effects were
observed, 88% of the subjects reported taking α-tocophe-
rol supplements. The dietary intake of γ-tocopherol is at
least two times that of α-tocopherol in Western diets, nev-
ertheless, the plasma levels of γ-tocopherol are about four
times lower than α-tocopherol. The most accepted expla-
nation for this is the selective retention of α-tocopherol by
the α-tocopherol transfer protein (α-TTP) [33]. α-Toco-
pherol and γ-tocopherol compete for the binding sites on
the α-TTP with selectivity lying toward α-tocopherol
when it is available. In the Ingles study, by increasing the
available α-tocopherol through supplementation the
plasma γ-tocopherol is decreased and the α-tocopherol:γ-
tocopherol plasma ratio is naturally increased with more
α-tocopherol being available for delivery to the tissues.
We contend that if these subjects had relied on a diet rich
in mixed tocopherols or taken a mixed tocopherol supple-
ment, an even higher protective effect would have been
seen resulting from increased γ-tocopherol in the plasma
which would have enhanced the uptake of α-tocopherol
into the tissues [31]. The increased α-tocopherol:γ-toco-
pherol ratio in the plasma in the Ingles study is a marker
of α-tocopherol supplementation and the selectivity of
the α-TTP but not a necessary condition for the chemopre-
ventive effects conferred. The combined data of Gao, et al.,
Clement, et al. and Stone, et al. suggest that mixed toco-
pherol supplementation can have positive effects on both
the α-tocopherol and γ-tocopherol plasma concentrations
[31,32,34]. We further contend that while at the time, the
use of plasma concentrations may have seemed to be a
good measure for tissue distribution this may need to be
reconsidered for tocopherols, as γ-tocopherol has been
shown to accumulate at higher concentrations in RAW
267.4 macrophages and colon cancer cell lines [31]. Fur-
ther plasma concentrations of the tocopherols have been
demonstrated to be influenced by other dietary factors
including saturated fats [34]. Clearly more research needs
to be conducted on the dietary factors that can influence
α-and γ-tocopherol uptake and depletions from the
plasma before use of plasma data can be made conclusive.
The higher intracellular levels of γ-tocopherol in the SW
480 cell lines have important clinical implications to
human colorectal cancer chemoprevention. A higher

intracellular concentration of γ-tocopherol level can con-
tribute to more effective intracellular antioxidant and reg-
ulatory mechanisms. This in vitro observation needs to be
demonstrated in Phase I human chemoprevention trials.
Our data also shows that while γ-tocopherol is a better
modulator of PPARγ expression, α-tocopherol is also able
to modulate PPARγ expression. Investigations are ongoing
in our laboratory to determine if mixed tocopherols will
have an additive or synergistic affect on the expression of
PPARγ in colon cancer cell lines.

We have shown that PPARγ mRNA expression is upregu-
lated by γ-tocopherol when compared to α-tocopherol. In
addition, we show that protein expression of PPARγ is
modulated by the tocopherols. The fact that PPARγ in
nuclear fraction is upregulated may be particularly impor-
tant. This shows that tocopherols can modulate gene
expression through PPARγ. Troglitazone was shown to
induce the expression of PPARγ in non-adipose tissues
[35]. Davies et al. hypothesized that troglitazone binds to
and activates the small amount of PPARγ present in non
adipose cells. This complex in turn binds to cis-elements
in the promoter region of the PPARγ gene leading to
induction of transcription and protein levels [36,37]. This
hypothesis was tested by Davies et al. using other PPARγ
ligands such as ciglitazone, englitazone, rosiglitazone,
and 15-deoxy-∆12,14-prostaglandin J2 [37]. Troglitazone
was the only known PPAR activator tested in this study to
have an effect on the regulation of PPARγ expression. Vita-
min E shares structural similarity to troglitazone as both
molecules have a chromanol ring. The tocopherols have a
phytyl side chain attached to their chromanol head, while
troglitazone has a thiazolidiendione moiety (See Figure
1). Davies tested the ability of α-tocopherol at high con-
centrations to upregulate the expression of PPARγ. α-
Tocopherol was able to upregulate the expression of
PPARγ at concentrations greater than 100 µM in primary
hepatocytes. We sought to determine whether lower con-
centrations could be used to upregulate PPARγ expression
in colon cancer cells. We have shown that mRNA and pro-
tein of SW480 colon cancer cells are upregulated above
the control with as little as 5 µM and 10 µM tocopherols.
Higher concentrations of tocopherols are being tested, but
have resulted in cell death in three colon cancer cell lines
(data to be discussed in detail in a manuscript in
preparation).

In summary, we have shown that vitamin E can modulate
PPARγ expression in SW 480 colon cancer cell lines. More-
over, the upregulation of PPARγ by γ-tocopherol is more
significant than the upregulation of PPARγ by α-tocophe-
rol perhaps due the ability of γ-tocopherol to accumulate
at higher concentrations in the cell. Further work is cur-
rently being done to identify the effects of vitamin E iso-
forms in other colon cancer cell lines that have varied
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features to further understand the effects of γ tocopherol.
The upregulation of PPARγ by the tocopherols may have
implications beyond cancer prevention since modulation
of PPARγ can have effects on lipid metabolism, manage-
ment of diabetes mellitus, inflammatory disorders and
cardiovascular disease.
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