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Abstract

cytotoxic activity of Antp-TPR in breast cancer cell lines.

the treatment of cancer.

cancer, Bioluminescence

Background: Heat shock protein (Hsp) 90 and Hsp70 are indispensable for cell survival under conditions of stress.
They bind to client proteins to assist in protein stabilization, translocation of polypeptides across the cell membrane,
and recovery of proteins from aggregates in the cell. Therefore, these proteins have recently emerged as important
targets in the treatment of cancer. We previously reported that the newly designed Antp-TPR hybrid peptide targeting
Hsp90 induced cytotoxic activity to cancer cells both in vitro and in vivo.

Methods: To further improve the cytotoxic activity of Antp-TPR toward cancer cells, we investigated the effect of a
Hsp70-targeted peptide, which was made cell-permeable by adding the polyarginine with a linker sequence, on the

Results: It was revealed that Antp-TPR in the presence of a Hsp70-targeted peptide induced effective cytotoxic activity
toward breast cancer cells through the descrease of Hsp90 client proteins such as p53, Akt, and cRaf. Moreover, the
combined treatment with these peptides did not induce the up-regulation of Hsp70 protein, as determined by western
blotting, a promoter assay using a luminometer, and single-cell level imaging with the V200 system, although a
small-molecule inhibitor of Hsp90, 17-allylamino-demethoxygeldanamycin (17-AAG), did induce the up-regulation of
this protein. We also found that treatment with Antp-TPR, Hsp70-targeted peptide, or a combination of the two
did not induce an increase in the glutathione concentrations in the cancer cells.

Conclusion: These findings suggest that targeting both Hsp90 and Hsp70 with Antp-TPR and Hsp70-targeted peptide
is an attractive approach for selective cancer cell killing that might provide potent and selective therapeutic options for
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Background

Breast cancer is the most frequently diagnosed cancer
and the leading cause of cancer deaths in woman world-
wide, accounting for 23% of new cancer cases and 14%
of cancer deaths in 2008, although screenings and treat-
ments for the cancer have been recently improved [1].
Since breast cancer is a clinically heterogeneous disease
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with multiple genetic abnormalities, targeting a single
pathway in cancer cells by inhibiting the activity of a sin-
gle component is not likely to be effective in the long
term treatment for the cancer. Therefore, identifying
molecular targets with the potential to modulate mul-
tiple components of several signaling pathways in the
cancer cells will be indispensable for the development of
novel breast cancer therapies. In this regard, heat shock
protein (Hsp) 90 has attracted considerable attention in
recent years as a potential therapeutic target for the identi-
fication and development of next-generation anticancer
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drugs [2]. Several Hsp90 inhibitors such as 17-allylamino-
demethoxygeldanamycin (17-AAG; KOS-953) and PU-
H71 are recently reported candidates for targeted or
combination breast cancer therapies [3-5].

Hsp90, which is an abundant cytosolic molecular
chaperone found within multimeric chaperone complexes
known to mediate cellular protein homeostasis [2], assists
in the correct folding of more than 300 proteins (called as
client proteins) [6], including transmembrane tyrosine kin-
ase such as epidermal growth factor receptor 1 (EGFR)
and 2 (Her2), metastable signaling proteins such as Akt/
PKB and cRaf, mutated signaling proteins such as p53 and
v-Src, chimeric signaling proteins such as Bcr-Abl, cell-
cycle regulators such as cyclin-dependent kinase 4 (Cdk4)
and 6(Cdk6), and steroid receptors such as androgen, es-
trogen, and progesterone receptors [6-10]. Thus, Hsp90
plays a unique role in cellular homeostasis and has conse-
quently emerged as a promising anticancer target [2].

On the other hand, Hsp70 binds to hydrophobic poly-
peptide sequences in newly synthesized proteins and
partially folded substrates in the cells, thereby directing
them to particular cell fates, although Hsp90 has a more
restricted repertoire of client proteins [11]. Thus, the in-
hibition of Hsp70 is another emerging strategy in cancer
therapy, and recent genetic and biochemical studies have
supported the discovery of Hsp70 inhibitors with poten-
tial use as single agents or in combinations to boost
the efficacy of conventional chemotherapeutic and mo-
lecular targeted drugs, including Hsp90 inhibitors [11].
However, no specific inhibitors of this protein are clinic-
ally available at present. Rérole et al. recently identified
multiple peptide aptamers that bind to Hsp70 and dem-
onstrated that two of them specifically inhibit chaperone
activity while also increasing the sensitivity of cancer
cells to apoptosis induced by anticancer drugs [12]. In
addition, these peptides specifically inhibited Hsp70 and
induced the regression of subcutaneous tumors in vivo
after local and systemic injection [12].

We previously reported that the newly designed Antp-
TPR hybrid peptide inhibits the interaction of Hsp90
with the tetratricopeptide repeat 2A domain of p60/
Hsp-organizing protein (Hop) [13]. Antp-TPR has cyto-
toxic activity toward cancer cells through the decrease
of Hsp90 client proteins in vitro and to induce effective
antitumor activity in a xenograft model of human pan-
creatic cancer in mice in vivo [13]. It was also demon-
strated that Antp-TPR does not induce up-regulation of
Hsp90, Hsp70, and Hsp27 proteins, whereas 17-AAG
does [14]. However, the cytotoxic activity of Antp-TPR
toward cancer cells was not affected in the presence of
2-phenylethynesulfonamide, which was recently intro-
duced as a small-molecule inhibitor of Hsp70 [15,16], al-
though the cytotoxic activity of 17-AAG was increased
under this condition. These findings prompted us to
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examine the combination of Antp-TPR with peptides or
small compounds targeting Hsp70 in order to further im-
prove the cytotoxic activity of Antp-TPR toward cancer
cells. To further clarify the role of Hsp90 targeting by
Antp-TPR in cancer treatment, it is important to address
the synergetic effect of combination therapy with Hsp70-
targeting peptides on the cytotoxic activity of Antp-TPR
toward cancer cells. Here we report the effective cyto-
toxic activity toward breast cancer cells of Antp-TPR in
the presence of a Hsp70-targeting peptide. We also show
that treatment with a combination of these peptides does
not induce up-regulation of Hsp70 or glutathione (GSH)
in cancer cells.

Methods

Materials

Anti-Hsp90, anti-Hsp70, and anti-Hsp27 antibodies were
purchased from Stressgen Bioreagents (Ann Arbor, MI,
USA). Anti-c-Raf, anti-Akt, and anti-K48 linkage-specific
polyubiquitin antibodies were purchased from Cell Signal-
ing Technology (Danvers, MA, USA). Anti-p53 and anti-
Bactin antibodies were purchased from Sigma (St Louis,
MO, USA). Anti-polyubiquitinylated protein antibody was
purchased from Merck Millipore (Billerica, MA, USA).
17-AAG was purchased from InvivoGen (San Diego,
CA, USA). Other reagents were obtained mostly from
Nacalai Tesque (Kyoto, Japan). All reagents were of reagent
grade.

Cells and cell culture

Three human breast cancer cell lines (MDA-MB-231,
BT20, and BT474) and human mammary epithelial cell
(MCEF-10A) were purchased from the American Type
Culture Collection (Manassas, VA, USA). Human breast
adenocarcinoma cell line MDA-MB-361 was purchased
from the European Collection of Cell Culture (Salisbury,
UK). Cells were cultured in RPMI-1640 (MDA-MB-231,
BT20, BT474, and MDA-MB-361 cells) supplemented
with 10% fetal bovine serum or DMEM/F-12 medium
(MCE-10A cells) supplemented with 100 ng/ml cholera
toxin solution, 10 pg/ml insulin from bovine pancreas,
0.5 mg/ml hydrocortisone, 20 ng/ml epidermal growth
factor, and 5% horse serum, containing 100 pg/ml peni-
cillin and 100 pg/ml streptomycin at 37°C in an atmos-
phere of 5% CO,/95% air.

Peptide synthesis

Peptides were synthesized by the American Peptide
Company (Sunnyvale, CA, USA) and Sigma. Antp-TPR
(RQIKIWFQNRRMKWKKKAYARIGNSYFK) was made
as described previously [13,14]. The Hsp70-targeted pep-
tide (YCAYYSPRHKTTF) [12] was made cell-permeable
by adding helix III of the cell-penetrating antennapedia
homeodomain sequence (Antp) [17] or polyarginine
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(R11; RRRRRRRRRRR) (italic) [18,19] with a linker se-
quence of triple glycine (GGG) as follows: RQIKIW
FQNRRMKWKKGGGYCAYYSPRHKTTF (Antp-Hsp70)
or RRRRRRRRRRRGGGYCAYYSPRHKTTF (R11-Hsp70).
The scrambled peptide for Hsp70 (TPTYRASCFYHYK)
was also hybridized by the R11 peptide with a linker
sequence as follows: RRRRRRRRRRRGGGTPTYRASCFY
HYK (R11-Hsp70scramble). All peptides were dissolved in
sterile water and the aliquots of peptide solutions were
stored at —20°C until use.

Western blotting

Western blotting was carried out as described previously
[14]. Briefly, protein extracts were prepared from cells
lysed with reporter lysis buffer (Promega, Madison,
WI, USA), separated by SDS-PAGE and transferred to
nitrocellulose filters using the iBlot system (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s
protocol. Quenched membranes were probed with
antibodies and analyzed using an enhanced reagent of
Chemi-Lumi One Super (Nacalai Tesque) with a LAS-
3000 Luminolmage analyzer (Fujifilm, Tokyo, Japan).
Densitometric analysis was performed by Multi Gauge
software V3.0 (Fuyjifilm) using the bands obtained from
western blotting, in which actin as the loading control
was used for normalizing of each bands.

Cell viability assay

Cell viability was determined by WST-8 assay as de-
scribed previously [20]. Briefly, cells were seeded
onto 96-well plates at 2000—3000 cells/well overnight.
After incubating with the test peptides, the cell viability
assay was carried out using Living Cell Count Reagent
SF (Nacalai Tesque) according to the manufacturer’s
protocol. Absorbance was measured at 450 nm using a
96-well microplate reader (GE Healthcare Bioscience,
Piscataway, NJ).

Fluorescence microscopy

Fluorescence images were obtained by Olympus FV1000
confocal laser scanning microscopy (Olympus, Tokyo,
Japan) as described previously [20]. Briefly, BT20 cells
were plated in a glass-bottomed dish and small aliquots
of labeled peptides Antp-TPR-TAMRA (Invitrogen) and
R11-Hsp70-FITC (Invitrogen) (where TAMRA and FITC
are carboxytetramethylrhodamine and fluorescein iso-
thiocyanate, respectively) were added directly at a final
concentration of 10 uM.

Flow cytometry assay

Flow cytometry assay was performed as described previ-
ously [20]. Briefly, after the treatment of cancer or nor-
mal cells with or without Antp-TPR-TAMRA in the
presence or absence of R11-Hsp70 or R11-Hsp70 scramble
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peptide, or R11-Hsp70-FITC, cells were collected and
washed twice with PBS. The cell pellets were resus-
pended, and then flow cytometry analysis was performed
by FACSCalibur (BD Bioscience, San Jose, CA, USA). Data
were analyzed using CellQuest Software (BD Bioscience).
Annexin V and PI staining was performed using Annexin
V-Fluorescein Staining Kit (Wako Chemicals, Osaka,
Japan) by multiparametric flow cytometry assay as de-
scribed previously [20].

Reporter assay

A reporter assay was carried out as described previously
[21]. Briefly, BT20 cells were transfected using Lipofecta-
mine LTX (Invitrogen) with firefly luciferase-containing re-
porter plasmids of the Hsp70 promoter (pHsp70Pro-Luc),
in which the Hsp70 promoter region (-637 to +165)
was cloned into the Bg/lII-HindIll sites of the pGL4.14
vector (Promega) using 5'- CACAATCAATCAGATC
TCTACTGGCTCACCTAGTC-3" and 5'- GATCCGCG
AGAAAAGCTTGGTCCTTCCGGACGCCG-3' as the
upper and lower primers, respectively (the mutated nucleo-
tides for introducing into Bglll and Hindlll are italic).
Renilla luciferase-containing plasmid pRL-SV40 (Promega)
was used as an internal control. The relative activity of fire-
fly luciferase to Renilla luciferase activity was determined
in triplicate (means + SD) using the Dual-Glo Luciferase
Assay System (Promega).

Bioluminescence imaging

Stably transfected BT20 cells with pHsp70Pro-Luc were
prepared after transient transfection with Lipofectamine
LTX according to the manufacturer’s protocol in a se-
lective medium containing 200 pg/ml hygromycine B
(Nacalai Tesque). Luminescence images at the single-cell
level were obtained using the LV200 luminescence im-
aging system (Olympus) as described previously [22,23].
Briefly, the dish was kept at 37°C in a humidified chamber
and images were taken with a 40x objective at 5-min inter-
vals with an exposure of 10 s while observing promoter ac-
tivity after the addition of D-luciferin (Promega) at a final
concentration of 500 pM. Data analysis was performed
using AQUACOSMOS ver 2.6 software (Hamamatsu
Photonics, Shizuoka, Japan).

Measurement of ATP dynamics

Cellular ATP dynamics were measured on single-cell
imaging using the LV200 imaging system as de-
scribed previously [22]. Briefly, BT20 cells were tran-
siently transfected with firefly luciferase-containing
reporter plasmids of the cytomegalovirus promoter
pGL4.50 (Promega), and bioluminescence images were
obtained as mentioned above after treatment with or
without Antp-TPR, R11-Hsp70, or a combination of these
peptides.
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GSH assay

The GSH assay was performed after treatment with or
without 17-AAG, Antp-TPR, R11-Hsp70, or a combin-
ation of these peptides using the GSH-Glo assay kit
(Promega) according to the manufacturer’s protocol.
Total luminescence intensity obtained with a lumin-
ometer was normalized to the total protein concentra-
tion of each sample determined spectrophotometrically
in a NanoDrop 1000 (Thermo Fisher Scientific Inc.
Waltham, MA).

Statistical analysis
Data are expressed as means + SD. Significance was de-
termined using Student’s t-test and set at P < 0.05.

Results

Increased cytotoxic activity toward breast cancer cells of
Antp-TPR in the presence of Hsp70-targeted peptide

First we examined the effect of the Hsp70-targeted pep-
tide [12], which was made further cell-permeable by the
addition of Antp (Antp-Hsp70) or R11 (R11-Hsp70), on
the cytotoxic activity of Antp-TPR toward cancer cells.
The cytotoxic activity of Antp-TPR in the presence of
R11-Hsp70 was higher and more effective than that in
the presence of Antp-Hsp70 (data not shown). The cyto-
toxic activity of R11-Hsp70 alone toward MDA-MB-231
and BT20 cells was weaker than that of Antp-TPR alone,
and 10 pM RI11-Hsp70 barely reduced cell viability
(Additional file 1A). However, the cytotoxic activity of
Antp-TPR toward breast cancer cells was effectively in-
creased in a concentration-dependent manner in the
presence of R11-Hsp70 (Figure 1A). In contrast, no ef-
fective increase in the cytotoxic activity of Antp-TPR
toward cancer cells was observed in the presence of
R11-Hsp70scramble (Additional file 1B). It was also ob-
served that the cytotoxic activity of both Antp-TPR
alone and Antp-TPR in the presence of R11-Hsp70 to-
ward normal mammary epithelial cells (MCF-10A) was
less than that of these peptides against cancer cell lines,
and that R11-Hsp70 did not affect the cytotoxic activity
of 17-AAG (Additional file 1C). As shown in Table 1,
the ICsy values of Antp-TPR alone toward the MDA-
MB-231, BT20, BT474, and MDA-MB-361 cell lines
were reduced from 26-34 uM to 8-23 puM in the pres-
ence of R11-Hsp70, a respective ICsy change of 3.1- to
1.4-fold. These results indicate that the Hsp70-targeted
peptide can effectively increase the cytotoxic activity of
Antp-TPR toward cancer cells. When we examined the
endogenous expression levels of Hsp90, Hsp70, Akt, and
p53 in the breast cancer and normal cell lines, the ex-
pression levels of Hsp90 and Hsp70 in these cell lines were
equally unremarkable, except for those in the MDA-MB-
231 cells, but the expression levels of Akt and p53 were
obviously different among these cell lines (Figure 1B).
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Time-dependent synergetic cytotoxic activity of Antp-TPR
in the presence of R11-Hsp70

We next examined the rate of Antp-TPR-mediated can-
cer cell killing in the presence of R11-Hsp70. As shown
in Figure 2A, synergetic cytotoxic activity of Antp-TPR
with R11-Hsp70 was observed in a time-dependent
manner. Exposure of BT20 cells to 20 pM Antp-TPR
with 10 uM R11-Hsp70 for 6 h was sufficient to induce
high levels of cytotoxic activity (approximately 70%
decrease in cell viability) (Figure 2A). Confocal laser
scanning microscopy revealed penetration of the cancer
cells by Antp-TPR and R11-Hsp70 labeled with TAMRA
and FITC, respectively, in a time-dependent manner
(Figure 2B); this indicated the synergetic effect of Antp-
TPR in a time-dependent manner.

Decrease of Hsp90 client proteins after treatment with
Antp-TPR in the presence of R11-Hsp70

We previously demonstrated that Antp-TPR induced
cancer cell death through the decrease of Hsp90 client
proteins such as Akt, p53, and cRaf in cancer cells [13,14].
These findings prompted us to investigate the effect of
R11-Hsp70 on the decrease of Hsp90 client proteins by
Antp-TPR. As shown in Figure 3A and B, treatment of
BT20 and MDA-MB-231 breast cancer cells with Antp-
TPR in the presence of R11-Hsp70 effectively decreased
the expression of Hsp90 client proteins, including Akt,
p53, and cRaf, compared with that of Antp-TPR or R11-
Hsp70 alone, or untreated control cells, although 10 uM
of R11-Hsp70 alone caused the slight decrease of these
proteins in BT20 cells, and high concentration of R11-
Hsp70 (40 pM) alone also caused the decrease of expres-
sion levels of Hsp90, Hsp70, Akt, and p53 proteins in
BT20 cells (Additional file 2). When we examined by
western blotting the levels of polyubiquitin proteins
and K48-linked-polyubiquitin proteins in cancer cells
after treatment with these peptides, an increase of
several bands of proteins located at approximate 40—
48 kDa, which were detected by specific antibody against
K48-linked-polyubiqutin proteins was observed in a time-
dependent manner after treatment with Antp-TPR in the
presence of R11-Hsp70, compared with the other treat-
ments (Additional file 3). Furthermore, treatment with
Antp-TPR in the presence of R11-Hsp70 did not induce
up-regulation of Hsp90, Hsp70, Hsp27, or Hop proteins in
these cancer cells (Figure 3A). These results indicate that
Antp-TPR in the presence of R11-Hsp70 induces an
effective decrease of Hsp90 client proteins and does not
induce up-regulation of heat shock proteins.

Effect of treatment with Antp-TPR in the presence of
R11-Hsp70 on the expression of Hsp70

Conventional Hsp90 inhibitors including 17-AAG induce
compensatory up-regulation of Hsp70 that likely correlates
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Figure 1 Increase in the cytotoxic activity toward breast cancer cells of Antp-TPR hybrid peptide in the presence of heat shock protein
(Hsp) 70-targeted peptide. (A) Viability of four breast cancer cell lines (MDA-MB-231, BT20, BT474, and MDA-MB-361) treated with Antp-TPR
hybrid peptide in the presence or absence of R11-Hsp70 peptide. Cells were incubated with Antp-TPR at the indicated concentrations in the
presence or absence of R11-Hsp70 (10 uM) for 24 h and analyzed for cell viability as described in the Materials and Methods section. Data are
expressed as the means + SD from triplicate determinations. (B) Analysis of Hsp90, Hsp70, Akt, and p53 expression in breast cancer and normal
cell lines. Cell extracts from the indicated breast cancer and normal cell lines were examined for Hsp90, Hsp70, Akt, and p53 expression by western
blotting with corresponding antibodies. B-Actin was used as the loading control. Bands were visualized by chemiluminescence as described in the
Materials and Methods section.

with decreased anticancer activity [24,25], since Hsp70 is
also molecular chaperone, can bind to a wide variety of
newly synthesized proteins, and then assist the folding of
their proteins in the cells [11]. We previously demon-
strated that Antp-TPR barely affected the transcription
levels of Hsp70 [14]. In this study, we examined the effect
of treatment with Antp-TPR in the presence of R11-Hsp70
on cancer cells on the expression of Hsp70. As shown in
Figure 4A, neither the treatment with Antp-TPR in the
presence or absence of R11-Hsp70 or R11-Hsp70 alone in-
duced up-regulation of Hsp70 or the promoter activity of
this protein, whereas 17-AAG induced both. Activation of
the Hsp70 promoter after treatment with 17-AAG was also

Table 1 Inhibitory concentration (IC5,) of Antp-TPR or the
combination of Antp-TPR and R11-Hsp70

1C50(pM)*
Antp-TPR  Antp-TPR+ Ratio (Antp-TPR /
R11-Hsp70**  Antp-TPR + R11-Hsp70
MDA-MD-231 312+£30 16.1£1.0 1.9
BT20 26.1+30 85+10 3.1
BT474 341 +£27 236+ 1.1 14
MDA-MD-361 338+26 231422 1.5

*Results are the mean of three independent observations each performed
in triplicate.
*¥|C50 of Antp-TPR in the presence of R11-Hsp70 (10 pM).

monitored on single-cell imaging using the LV200 system
(Figure 4B and C). Similarly, neither treatment induced ac-
tivation of the Hsp70 promoter, although 17-AAG induced
activation at the single-cell level (Figure 4B and C). These
results indicate that treatment with Antp-TPR in the pres-
ence of R11-Hsp70 does not affect the transcriptional
levels of Hsp70 in cancer cells.

Effect of treatment with Antp-TPR in the presence of
R11-Hsp70 on GSH concentration and ATP dynamics in
cancer cells

Treatment with 17-AAG was previously reported to in-
duce an increase in GSH concentration, via up-regulation
of Hsp27, and may therefore have the potential to affect
the sensitivity of cancer cells to not only this compound
but also other anticancer agents [26]. In this study, how-
ever, treatment of cancer cells with Antp-TPR in the pres-
ence of R11-Hsp70 did not induce up-regulation of Hsp27
protein (Figure 3). These findings prompted us to examine
the effect of on GSH concentration in cancer cells of treat-
ment with Antp-TPR in the presence of R11-Hsp70. As
shown in Figure 5A, Antp-TPR with or without R11-
Hsp70 did not increase the GSH concentration in cancer
cells, whereas 17-AAG did. When we examined ATP dy-
namics in cancer cells after treatment with these peptides,
single-cell level imaging with the LV200 system revealed
that the treatment with Antp-TPR in the presence of
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Figure 2 Time course of synergetic cytotoxic activity toward and intracellular penetration of Antp-TPR in cancer cells in combination
with R11-Hsp70. (A) Time course of cell viability after treatment with Antp-TPR in the presence or absence of R11-Hsp70. MDA-MB-231 and
BT20 cells were treated with Antp-TPR (20 uM) in the presence or absence of R11-Hsp70 (10 puM) for the indicated times and analyzed for cell
viability by WST-8 assay. Data are expressed as the means + SD from triplicate determinations. (B) Intracellular penetration of Antp-TPR and R11-Hsp70.
BT20 cells were incubated with Antp-TPR (10 uM) labeled with carboxytetramethyl rhodamine (TAMRA; Antp-TPR-TAMRA) and R11-Hsp70 (10 uM)
labeled with fluorescein isothiocyanate (FITC; R11-Hsp70-FITC) for the indicated times. Cells were analyzed by differential interference contrast (DIC)
or fluorescence (FITC-green or TAMRA-red), or as merged images (FITC-green and TAMRA-red). All images were obtained by confocal microscopy
as described in the Materials and Methods section. All scale bars are 50 um.

R11-Hsp70 affected the dynamics, which was observed = BT474, and MDA-MB-361). Although the endogenous

after treatment with Antp-TPR alone (Figure 5B). expression level of Hsp70 in MDA-MB-231 cells was
lower than that of other cancer cell lines used in this
Discussion study (Figure 1B), the effect of combinational treatment

Treatment with the Antp-TPR hybrid peptide in the of Antp-TPR with R11-Hsp70 on cytotoxic activity was
presence of R11-Hsp70, a global subcellular target of the  almost same level with other cell lines (Figure 1A). It is
Hsp90 and Hsp70 network, provides effective cytotoxic ~ known that Hsp70 binds to a wide variety of hydropho-
activity toward breast cancer cells (MDA-MB-231, BT20, bic polypeptide sequences in newly synthesized protein
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Figure 3 Decrease of Hsp90 client proteins after treatment with Antp-TPR in the presence of R11-Hsp70 in BT20 and MDA-MB-231
cells. (A) BT20 and MDA-MB-231 cells were treated with or without Antp-TPR (20 uM), R11-Hsp70 (10 uM), or a combination of these peptides for
18 h and examined by western blotting for the expression of Hsp90, Hsp70, Hsp27, Hop, Akt, p53, cRaf, and 3-actin using corresponding antibodies.
B-Actin was used as the loading control. Bands were visualized by chemiluminescence. (B) Densitometric analysis of Hsp90 client proteins (Akt, P53,
and c-Raf) was performed using Multi Gauge software as described in the Materials and Methods section.

and partially folded substrates in the cells [11], and has
significant roles to cooperate for protein folding of client
proteins which are indispensable for cancer cell growth
as mentioned above, in Hsp70/Hsp90 multi-chaperon
system [2]. Thus, it is suggested that the inhibition of
Hsp70 might exert effectively for cytotoxic activity via
the inhibition of Hsp90 even in Hsp70-low expressing
cancer cells. It has been reported that BT474 and MDA-
MB-361 are Her2 high-expressing, and BT20 and MDA-
MB-231 are Her2 low-expressing cancer cells, and that
BT20, MDA-MB-361, and BT474 have mutations in

PIK3CA, and only MDA-MB-231 has KRAS mutation
among these cell lines [27,28]. It has been also reported
that BT474 is sensitive to both trastuzumab and lapati-
nib, and that MDA-MB-361 is sensitive to trastuzumab
but resistant to lapatinib [29]. Thus, it was found that
the combination treatment of Antp-TPR with R11-
Hsp70 could induce effective cytotoxic activity toward
breast cancer cell lines used in this study, which have
different characteristic such as genetic alterations or
sensitivity for molecular targeted drugs. Although the
endogenous expression levels of Hsp90 and Hsp70 in
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Figure 4 Effect of treatment with Antp-TPR in the presence of R11-Hsp70 on the expression of Hsp70. (A) BT20 cells were treated with or
without Antp-TPR (20 uM), R11-Hsp70 (10 uM), or a combination of these peptides for 6 h or 18 h and examined by western blotting for the
expression of Hsp70 and B-actin using corresponding antibodies (left panel). 3-Actin was used as the loading control. BT20 cells were transiently
transfected with pHsp70Pro-Luc, and activation of the Hsp70 promoter was assessed by promoter assay using a luminometer 18 h after the treatment
with or without Antp-TPR, R11-Hsp70 or a combination of these peptides (right graph). (B) Luminescence images (shown in red) of stably transfected
BT20 cells with pHsp70Pro-Luc captured by the V200 system using an exposure of 10s at 0 h, 8 h, and 16 h after treatment with or without Antp-TPR,
R11-Hsp70, or a combination of these peptides. Squares in the luminescence images indicate the region of interest (ROI), in which the luminescence
intensity was measured for time-lapse analysis at the single-cell level. All scale bars are 100 pm. (C) Time-course analysis of Hsp70 promoter activation
on single-cell imaging. Stably transfected BT20 cells with pHsp70Pro-Luc were treated with or without Antp-TPR, R11-Hsp70, or a combination of these

peptides, and time-course analysis was performed using the LV200 system as described in the Materials and Methods section. In all experiments,
0.5 uM 17-allylamino-demethoxygeldanamycin (17-AAG) was used as a positive control for the up-regulation of Hsp70 in cancer cells.

MCEF-10A cells was not different remarkably com-
pared with that of cancer cell lines except for MDA-
MB-231, the expression levels of p53 and Akt was
quite different among these cell lines (Figure 1B). It is
suggested that the differences for the expression levels
of Hsp90 client proteins and enhancement of cellular
uptake of Antp-TPR by R11-Hsp70 into MCF-10A
compared with that of Antp-TPR by R11-Hsp70 to-
ward cancer cells as described below might contribute
to the less cytotoxic activity of Antp-TPR or combin-
ational treatment of Antp-TPR with R11-Hsp70 toward
MCEF-10A than that of these peptides against cancer
cell lines.

When we examined the effect of R11-Hsp70 peptide
on the cellular uptake of Antp-TPR by flow cytometry
analysis, the increase of fluorescence intensity for Antp-
TPR-TAMRA was observed in both cancer and normal
cells, and the enhancement of fluorescence intensity to-
ward cancer cells was higher than that of normal cells
(Additional file 4). It is suggested that the cellular uptake
of Antp-TPR would be enhanced by R11-Hsp70 since it
was reported that arginine-rich peptides could signi-
ficantly contribute against cellular uptake via macropi-
nosytosis [19], which might lead to the increase for
cytotoxic activity of Antp-TPR. It was also observed that
the enhancement for cellular uptake of Antp-TPR by
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R11-Hsp70 into these cells was higher than that of
Antp-TPR by R11-Hsp70 scramble peptide (Additional
file 4). Thus, it is suggested that the sequence of Hsp70
scramble might affect the enhancement for cellular
uptake of Antp-TPR by R11 sequence, and as a result,
R11-Hsp70 scramble does not increase effectively the
cytotoxic activity compared with R11-Hsp70 peptide.
Taken together with the result that the combinational
treatment of Antp-TPR with R11-Hsp70 was more ef-
fectively increased compared with that in the presence
of Antp-Hsp70 toward cancer cells as mentioned above,
it is also suggested that the combination of Antp-TPR
with R11-Hsp70 would exert to the effective cellular up-
take of Antp-TPR. Specifically, Antp-TPR in the pres-
ence of R11-Hsp70 synergetically enhanced cytotoxic
activity causing effective decrease of Hsp90 client pro-
teins such as Akt, p53, and cRaf in the cytosol, and inter-
estingly, the increase of several K48-linked-polyubiqutin
proteins located at approximate 40-48 kDa was also ob-
served (Additional file 3), suggesting that the combin-
ational treatment of Antp-TPR with R11-Hsp70 may cause
the change of environment and protein homeostasis in
cancer cells, although these increased proteins are still un-
identified and further study would be needed to reveal the
mechanism caused by these peptides.

Since it is known that breast cancer is a clinically het-
erogeneous disease with multiple genetic abnormalities,
targeting and inhibiting Hsp90 has been considered an
effective strategy for breast cancer therapy [5]. Thus,
Hsp90 inhibitors have been interesting targets in the
quest to improve breast cancer treatment [5]. However,
the clinical application of current Hsp90 inhibitors has

resulted in only small gains in cancer patients with sev-
eral problems [30]. In this study, we confirmed the di-
verse molecular activity of Antp-TPR in the presence of
R11-Hsp70, compared with 17-AAG, toward cancer cells
and we found that the combination of Antp-TPR with
R11-Hsp70 induced neither up-regulation of Hsp90,
Hsp70, Hsp27, or Hop, nor an increase in GSH concen-
tration in breast cancer cells (Figure 3, Figure 4, and
Figure 5A). Conventional Hsp90 inhibitors such as
17-AAG induce up-regulation of heat shock proteins,
including Hsp90, Hsp70, and Hsp27, that likely correlates
with decreased anticancer activity [24,25]. Furthermore,
treatment with 17-AAG is reported to increase the con-
centration of GSH in cancer cells, which can cause resist-
ance to this compound [26]. It was found that Antp-TPR
with or without R11-Hsp70 decreased the GSH concen-
tration in cancer cells (Figure 5A). Since Antp-TPR caused
the rapid cancer cell-killing compared with 17-AAG,
and 17-AAG induced the up-regulation of Hsp proteins
quickly as reported previously [14], and neither Antp-TPR
alone nor Antp-TPR with R11-Hsp70 induced the up-
regulation of Hsp proteins as mentioned above, it is sug-
gested that the disruption of protein homeostasis without
the up-regulation of Hsp proteins through inhibition of
Hsp90 or Hsp90 and Hsp70 function by Antp-TPR with
or without R11-Hsp70 might affect the GSH concentra-
tion in cancer cells. Thus, treatment of cancer cells with
these peptides, which does not increase the concentration
of GSH, might have an additional advantage over current
Hsp90-targeted small compounds such as 17-AAG, al-
though the effective increase in cytotoxic activity of
paclitaxel toward cancer cells was not observed (data not
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shown) when we tested the effect of combinational
treatment of Antp-TPR with R11-Hsp70 on the cyto-
toxic activity of this anti-cancer drug, which is one of
the often used anti-cancer drugs clinically, suggesting
that the decrease effect of GSH by these peptides in
cancer cells might not be so significant for the cyto-
toxic activity of anti-cancer drugs.

Since our previous study showed that bioluminescence
imaging at the single-cell level with the LV200 imaging
system is a powerful tool for analyzing gene expression
(based on a reporter assay specific to cells with low
transfection efficiency) [23], we applied this imaging
technique to evaluate the effect of each treatment on
Hsp70 expression. Although the transfection efficiency
of reporter plasmid DNA in BT20 was not so high com-
pared with that of other cancer cells with high transfec-
tion efficiency, such as HeLa cells [23], analyzing Hsp70
promoter activation on single-cell imaging proved to be
effective for time-course monitoring of this promoter in
living cancer cells. Treatment with Antp-TPR with or
without R11-Hsp70 did not activate the Hsp70 promoter
in breast cancer cells, whereas treatment with 17-AAG
did (Figure 4C). Thus, combining bioluminescence im-
aging at the single-cell level with conventional experi-
ments will be useful for not only promoter analysis but
also for evaluating or predicting resistance to anticancer
drugs. We also examined the ATP dynamics in cancer
cells using the LV200 system after treatment with Antp-
TPR in the presence or absence of R11-Hsp70 in this
study, since it was reported that elevated cytosolic ATP
level can serve as one of indicators of apoptotic cell
death [31]. Antp-TPR elevated the ATP levels in cancer
cells, which is coincident with the findings of our previ-
ous study involving flow cytometry analysis with annexin
V staining [13], while treatment with Antp-TPR in the
presence of R11-Hsp70 shifted the ATP dynamics com-
pared with treatment with Antp-TPR alone (Figure 5B).
However, the increase in Annexin V positive cells was
not observed, and PI positive cells were increased in the
combinational treatment with these peptides compared
with Antp-TPR alone (Additional file 5) when we per-
formed the flow cytometry analysis using Annexin V and
PI staining. Thus, it is suggested that the acceleration of
ATP increase in cancer cells shown by LV200 might
be caused by the more rapid and necrosis-like cell
death in the combinational treatment of Antp-TPR
with R11-Hsp70 than that of Antp-TPR alone as shown
in Figure 2A.

We previously reported that the cytotoxic activity
of Antp-TPR toward cancer cells was not affected
in the presence of the Hsp70-specific inhibitor 2-
phenylethynesulfonamide, although the cytotoxic activity
of 17-AAG was increased under this condition [14].
However, when we examined the effect of another Hsp70
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inhibitor, VER155008, the cytotoxic activity of Antp-TPR
toward cancer cells was increased, whereas VER155008
did not have any synergetic effect on the cytotoxic activity
of 17-AAG under the same conditions (Additional file 6).
It was recently reported that VER155008 could bind to the
nucleotide binding site of Hsp70 protein, and then could
act as ATP-competitive inhibitor, which prevents allosteric
control between nucleotide binding domain and substrate
binding domain, although 2-phenylethynesulfonamide
interacted with the substrate binding domain of Hsp70
in an unspecific and detergent-like fashion [32]. In
addition, VER155008 more effectively inhibited the
refolding and ATPase activities of Hsp70 compared
with 2-phenylethynesulfonamide [32]. It was also recently
reported that 2-phenylethynesulfonamide caused the en-
vironment of lysosome permeabilization and cathepsin D
release from lysosomes in lymphoma cells [33]. Taken
together with these recent repots, it is suggested that the
combination treatment of Antp-TPR with VER155008
might be better for increase of the cytotoxic activity than
the combination with 2-phenylethynesulfonamide. On
the other hand, the unspecific hydrophobic interaction of
17-AAG with VER155008 or the decrease of solubility in
the solution might occur and affect the cytotoxic activity
of 17-AAG because of the hydrophobicity of these com-
pounds, although further investigations would be needed
for the elucidation of these suggestions. Thus, further
study about the combination of Antp-TPR with other
peptides or small compounds targeting Hsp70 may lead
to significant improvements in the cytotoxic activity of
Antp-TPR toward cancer cells.

Conclusion

The combination of Antp-TPR and an Hsp70-targeted
peptide has sufficient molecular features for targeting
both Hsp90 and Hsp70. Such activity can induce synergetic
cytotoxic activity toward cancer cells by simultaneously de-
creasing multiple Hsp90 client proteins, providing a potent
advantage over conventional Hsp90 inhibitors such as
17-AAG. Taken together, targeting Hsp90 with the Antp-
TPR hybrid peptide might lead to a new therapeutic ap-
proach for managing malignant human tumors, including
breast cancer. Thus, the present findings will assist in fur-
ther development of cancer treatments targeting Hsp90
and Hsp70.

Additional files

Additional file 1: Effect of R11-heat shock protein (Hsp) 70 peptide
on the cytotoxic activity of Antp-TPR or 17-allylamino-
demethoxygeldanamycin (17-AAG) in cancer and normal cells.
(A) Viability of MDA-MB-231 and BT20 cells treated with Antp-TPR,
R11-Hsp70, or a combination of these peptides. Cells were incubated
with Antp-TPR, R11-Hsp70, or Antp-TPR in the presence of R11-Hsp70
(10 uM) at the indicated concentrations for 24 h and analyzed for cell
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of MDA-MB-231 and BT20 cells treated with Antp-TPR in the presence

or Antp-TPR in the presence of R11-Hsp70scramble (10 pM) at the indicated
concentrations for 24 h and analyzed for cell viability. (C) Normal mammary
epithelial cells, MCF-10A (left) or BT20 (right) cells were incubated with

concentrations for 24 h and analyzed for cell viability. Data are expressed as
the means £ SD.

Additional file 2: Effect of high concentration of R11-Hsp70 on the
expression levels of Hsp90, Hsp70, Akt, and p53 proteins. BT20 and
MDA-MB-231 cells were treated with or without R11-Hsp70 (40 uM) for
18 h and examined by western blotting for the expression of Hsp90,
Hsp70, Akt, p53, and B-actin using corresponding antibodies. 3-Actin was
used as the loading control. Bands were visualized by chemiluminescence
as described in the Materials and Methods section.

Additional file 3: Detection of polyubiquitinylated proteins after
treatment with Antp-TPR in the presence of R11-Hsp70 peptide.
BT20 cells were treated with or without Antp-TPR, R11-Hsp70, or a
combination of these peptides for the indicated times and examined
by western blotting for polyubiquitinylated proteins using anti-
polyubiquitinylated protein and anti-K48-linkage-specific polyubiquitin
antibodies. B-Actin was used as the loading control. All bands were
visualized by chemiluminescence. Asterisk (*) indicates the location of
increased K48-linkaged-polyubiquitin proteins by the combinational
treatment of Antp-TPR with R11-Hsp70.

Additional file 4: Effect of R11-Hsp70 on the cellular uptake of
Antp-TPR peptide for cancer or normal cells. (A) BT20, MDA-MB-231,
or MCF-10A cells were incubated with or without Antp-TPR-TAMRA
(10 pM) in the presence or absence of R11-Hsp70 (10 uM) or R11-Hsp70

performed as described in the Materials and Methods section. Upper
graphs indicate the fold of fluorescence intensity obtained from the
results of histograms (lower panels). (B) Internalization of R11-Hsp70
peptide toward BT20, MDA-MB-231, or MCF-10A cells was also confirmed
after the treatment of these cells with R11-Hsp70-FITC (10 uM) for 30 min
by flow cytometry assay.

Additional file 5: Flow cytometry analysis by Annexin V and PI
staining. BT20 cells were treated with or without Antp-TPR (20 uM) in
the presence or absence of R11-Hsp70 (10 uM) for 2 hr, and then flow
cytometry analysis by either Annexin V (A) or Pl (B) staining alone, or

and Methods section. The numbers in graphs indicate the percentage of
cells in each quadrant.

Additional file 6: Effect of Hsp70 inhibitor on the cytotoxic activity
of Antp-TPR or 17-AAG toward BT20 cells. BT20 cells were treated

or absence of 5 uM VER155008 and subjected to the WST-8 assay for the
assessment of cell viability. Data are expressed as the means + SD.

viability as described in the Materials and Methods section. (B) Viability

or absence of R11-Hsp70scramble. Cells were incubated with Antp-TPR

Antp-TPR in the presence or absence of R11-Hsp70 (10 uM), or 17-AAG in
the presence or absence of R11-Hsp70 (10 uM), respectively, at the indicated

scramble peptide (10 uM) for 30 min, and then flow cytometry assay was

Annexin V and PI (C) staining was performed as described in the Materials

with Antp-TPR or 17-AAG at the indicated concentrations in the presence
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